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Microbial dysbiosis in the
gut drives systemic
autoimmune diseases
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1Biology Department, Whitman College, Walla Walla, WA, United States, 2College of Pharmacy, Al
Ain University, Abu Dhabi, United Arab Emirates, 3College of Pharmacy, Mansoura University,
Mansoura, Egypt
Trillions of microbes survive and thrive inside the human body. These tiny

creatures are crucial to the development and maturation of our immune

system and to maintain gut immune homeostasis. Microbial dysbiosis is the

main driver of local inflammatory and autoimmune diseases such as colitis and

inflammatory bowel diseases. Dysbiosis in the gut can also drive systemic

autoimmune diseases such as type 1 diabetes, rheumatic arthritis, and multiple

sclerosis. Gut microbes directly interact with the immune system by multiple

mechanisms including modulation of the host microRNAs affecting gene

expression at the post-transcriptional level or production of microbial

metabolites that interact with cellular receptors such as TLRs and GPCRs.

This interaction modulates crucial immune functions such as differentiation of

lymphocytes, production of interleukins, or controlling the leakage of

inflammatory molecules from the gut to the systemic circulation. In this

review, we compile and analyze data to gain insights into the underpinning

mechanisms mediating systemic autoimmune diseases. Understanding how

gut microbes can trigger or protect from systemic autoimmune diseases is

crucial to (1) tackle these diseases through diet or lifestyle modification, (2)

develop new microbiome-based therapeutics such as prebiotics or probiotics,

(3) identify diagnostic biomarkers to predict disease risk, and (4) observe and

intervene with microbial population change with the flare-up of autoimmune

responses. Considering the microbiome signature as a crucial player in

systemic autoimmune diseases might hold a promise to turn these

untreatable diseases into manageable or preventable ones.
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Introduction

The gastrointestinal tract is home to trillions of diverse

microbial species including bacteria, viruses, and fungi (1–3).

To colonize the human body, these microbes interact with the

immune system to develop tolerance and maintain gut

homeostasis. Gut microbes, or their secreted metabolites,

directly interact with gut-associated lymphoid tissues (GALTs),

which include Peyer’s patches, mesenteric lymph nodes,

intraepithelial lymphocytes, lamina propria, and isolated

lymphoid follicles (4, 5). This interaction is mediated through

Toll-like receptors (TLRs), leading to induction of immune cell

differentiations, setting the balance between helper T cells and

regulatory T cells (6). Moreover, gut microbes modulate genes

involved in maintaining the mucosal barrier function such as

those involved in the synthesis of the tight junctions (6, 7) and

formation of mucin barrier (8, 9).

Gut microbes could also modulate host genes through

microRNAs (miRNAs), short non-coding RNA sequences that

silence gene expression (10, 11). Host-derived miRNAs serve an

essential function to control microbial population abundance by
Frontiers in Immunology 02
directly affecting microbial gene expression and mucosal

colonization (12–15). Microbes, or their secreted metabolites,

modulate miRNAs affecting host genes. The affected host genes

include those linked to differentiation of T cells, production of

interleukins, proliferation of intestinal epithelial cells, gut

permeability, and autophagy process (16–21). Selected

examples of miRNAs mediating host–microbe interactions

leading to or preventing inflammation are noted and

summarized (21–34) (Table 1).

Microbial dysbiosis disturbs the immune function leading to

inflammation and sensitization of the immune system and

causing autoimmune diseases (35, 36). Many factors influence

microbial dysbiosis such as diet, stress, drugs, diseases, age, and

lifestyle. The imbalance in helper T cells/regulatory T cells drives

autoimmune diseases such as colitis and multiple sclerosis (MS)

(18, 33). Leakage of metabolites such as lipopolysaccharides

sensitizes the immune system, leading to a higher production

of pro-inflammatory interleukins, and degradation of mucin

resulting in irritation of the gut lining and microbial invasion

(37). Figure 1 illustrates the role of some microbial taxa in

maintaining gut barrier function and how microbial dysbiosis
TABLE 1 The role of selected miRNAs in shaping the microbiome structure and mediating inflammatory and autoimmune diseases.

