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Vascular adhesion protein-1 (VAP-1) is an inflammation-inducible adhesion molecule,
which supports contact between leukocytes and inflamed endothelium. There is evidence
that VAP-1 is involved in the recruitment of leukocytes to melanoma tumors. Interleukin-2
(IL-2)-based immunotherapy is an efficient therapy that promotes immune system activity
against cancers but is associated with toxicity. In the present study, we evaluated the
feasibility of PET/CT imaging using the radiotracer [68Ga]Ga-DOTA-Siglec-9, which is
targeted to VAP-1, to monitor pharmacodynamic effects of a novel FAP-IL2v
immunocytokine (a genetically engineered variant of IL-2 fused with fibroblast activation
protein) in the B16-FAP melanoma model. At 9 days after the inoculation of B16-FAP
melanoma cells, mice were studied with [68Ga]Ga-DOTA-Siglec-9 PET/CT as a baseline
measurement. Immediately after baseline imaging, mice were treated with FAP-IL2v or
vehicle, and treatment was repeated 3 days later. Subsequent PET/CT imaging was
performed 3, 5, and 7 days after baseline imaging. In addition to in vivo PET imaging, ex
vivo autoradiography, histology, and immunofluorescence staining were performed on
excised tumors. B16-FAP tumors were clearly detected with [68Ga]Ga-DOTA-Siglec-9
PET/CT during the follow-up period, without differences in tumor volume between FAP-
IL2v-treated and vehicle-treated groups. Tumor-to-muscle uptake of [68Ga]Ga-DOTA-
Siglec-9 was significantly higher in the FAP-IL2v-treated group than in the vehicle-treated
group 7 days after baseline imaging, and this was confirmed by tumor autoradiography
analysis. FAP-IL2v treatment did not affect VAP-1 expression on the tumor vasculature.
However, FAP-IL2v treatment increased the number of CD8+ T cells and natural killer cells
in tumors. The present study showed that [68Ga]Ga-DOTA-Siglec-9 can detect B16-FAP
tumors and allows monitoring of FAP-IL2v treatment.
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INTRODUCTION

Leukocyte trafficking from blood to tissues is a key factor for
normal immune responses. Several endothelial adhesion
molecules and their counter-receptors mediate a multistep
adhesion cascade, which is well understood. However, it is not
well known how tumor-infiltrating leukocytes find their way
from blood to cancer tissue. One potential candidate for this
process is the expression of vascular adhesion protein-1 (VAP-1/
AOC3). VAP-1 is an adhesin and enzyme involved in the
multistep adhesion between leukocytes and vascular
endothelium (1). It mediates direct binding of leukocytes to
endothelium. Moreover, via its enzymatic activity (especially
production of hydrogen peroxidase) it up-regulates
other adhesion molecules and thus, it also indirectly has
marked contribution to the inflammatory state of the
microenvironment. There is prominent evidence that VAP-1 is
involved in the accumulation of CD8+ T cells and natural killer
(NK) cells to high endothelial venules in peripheral lymph nodes
and tonsils (2). Indeed, VAP-1 mediates binding of T cells to
sinusoidal endothelial cells in hepatocellular carcinoma, and
adhesion of tumor-infiltrating lymphocytes, lymphokine-
activated killer cells, and NK cells to tumor vasculature (3,
4). We have previously shown that sialic acid-binding
immunoglobulin-like lectin 9 (Siglec-9) is a VAP-1 ligand, and
that a labeled Siglec-9 motif-containing peptide can be used for
PET imaging of inflammation and B16 melanoma tumors (5, 6).

Interleukin 2 (IL-2) is a small cytokine (15-kDa) with
pleiotropic effects on the immune system. Predominantly, IL-2
regulates stimulation of growth, proliferation, activation, and
differentiation of T lymphocytes (7). Since the early 1990s, high-
dose IL-2 therapy has been used to boost anti-tumor immune
responses in metastatic melanoma and renal cell carcinoma.
However, the therapeutic use of IL-2 is limited due to a short in
vivo half-life, the preferential expansion of T regulatory cells
(Tregs) and significant toxicity such as vascular leaky syndrome
(8). IL-2 produces its effects by binding to IL-2 receptors, which
consist of a (CD25), b (CD122), and g (CD132) subunits. Both b
and g subunits are essential for IL-2 binding and signal
transduction, whereas the a subunit is not required for IL-2
signaling but is needed for high-affinity binding (9). The
heterodimeric IL-2Rbg is expressed on NK cells, monocytes,
and resting CD8+ and CD4+ T cells (10–12). The heterotrimeric
IL-2Rabg is constantly expressed on Tregs, and some NK cells
and activated T cells can express the IL-2Ra after stimulation by
IL-2 (12). The basis of IL-2 anti-tumor activity is the ability to
expand and activate effector T cells. However, IL-2 also activates
Tregs, in particular CD4+CD25+FoxP3+ T cells, which have
immunosuppressive properties (13).

Several strategies have been developed to overcome the
harmful side effects of IL-2-based therapy and to achieve better
anti-tumor efficacy, e.g., introducing mutations into IL-2 fusion
proteins affecting IL-2R subunit binding, and/or targeting IL-2 to
tumor cells (14). We have recently designed a novel genetically
engineered variant of IL-2 (IL2v), which activates CD8+ T cells
and NK cells but does not bind to CD25 (15, 16). For better
tumor targeting, the IL2v moiety is fused to a fibroblast
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activation protein (FAP)-specific antibody to selectively
promote IL2v immune responses within the tumor
microenvironment (16). In the present study, the purpose of
the novel FAP-IL2v treatment was to increase the infiltration of
pro-inflammatory/cytotoxic immune cells (CD8+ T cells, NK
cells) into B16 melanoma tumors. We hypothesized that the
VAP-1-targeted Siglec-9 tracer can be used to detect immune
responses mediated by this novel FAP-IL2v antibody in B16-FAP
tumors. We used histology and longitudinal PET/CT imaging
using the VAP-1-targeted [68Ga]Ga-DOTA-Siglec-9 to monitor
the effect of FAP-IL2v treatment in the B16-FAP melanoma
model, which comprises B16 cells recombinantly over-
expressing murine FAP.
MATERIALS AND METHODS

FAP-IL2v Immunocytokine
FAP-IL2v was produced as murinized molecule based on the
high-affinity FAP antibody 4B9, murine IL2v with homologous
mutations to human IL2v using a murine IgG1 DAPG (amino
acid mutations: replacement of aspartic acid by alanine at
position 265, and proline by glycine at position 329) backbone
by transient transfection followed by purification using protein A
affinity chromatography and size exclusion/ion exchange
chromatography. For more details see (16).

B16-FAP Cell Line
B16 cells were stably transfected with a plasmid for full-length
murine FAP. Expression of murine FAP was analyzed by FACS,
and stability of expression in vitro over 3 months was confirmed.
In vivo stability of murine FAP expression was confirmed by
immunohistochemistry.

Animals and Study Design
B16-FAP murine melanoma cells were cultured in RPMI-1640
medium supplemented with 10% fetal calf serum, 5 mM
L-glutamine, penicillin-streptomycin, zeocin, and puromycin.
The B16-FAP cell line was kindly provided by Roche Pharma
and Early Development Innovation Center, Zurich, Switzerland.
Immunocompetent C57BL/6J male mice (n = 24) aged 9−11
weeks were used. Mice were housed in standardized conditions,
and they had access to water and food ad libitum. To generate
B16-FAP tumors, 0.5 × 106 cells in phosphate-buffered saline
(PBS) were injected subcutaneously into the neck area. Mice
were randomized into two groups that received either
intravenous (i.v.) injections of FAP-IL2v (20 µg; n = 12) or
PBS as a vehicle (n = 12). At 9 days post-injection, PET/CT
imaging was performed as a baseline measurement. Immediately
after the baseline imaging, mice were treated with i.v. injections
of FAP-IL2v or vehicle, and the injections were repeated 3 days
later. Subsequent PET/CT was performed 3, 5, and 7 days after
the baseline imaging. On day 5 after the baseline imaging, a
subset of the mice (FAP-IL2v n = 6 and vehicle n = 6) were
sacrificed after PET/CT and tumors were subjected to ex vivo
autoradiography. The same procedure was performed on 7 days
July 2022 | Volume 13 | Article 901693
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after the baseline imaging for the remaining subset of mice. The
study design is presented in Figure 1A. Tumor growth was
measured with external caliper on days 3, 7, 9, 12, 14, and 16 after
tumor cell injection. Tumor volume (mm3) was determined
using the formula 0.5 × length × width2.