Unique miR Molecular mechanism Outcome Reference

miR-515-5p and miR-1226-5p Upregulate growth-related genes in F. nucleatum and E. coli Drives inflammatory bowel diseases and colorectal
cancer

(21, 22)

miR-21 Control of gut microbes Drives colitis (23)

miR-193a-3p. Interferes with the ability of the intestinal cells to absorb L-
Ala-g-D-Glu-meso-DAP, a proinflammatory tripeptide

Reduces inflammation (24, 25)

miR-375-3p Promotes proliferation of the intestinal epidermal cells (19)

miR-21-5p Increases permeability of the intestinal epidermal cells Drives inflammation (26)

miR-106b Affects expression of p21 gene, which mediates the anti-
inflammatory effect of microbial short-chain fatty acids

Control of host genes (20)

miR-150 and miR-143 Upregulated by Lactobacillus salivarius and L. fermentum Reduces inflammation in colitis mouse model (27)

miR-18a and miR-4802 Downregulated by Fusobacterium nucleatum Interference in autophagy pathways
Increases resistance to chemotherapeutics

(21)

miR-21 Modulated by F. nucleatum Increases level of prostaglandin E2 and IL-10
Inhibits anti-tumor T-cell response leading to
progression of cancer

(28)

miR-20a-5p Overexpressed by some strains of E. coli Enhances expression of some growth factors leading
to colorectal cancer

(29)

miR-10a Downregulated by commensal microbes Targeting IL-12/IL-23p40 contributing to the immune
homeostasis

(17)

miR-let 7f Downregulated by M. tuberculosis Decrease in the production of tumor necrosis factor
and IL-1Beta suppressing the immune system

(30)

miR-141 and miR-200a Inducers of Th17 differentiations and repressors for Treg cells Leading to progression of MS (31)

miR-155 inflammation 38 Regulates Th17/Treg balance through toll-like receptors
(TLRs), the sensor of gut innate immunity

Over-expression enhances Th17 immunogenic
function and suppresses Treg cells

(32, 33)

miR-18b, miR-363-3p, and miR-
106a

These miRs suppress differentiation of Th17 and subsequent
inflammation

Decreases the production of proinflammatory
interleukins IL17 resulting in anti-inflammatory effect

miR-1, miR-27a and b, miR-30c,
and miR-141

Predicted to induce Th17 differentiation Drives inflammation (34)

miR-20a, miR-20b, miR-21, miR-
93, miR-106a, and miR-152

Predicted to suppress Th17 differentiation Suppress inflammation (34)
fro
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results in a leaky gut. Each microbe prevents or drives

inflammation by a unique mechanism. For example,

Faecalibacterium prausnitzii prevents inflammation by

inducing Treg differentiation, leading to the subsequent higher

production of IL-10 (an anti-inflammatory interleukin) (38, 39).

In contrast, Fusobacterium nucleatum drives inflammation by

inhibiting cytotoxic T cells and modulation of miRNAs, leading

to suppression of autophagy (28). Several examples of individual

microbes that modulate host immune response to prevent or

drive inflammation and autoimmune reaction are noted (40–72)

and summarized (Table 2).
Microbial dysbiosis drives systemic
autoimmune diseases

Microbial dysbiosis is strongly linked to local inflammation

and autoimmune diseases in the gut such as Crohn’s and

inflammatory bowel diseases. However, much less is known

about the link between dysbiosis in the gut and systemic

autoimmune diseases. Evidence suggests that gut microbes

exert some control over the systemic immune response,

particularly innate immunity. To induce immune tolerance to

commensal microbes, the antigens of the gut microbes are

sampled by dendritic cells (DCs) and presented to T cells in
Frontiers in Immunology 03
the pancreatic lymph nodes (PLNs) (77, 78). Sometimes, T cells

activated by microbial antigen fragments spread and trigger a

systemic immune response. Additionally, some microbial

metabolites might leak from the gut barrier to other tissues or

organs. Short-chain fatty acids (SCFAs) suppress neutrophil

function via binding to GPCRs (79) while microbial

peptidoglycans stimulate neutrophil function via Nod1 (40).