Radiochemistry
68Ga was obtained from a 68Ge/68Ga generator (Eckert & Ziegler)
by elution with 0.1 M HCl. 68Ga eluate was added to a mixture of
2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (60
mg) and the precursor compound DOTA-Siglec-9 (6 nmol,
14.5 µg dissolved in water; Peptide Specialty Laboratories
GmbH). The reaction mixture was heated at 100°C for 15
minutes. After cooling to approximately room temperature in
an ice bath, 1 M NaOH solution was used to adjust the pH to
neutral. The molar activity of [68Ga]Ga-DOTA-Siglec-9 was 29 ±
9.8 MBq/nmol at the end of synthesis, and the radiochemical
purity was >95% throughout the study as determined by
reversed-phase radio-HPLC (17).

In Vivo PET/CT Imaging
Mice were anesthetized with isoflurane (4−5% for induction and
1.5−2% for maintenance) and the tail vein was cannulated. A CT
scan was performed for anatomical reference and attenuation
correction. The mice were scanned using a small-animal PET/CT
(Inveon Multimodality, Siemens Medical Solutions) at 9 days
post-injection as a baseline measurement, and 3, 5, and 7 days
after baseline imaging. The mice were i.v. injected with 9.0 ± 0.94
MBq of [68Ga]Ga-DOTA-Siglec-9 via the tail vein and a 30 min
Frontiers in Immunology | www.frontiersin.org 3
dynamic PET was performed. PET data acquired in a
listmode were iteratively reconstructed with an ordered-subset
expectation maximization 3-dimensional algorithm into 6 × 10 s,
4 × 60 s, and 5 × 300 s time frames.

Quantitative PET analysis was performed using Inveon
Research Workplace 4.1 software (Siemens Medical Solutions).
PET and CT images were automatically superimposed. The
regions of interest were defined in the tumor and skeletal
muscle based on CT image. The uptake of [68Ga]Ga-DOTA-
Siglec-9 was reported as mean standardized uptake value.

Ex Vivo Autoradiography
To detect luminal expression of VAP-1, the mice were i.v.
administrated anti-VAP-1 monoclonal antibody (clone 7-88, 1
mg/kg diluted in saline) 10 min before being sacrificed (18). After
the last PET/CT image was obtained, at 30 minutes post-
injection of [68Ga]Ga-DOTA-Siglec-9, blood was collected by
cardiac puncture and mice were sacrificed by cervical dislocation.
Tumors were excised and cut in half longitudinally to prepare
cryosections and paraffin-embedded sections. Autoradiography
was performed using the previously described method (6) and
regions of interest were defined in tumors based on hematoxylin-
eosin (HE) staining.

Histology and Immunofluorescence
The 20 µm tumor cryosections were stained with HE and
scanned with a digital slide scanner (Pannoramic 250 Flash,
3DHistech Ltd.). For the detection of luminal VAP-1, the 8 µm
tumor cryosections were stained with secondary anti-rat
A

B C

FIGURE 1 | Tumor growth and body weight are not altered after treatment with an IL-2 variant fused to fibroblast activation protein (FAP-IL2v). (A) Experimental
study design. (B) Growth curves of B16-FAP melanoma tumors treated with FAP-IL2v or vehicle during the follow-up period (n = 6-12/group). Baseline PET/CT
imaging was performed on day 9. (C) Body weight of FAP-IL2v-treated and vehicle-treated group during the follow-up period (n = 6-12/group). The black arrows
indicate the administrations of the drug or vehicle.
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immunoglobulin (Supplementary Table 1). The slides were
scanned with a digital fluorescent slide scanner (Pannoramic
Midi, 3DHistech Ltd.). Images were quantified using ImageJ
v.1.48 software (National Institutes of Health).

The subcutaneous tumor, spleen, and lymph node samples
were fixed with 10% formalin, embedded in paraffin blocks, cut
into 4 µm thickness sections, and mounted on superfrost slides
(Leica). To study infiltration of immune cells, slides were
immunolabeled with NKp46, CD8 and CD4 primary
antibodies and fluorochrome-conjugated secondary antibodies
(Supplementary Table 1). Scan images were obtained with the
Vectra Polaris microscope (Akoya Biosciences) and analyzed
with HALO image analysis software (Indica Labs).