Here, we discuss links between microbial dysbiosis and

some systemic autoimmune diseases including type 1 diabetes

(T1D), Multiple Sclerosis (MS), rheumatoid arthritis (RA), and

systemic lupus erythematosus (SLE).
The role of microbial dysbiosis in
triggering type 1 diabetes

T1D is a systemic autoimmune disease that is linked to

microbial dysbiosis. Preclinical and clinical T1D is mostly

associated with GIT pathogenesis, such as celiac disease or

increased intestinal leakage potentially due to microbial

dysbiosis (41–43). Multiple studies report significant shifts in

gut microbes including bacteria, viruses, and fungi before the

onset of T1D as reviewed (44). Figure 2 illustrates the balanced

microbial interaction that contributes to glucose metabolism and

suppresses hyperglycemia.
FIGURE 1

Microbial dysbiosis drives systemic inflammation by targeting the mucosal barrier. The illustration represents that, during microbial dysbiosis, the
gut barrier is leaky, which results in diffusion of microbial metabolites such as lipopolysaccharides into the circulation, causing systemic
inflammation. However, healthy microbiome has a balanced microbial composition including potential anti-inflammatory microbes such as
Akkermansia muciniphilia and Faecalibacterium prausnitzii. These microbes or their metabolites activate TLRs leading to overexpression of tight
junction proteins and prevent gut leakage. This leakage is thought to drive systemic inflammatory and autoimmune diseases such as insulin
resistance and obesity.
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A study on mice reported that cytophaga-flavobacter-

bacteroidetes (CFB) affects Th17/Treg balance, which is crucial

for immune homeostasis, leading to autoimmune diseases (58).

CFB induces Th17 differentiation, and its absence is associated

with induction of Treg cells in the lamina propria, and this effect

is diminished after selective antibiotic treatment (58). Another

study reported an enrichment in Bacteriodetes dorei with

preclinical or clinical T1D. B. dorei produces LPS that induces

the innate immune response (58). The abundance of
Frontiers in Immunology 04
Desulfovibrio piger is associated with a higher level of plasma

1-arachidonoyl-GPC, a metabolite known to negatively affect

CD4+, CXCR3+, CD8+, and CXCR3+ T cells (50), preventing

further progression of autoimmunity (50). A similar effect of this

metabolite is reported in mice (80). D. piger is also known to

produce hydrogen sulfide, which affects T cells and immune

response (81–83).

A study reported that T1D patients show enrichment in

Proteobacteria, Actinobacteria, and Bacteroidetes and lack of
TABLE 2 Unique gut microbes as drivers or inhibitors of autoimmune diseases.

Microbe Role of the microbiota in modulating inflammation References

Lactobacillus casei Synergizes with poly (I:C), a TLR3 ligand, to promote Th1 response leading to selective enrichment in IL-12p70 production. (45)

Faecalibacterium
prasuntzii

Silences NF-kB gene expression through inhibition of HDACS, which results in hyperacetylation of NF-kB-encoding gene
preventing its expression. F. prausuntzii exerts anti-inflammatory activity by inducing Treg cells and through butyrate
production.

(38, 46)

Bacteroides
thetaiotaomicron

Degrades carbohydrate to produce butyrate. (39)

Roseburia genera Decreases inflammation through production of butyrate. (47, 48)

Lactobacillus salivarius
and L. fermentum

Anti-inflammatory activity by enhancing expression of miR-150 and miR-143 in a mouse model of colitis.
Restoration of the gut barrier function.

(27, 49)

Desulfovibrio piger Associated with higher level of plasma 1-arachidonoyl-GPC levels, a metabolite known to negatively affect CD4+ CXCR3+ and
CD8+ CXCR3+ T cells50, preventing further progression of autoimmunity.

(50)

Bacillus cereus Associated with delayed onset of T1D in NOD mice. (51–53)

Akkermansia sp. Increases butyrate production and can protect against pancreatic autoimmunity. (54)

Prevotella histicola Prevents arthritis in mice. P. histicola regulates dendritic cells (CD103+) resulting in generation of Treg cells, which suppresses
TH17, decreasing proinflammatory interleukins and increasing anti-inflammatory interleukins such as IL-10.