Statistical Analysis
The results are presented as mean ± standard error of the mean
(SEM). Statistical analyses were performed using GraphPad
Prism software v.7.04 (GraphPad Software Inc.). Normality
was examined by a Shapiro-Wilk test. The Student’s t test was
used for normally distributed data, and the nonparametric
Mann-Whitney U test was used for all other experiments.
Pearson’s correlation coefficient was calculated between two
continuous variables. A P value of less than 0.05 was
considered statistically significant.
RESULTS

Effect of FAP-IL2v Treatment on Tumor
Growth and Body Weight
The growth curves of B16-FAP melanoma tumors demonstrated
that short-term FAP-IL2v treatment did not inhibit tumor
growth (Figure 1B). There was no significant difference
between FAP-IL2v-treated tumors and vehicle-treated tumors
at any time point. Two injections of FAP-IL2v were well-
tolerated without any signs of severe adverse effects. There was
no difference in body weight between FAP-IL2v-treated or
vehicle-treated mice (Figure 1C). There was a slight drop in
the body weight of FAP-IL2v-treated mice after the
administration of the drug, but the body weight normalized
within 2 days.

FAP-IL2v Treatment Increased [68Ga]Ga-
DOTA-Siglec-9 Uptake in B16-FAP Tumors
B16-FAP melanoma tumors of the FAP-IL2v-treated and
vehicle-treated groups were clearly detected with [68Ga]Ga-
DOTA-Siglec-9 PET/CT (Figure 2A and Supplementary
Figure 1). Before the treatment, the tumor-to-muscle uptake
ratio of [68Ga]Ga-DOTA-Siglec-9 was similar in the FAP-IL2v-
treated and vehicle-treated groups (Figure 2B). Longitudinal
[68Ga]Ga-DOTA-Siglec-9 PET/CT imaging revealed a relatively
equal tumor-to-muscle uptake in the FAP-IL2v-treated and
vehicle-treated groups 3 days and 5 days after baseline imaging
(Figure 2B). However, there was significantly higher tumor-to-
muscle ratio of [68Ga]Ga-DOTA-Siglec-9 in the FAP-IL2v-
treated group than in the vehicle-treated group 7 days after
Frontiers in Immunology | www.frontiersin.org 4
baseline imaging (2.6 ± 0.091 vs. 2.1 ± 0.17, P = 0.026). To
determine whether the increased uptake of [68Ga]Ga-DOTA-
Siglec-9 in tumors was associated with increased tumor volume,
we performed correlation analysis between in vivo PET results
from each mouse and individual tumor volumes at various time
points. The uptake of [68Ga]Ga-DOTA-Siglec-9 into individual
B16-FAP tumors correlated significantly with the tumor volume
(r = 0.48, P < 0.0001) (Figure 2C). In B16-FAP tumors, double
immunofluorescence staining revealed that VAP-1-positive
blood vessels co-localized with the biotinylated Siglec-9 peptide
in both the tumor tissue and the tumor periphery
(Supplementary Figure 2 and Supplementary Figure 3).
Together, these results indicate that [68Ga]Ga-DOTA-Siglec-9
binding is enhanced in B16-FAP tumors after FAP-
IL2v treatment.

PET imaging data were confirmed by ex vivo tumor
autoradiography analysis. Representative [68Ga]Ga-DOTA-
Siglec-9 autoradiographs and quantitative results of tumor
uptake are presented in Figures 3A, B. Autoradiography of
B16-FAP tumors 5 days after baseline imaging showed that
there was no significant difference in [68Ga]Ga-DOTA-Siglec-9
uptake between the FAP-IL2v-treated and vehicle-treated groups
(Figure 3B). However, the tumor uptake was significantly higher
in the FAP-IL2v-treated group than in the vehicle-treated group
7 days after baseline imaging (37 ± 2.6 vs. 29 ± 2.2 PSL/mm2, P =
0.035). Immunofluorescence staining of B16-FAP tumors
revealed that the expression of VAP-1 on tumor vasculature
was similar in FAP-IL2v-treated and vehicle-treated groups.
Quantification of the VAP-1-positive tumor area showed that
FAP-IL2v treatment did not affect the expression of VAP-1-
positive blood vessels (Figure 3C). Together, these results
indicate that [68Ga]Ga-DOTA-Siglec-9 can detect increased
tumor uptake of FAP-IL2v.