(55)

Bifidobacterium
bifidum

Inhibits excessive stimulation of CD4+ lymphocytes. (56)

F. nucleatum Inhibits anti-tumor T-cell response, leading to progression of cancer through a modulatory effect on miR-21, which increases
level of prostaglandin E2 and IL-10, although the exact mechanism is not clear.
Stimulates expression of NF-kB gene through miRNA, which results in inflammation.

(21, 22, 28)

M. tuberculosis Decreases miR-let 7f in infected microphages, leading to a decrease in the production of tumor necrosis factor (TNF) and IL-
1Beta, which suppresses the immune system by affecting NF-kB inflammatory response.

(30)

Solobacterium moorei Diagnostic pathobiont in inflammatory bowel diseases. (57)

Adherent-invasive
Escherichia coli (AIEC)

Induces inflammation by irritating the gut lining. AIEC also produces propionates, an SCFA stimulating the production of IL-
1b, a component of the inflammasome that increases the production of IL-18.

(20)

Cytophaga-flavobacter-
bacteroides (CFB)

Affects TH17/Treg balance, which is crucial for immune homeostasis leading to autoimmune diseases. CFB induces Th17
differentiations, and its absence is associated with induction of Treg cells in the lamina propria.

(58)

Bacteriodes dorei Produces LPS that induces the innate immune response. (59)

Provetella species Breakdown of mucin and contribute to intestinal inflammation. (60, 61)

Segmented filamentous
bacteria

Produces serum amyloid protein A, which increases the production of Th1 and Th17 that migrate systemically and contribute
to systemic autoimmune diseases.

(62)

Provetella copri Stimulates differentiation of TH17, leading to excessive productions of proinflammatory interleukins such as IL-23 and IL-1
and recruitment of neutrophil.

(63–67)

Prevotella intestinalis Implicated in colitis through reduction in short-chain fatty acids and the anti-inflammatory IL-18 in mice. (68)

Enterococcus
gallinarum

Translocate from the gut to the liver, resulting in overproduction of autoimmune antibodies, inflammation, and mortality in
genetically susceptible mice.

(69)

Eggerthella lenta and
Akkermansia
muciniphila

Increases in MS patients. MS patients show increase in anti-A muciniphila immunoglobulin G. (70–72)

Akkermansia
muciniphila

Interacts with spore-forming bacteria to escalate the inflammation leading to MS through direct effect on T lymphocytes. (73)

Lactobacillus bifidus Activates autoimmune response in IL-1 receptor antagonist-knockout mice. (74, 75)

Ruminococcus gnavus Enriched in genes for the production of proinflammatory polysaccharides and lower potential in fiber-degrading enzymes. (76)
fr
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butyrate-producing bacteria (84). Knowing that butyrate

induces mucin formation and assembly of tight junction

explains the increased gut permeability in T1D patients. T1D

microbiota is also deficient in Provetella species that break down

mucin and enriched in bacteria that produce propionates and

acetates known to impair neutrophil functions observed in T1D

patients (60, 61). Other evidence suggests that microbial

dysbiosis alters the gut immunity, resulting in excessive

stimulation of inflammatory response leading to T1D even

without an observable change in gut permeability. For

example, a study reported that T1D patients show a high

expression level of intercellular adhesion molecule-1, HLA-DR,

HLA-DP, IL-4, and IL-1a-positive cells (60, 85). Another study
showed that DCs are not able to induce FoxP3+Treg cell

differentiation in T1D patients (86). The authors claimed that

the deficiency of Treg cells in the gut decreases the ability of the

immune system to tolerate and discriminate self-antigens in the

pancreatic b-cells (86).
A mouse model of T1D has a reduction in IL-22, IL-17A,

and IL-23A that is associated with loss of segmented filamentous
Frontiers in Immunology 05
bacteria (87). This alteration is reversed by treatment with anti-

inflammatory drugs, suggesting that dysbiosis is linked to

inflammation rather than to T1D (87). Another study shows

that the immunomodulatory compound, indole-3-carbinol,

binds to aryl hydrocarbon receptor (AhR) in NOD mice (88).

AhR is a transcription factor that prevents T1D. Interestingly,

this activation was mainly localized to the small intestine (88).