FAP-IL2v Treatment Alters Immune Cell
Populations
FAP-IL2v treatment induced expansion of CD8+ T cells and NK+

immune cells in B16-FAP tumors at both time points
(Figure 4A). There were very few CD8+ T cells in the tumors
of the vehicle-treated group 5 days after baseline imaging but the
number of CD8+ T cells slightly increased 7 days after baseline
imaging. The number of CD8+ T cells in the tumors of the FAP-
IL2v-treated group was higher than in the vehicle-treated group
and remained constant at both time points. A significant
difference in the tumor area infiltrated by CD8+ T cells
between FAP-IL2v-treated and vehicle-treated groups was
detected only at 5 days after baseline imaging (P = 0.038;
Figure 4B). NK cell staining showed that there was a
significantly higher infiltration of NK cells into the tumors of
the FAP-IL2v-treated group than the vehicle-treated group 5 and
7 days after the baseline imaging (P = 0.032 and P = 0.0083
respectively; Figure 4C). FAP-IL2v treatment did not alter the
number of CD4+ T cells in tumors compared with the vehicle-
treated group, but there was higher increase of CD4+ T cells in
the tumor on day 7 compared to Day 5, which is consistent with
the findings of the tracer (Supplementary Figure 4).
July 2022 | Volume 13 | Article 901693
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FAP-IL2v treatment also altered immune cell populations in
lymph nodes and spleen (Figure 5). In the lymph nodes, FAP-IL2v
significantly increased the number of CD8+ T cells 5 days (P =
0.008) and 7 days after the baseline imaging (P < 0.0001;
Figure 5B). FAP-IL2v treatment did not alter the absolute
number of CD4+ T cells in lymph nodes but significantly
increased the ratio of CD8+/CD4+ T cells 5 days after the baseline
imaging (P = 0.0497; Figure 5B). The difference in the CD8/CD4
ratio between the groups reduced 7 days after the baseline imaging,
but it was still significantly higher in the FAP-IL2v-treated group (P
= 0.0002). FAP-IL2v treatment did not alter the number of CD4+ T
cells (Figure 5C) in the spleen. FAP-IL2v treatment reduced CD4+

T cell staining in the spleen compared with the vehicle-treated
group (21.2 ± 1.7% vs. 37.3 ± 6.1%, P = 0.034) 7 days after the
baseline imaging (Figure 5D). There were no differences between
groups in splenic CD8+ T cells (Supplementary Figure 5). No or
very few NK+ cells were detected in all spleens and lymph nodes
(Supplementary Figure 6).
Frontiers in Immunology | www.frontiersin.org 5
DISCUSSION

In this study, we focused on longitudinal quantitative PET/CT
imaging with VAP-1-targeting [68Ga]Ga-DOTA-Siglec-9 to
assess the pharmacodynamic effect of the novel tumor-
targeting FAP-IL2v immunocytokine in mice bearing B16-FAP
melanoma tumors. We found that although primary B16-FAP
tumor volumes were similar in vehicle- and FAP-IL2v-treated
mice, the tumor uptake of [68Ga]Ga-DOTA-Siglec-9 was
increased in FAP-IL2v-treated mice. We demonstrated a clear
correlation between larger tumor volume and higher tracer
uptake, which supports the observed pharmacodynamic effects
of FAP-IL2v therapy. FAP-IL2v treatment did not alter the
number of VAP-1 positive blood vessels in B16-FAP tumors.
However, the immunocytokine produced pharmacodynamic
changes in immune cell populations in B16-FAP tumors.