Meanwhile, no alteration was observed in the differentiation of T

cells in the spleen or PLNs (88). These changes were associated

with a signature trans-kingdom network characterized by

a reduction in ruminiclostridium, intestinimonas, and

lachnospiraceae mediated by an increase in CD25 (88). A

study found that prediabetes in rats is associated with

enrichment in Bifidobacterium, Lactobacillus, and Bacteroides

species and antibiotic treatment decreased the incidence of T1D

(89, 90). Other research shows that Lactobacillus bifidus can

activate the autoimmune response in IL-1 receptor antagonist-

knockout mice (74, 75).

Mice that are deficient in MyD88, a specific adapter

molecule involved in TLRs signaling pathways, are protected
FIGURE 2

The integral role of the balanced gut microbes in maintaining glucose level and suppressing hyperglycemia. The illustration shows the
fundamental role of some representative gut microbes in glucose metabolism. The onset of T1D is characterized by a change in microbial
composition characterized by decrease in specific taxa such as Bifidobacterium, Lactobacilli, Bacteroides, Faecalibacterium, and Akkermansia—
while other taxa such as Fusobacterium is enriched. Bifidobacterium increases glucose uptake in heart, muscle, and liver tissues and stimulates
glucagon synthesis. Lactobacilli stimulates cellular receptors involved in translocation of glucose, production of phosphatidyl inositol-3-
phosphate, production of insulin receptor substrate, and suppression of hyperglycemia. Bacteroides and Faecalibacterium produce butyrate,
which binds to GPCR, activating the production of GLP-1 hormone, which is involved in insulin synthesis, secretion, and sensitivity. Lactobacilli
and Akkermansia have an inhibitory effect on alpha-glucosidase enzyme, which helps in the breakdown of complex carbohydrate, raising sugar
level. Lactobacilli and Bifidobacterium increase bile salt hydrolyses, leading to GLP-1 hormone stimulation. If this microbial role is disturbed,
inflammation and autoimmune diseases arise.
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from T1D in the presence of a microbiome signature

characterized by a richness in Lactobacillus genera and low

Firmicutes/Bacteroidetes ratio (91). Interestingly, Lactobacillus

shows protection against T1D while Bacillus cereus delayed the

onset of T1D in NOD mice (51–53). Metagenomic analysis

revealed that stool samples from T1D patients are enriched in

genes responsible for bacterial adhesion and flagella formation

that are possibly involved in triggering systemic immune

response (84). T1D patients are also deficient in butyrate

producers and mucin-degrading bacteria (84).

Preclinical T1D is also associated with a reduction in

butyrate-producing genera such as Roseburia (48). When

dietary fibers (DF) intake is limited, gut microbes degrade

mucin to increase the supply of butyrate. Mucin degradation

increases gut permeability and immunogenicity leading to T1D

(92, 93). Butyrate modulates susceptibility to T1D through a

variety of possible mechanisms such as upregulation of tight

junction proteins (94). Butyrate enhances differentiation of Treg

cells through histone H3 acetylation (95, 96) and induces

apoptosis of proinflammatory T cells in the murine cell line

(97). Another study shows that Akkermansia sp., a butyrate

producer, protects against pancreatic autoimmunity (54).

Butyrate promotes Th1 differentiation through induction of

IFN-g and T-bet expression by inhibition of histone

deacetylase. Butyrate inhibits Th17 differentiation through

suppression of Rora, Rorgt, and IL-17 (98). The literature

shows mixed results for the effect of oral administrations of

butyrate on the development of T1D in humans versus

experimental animals (99).

Several reports suggest that viral infections can trigger or

attenuate the development of T1D or pancreatic autoimmunity,

particularly infection with rotavirus, cytomegalovirus (CMV),

and enterovirus, although the underpinning mechanisms are not

well-understood (100–104). Several findings in experimental

animals, particularly NOD mice, suggest that the viruses affect

T1D development by molecular mimicry or bystander

inflammation. Molecular mimicry is reported for molecules

such as glutamic acid decarboxylase enzyme, tyrosine

phosphatase IA-2/IAR, and heat shock protein 60 (105, 106).