A previous study indicated that wild-type IL2 conjugated to
tumor-specific antibodies administered as a monotherapy shows
A

B
C

FIGURE 2 | Treatment with an IL-2 variant fused to fibroblast activation protein (FAP-IL2v) enhances [68Ga]Ga-DOTA-Siglec-9 uptake in B16-FAP tumors. (A)
Representative sagittal PET/CT images of FAP-IL2v-treated and vehicle-treated mice at baseline, and 3, 5, and 7 days after baseline imaging. Red arrows indicate
B16-FAP melanoma tumors. (B) Quantitative analysis of PET/CT images showed that FAP-IL2v treatment increased the tumor-to-muscle ratio of [68Ga]Ga-DOTA-
Siglec-9 binding (n = 6-12/group). (C) In vivo tumor uptake correlated well with tumor volume during the follow-up period (n = 24).
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poor biodistribution and efficacy in the B16 melanoma tumor
microenvironment (19). Generally, the B16 melanoma tumor
model is characterized by poor immunogenicity that is relatively
resistant to systemic IL2 treatment (20–22). In the current study,
the murine B16 melanoma cell line was transfected with FAP to
make tumors more likely to elicit an immune response. Under
normal physiological conditions, tissue expression of FAP is very
low, yet expression increases during wound healing (23).
However, FAP is expressed on the surface of carcinoma-
associated fibroblasts in the tumor stroma in more than 90%
of solid tumors including breast, colorectal, skin, and pancreatic
cancers, and in some soft tissue sarcomas (24, 25). Since IL-2
based immunotherapy is efficient against metastatic melanomas,
albeit associated with toxicity (8), we designed a tumor-targeting
FAP-IL2v with abolished CD25 binding. Our results indicate
that FAP-targeted IL2v treatment induced strong local expansion
of CD8+ T cells and NK cells at tumors. A carcinoembryonic
antigen-targeted IL2 variant produced a similar effect on
immune cell populations (15). In addition, FAP-IL2v activated
a systemic effect by increasing the number of CD8+ T cells in the
lymph nodes. One explanation for this could be that although
very low there is still some expression of FAP in the lymph nodes
and because there are more CD8+ cells in this organ at baseline,
the observed expansion may be higher. The consequences of
Frontiers in Immunology | www.frontiersin.org 6
systemic infiltration or more pronounced expansion of immune
cells in the periphery is IL2 related toxicity including immune/
cytokine storm, vascular leak syndrome and lung edema. With
the FAP-IL2v, this peripheral effect is much lower compared to
proleukin, but it is not completely abolished. Thus, there is still a
dose limiting shortcoming for this drug, albeit not as extreme as
with proleukin.

Studies have shown that IL2 variants can reduce tumor size
(15, 26). However, these responses were either seen in inflamed
models such as MC38 or PancO2, or when IL2 variants were
used as part of combination therapy in the B16 model (22, 27). In
our study, twice-injected FAP-IL2v treatment as monotherapy
did not inhibit the growth of B16-FAP tumors. This finding may
be due to our experimental protocol, which used short-term
treatment with FAP-IL2v and a short follow-up period. Recent
studies support this claim; FAP-IL2v used in combination with
another drug mediates anti-tumor activity (16, 28). This is in the
line that B16 does not respond to IL-2 treatment alone, but needs
to be combined (22, 27). Thus, it was not expected that FAP-IL2v
would work in B16. During immunotherapy, pseudoprogression
of disease may be observed, whereby the response to treatment
first causes an increase in tumor volume due to infiltration of
immune cells. This phenomenon has been observed with
immune checkpoint inhibitors in melanoma and other solid
A

B C

FIGURE 3 | Autoradiography of [68Ga]Ga-DOTA-Siglec-9 in B16-FAP tumors. (A) Representative B16-FAP tumor sections stained with hematoxylin-eosin (HE), the
corresponding autoradiographs and vascular adhesion protein-1 (VAP-1) immunofluorescence staining from mice treated with an IL-2 variant fused to fibroblast
activation protein (FAP-IL2v), and vehicle-treated mice 7 days after baseline imaging. The scale bar is 1 mm for the HE-stained image and 200 µm for VAP-1 staining.
(B) Quantification of tumor autoradiographs showing the distribution of [68Ga]Ga-DOTA-Siglec-9 in FAP-IL2v-treated and vehicle-treated mice (n = 6/group/
timepoint). Results are expressed as photostimulated luminescence per square millimeter (PSL/mm2). NS, not significant. (C) The area of VAP-1-positive blood
vessels from B16-FAP tumors (n = 6/group/timepoint).
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tumors (29). However, to show efficacy FAP-IL2v would need to
be combined with a checkpoint inhibitor and an agent that
results in antigen release to boost the level of antigen presenting
cells. Studies in which infiltration of inflammatory cells induces a
decrease in tumor volume, which is an important endpoint in
treatment monitoring, would further confirm the importance of
monitoring the pharmacodynamics of immune cell populations.

In the subcutaneous B16-FAP melanoma model, we found
that FAP-IL2v significantly increased the tumor uptake of
VAP-1-targeted [68Ga]Ga-DOTA-Siglec-9 7 days after
baseline imaging, as measured by in vivo PET and ex vivo
autoradiography methods. Despite increased [68Ga]Ga-DOTA-
Siglec-9 uptake, FAP-IL2v did not change the density of VAP-1-
positive blood vessels in tumors. We know that mutations at
glycosylation sites on the surface of the VAP-1 molecule reduce
lymphocyte adhesion to endothelium and affect the catalytic
activity of VAP-1/AOC3 (30). Based on this finding, treatment
with FAP-IL2v may alter the glycosylation of VAP-1 and affect
the binding of [68Ga]Ga-DOTA-Siglec-9 to the enzymatic groove
of VAP-1. Previously, using a mouse B16 melanoma model, we
demonstrated that [68Ga]Ga-DOTA-Siglec-9 can be used to
Frontiers in Immunology | www.frontiersin.org 7
image tumor-associated inflammation. In that study, [68Ga]Ga-
DOTA-Siglec-9 could detect subcutaneous B16 melanoma
tumors 7 days and 9 days after tumor cell inoculation (6).
Moreover, blood vessels within melanoma tumors express
VAP-1 in humans and mice (31, 32). In head and neck
squamous cell carcinoma, VAP-1 mediates the binding of
tumor-infiltrating lymphocytes and NK cells to tumor
endothelium (4). In line with these findings, our results further
demonstrate that [68Ga]Ga-DOTA-Siglec-9 can be used to reflect
tumor-associated inflammation. In addition to melanoma, this
tracer could be used to image various other types of cancers.
However, in clinical settings it will be wise to evaluate VAP-1
expression in tumor biopsies before the use of the tracer, if
possible. This will be easily performed as there are several nicely
working antibodies against VAP-1.
CONCLUSION

In a B16-FAP melanoma model, we found that FAP-IL2v
treatment increased CD8+ T cell and NK cell infiltration,
A

B C

FIGURE 4 | IL-2 variant fused to fibroblast activation protein (FAP-IL2v) treatment increases the number of CD8+ T cells and NK+ cells in B16-FAP melanoma
tumors. (A) The expression of CD8+ T cells (upper row) and NK+ cells (lower row) were visualized in tumor sections 5 and 7 days after baseline imaging in tumors
from mice treated with FAP-IL2v and vehicle-treated mice. The scale bar is 20 µm. (B) Quantitative analysis of immunofluorescence staining indicates the area of the
tumor infiltrated by CD8+ T cells (n = 4-6/group). NS, not significant. (C) Quantitative analysis of immunofluorescence staining indicates the area of the tumor
infiltrated by NK+ cells (n = 3-6/group).
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A

B

D

C

FIGURE 5 | Treatment of mice with an IL-2 variant fused to fibroblast activation protein (FAP-IL2v) induces alterations in immune cell populations. (A) Representative
immunofluorescence staining of CD8+ T cells in lymph node (LN) sections from vehicle-treated and FAP-IL2v-treated mice. The scale bar is 800 µm. (B) The area of
the LN stained positive for CD8+ T cells (as assessed by quantitative analysis of immunofluorescence staining) and the CD8+/CD4+ ratio in the LN (n = 5-6/group).
(C) Representative immunofluorescence staining of CD4+ T cells in spleen sections from FAP-IL2v-treated and vehicle-treated mice. The scale bar is 2 mm. (D)
Quantitative analysis of immunofluorescence staining indicates the area of the spleen infiltrated by CD4+ T cells (n = 5/group). NS, not significant.
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which may partly explain the increased tumor uptake of VAP-1-
targeted [68Ga]Ga-DOTA-Siglec-9. The pharmacodynamic
effects of FAP-IL2v-mediated immunotherapy, assessed by PET
and immunofluorescence, were observed even in the absence of
tumor shrinkage. These findings suggest that [68Ga]Ga-DOTA-
Siglec-9 is a potential imaging agent for in vivo imaging of
tumor-associated inflammation and provides a tool for
monitoring cancer immunotherapy.
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