For example, Coxsackievirus B4 (CVB4) triggers T1D by

mimicry to host-related molecules such as beta-cell glutamic

acid decarboxylase enzyme 65 (105, 106). Interestingly, the

adequate response of pancreatic B cells to interferon-gamma

reduced CVB4-induced T1D (107). Another hypothesis is that

the virome induces pancreatic bystander inflammation, which

involves the inability of CD8+ cytotoxic T lymphocytes to

recognize self-antigens of the pancreatic beta cells.

Interestingly, there are some reports of viral infections linked

to less incidence of T1D such as CXADR rs6517774, Mastadeno-

virus C, and Norovirus-4 (103, 108). In the NOD mouse model,

infection with mouse Norovirus-4 (MNV4) is associated with

enrichment in the alpha diversity of gut bacteria and expansion
Frontiers in Immunology 06
of Treg cells (108). To examine if the effect of MNV4 on

immunity is due to indirect modulation of the gut microbes,

the authors repeated the experiment on germ-free mice.

Interestingly, germ-free mice infected with MNV4 still show

modulation of the immune response including an increase in

Treg and alteration in cellular and secreted components of the

immune system such as B cells, T cells, macrophages, and

cytokine biomarkers (108).

Dysbiosis in the virome is also associated with several

autoimmune diseases including T1D (109, 110). The virome is

the collection of endogenous retroviruses, eukaryotic viruses,

and bacteriophages inhabiting the gut microbiota (110, 111).

Most of the gut viruses are sourced from lysogens; the latter is

defined as bacteria containing dormant phages (prophages)

inserted in the bacterial genomes. These phages are released

from the lysogens upon receiving particular signals, including a

change in diet, and further affect microbiome structure and

susceptibility to autoimmune diseases (112). Prophages might

encode immune-modulatory molecules that directly affect the

immune system response. For example, the novel prophage

FHKU.vir encodes toxin with superantigens that enable

colonization of S. pyogenes by inducing nonspecific

differentiation of T cells (113). The virome and host–disease

associations are much less studied compared to the gut

microbiome. Moreover, the literature shows mixed results and

a non-confirmed link between virome shift and T1D. The main

challenge in understanding virome interaction is that it directly

affects bacterial population dynamics and diversity, increasing

confounding factors and making it hard to draw a confirmed

conclusion (111, 114). Phage infection of gnotobiotic mice,

inoculated with defined human microbes, resulted in direct

reduction of the susceptible species and indirect effect on the

other species likely through interspecies interactions (114).

Another study reported an association between the initial

abundance of amyloid-producing E. coli and E. coli

bacteriophage/E. coli ratio, which results in depletion of E. coli,

in the development of T1D (115).

In summary, many studies investigate the role of microbial

dysbiosis in triggering T1D through a variety of mechanisms

such as modulation of Th17/Treg balance, variation in

interleukin production, and change in gut permeability. These

effects are mediated by some microbial metabolites such as

butyrate, LPS, and arachidonoyl-GPC. Activation of latent

viral infections can also drive microbial dysbiosis leading to

T1D. However, less is known about microbial dysbiosis in late-

onset T1D and if diet management can modulate disease severity

or progression (116). A study reported an enrichment in

Veillonella and Clostridium genera coupled with a reduction in

Bifidobacterium, Lactobacillus, and Prevotella in the pediatric

T1D compared to healthy children (117). Another study reported

similar results in adults, particularly the Bifidobacterium signature

(118). However, all studies investigating the association between
frontiersin.org

https://doi.org/10.3389/fimmu.2022.906258
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mousa et al. 10.3389/fimmu.2022.906258
late-onset T1D and microbiota shift lack directionality as T1D is

thought to drive microbiota change as the diseases progress.
The role of microbial dysbiosis in
triggering multiple sclerosis

MS is a chronic autoimmune disease affecting 2.8 million

people around the world (119). MS causes demyelination of

neurons, leading to neuroaxonal degeneration in the brain and

spinal cord, resulting in an unpredictable outcome that can result

in a permanent disability (120, 121). Although there is no cure for

MS, some interventions can improve the quality of life and reduce

complications such as anti-CD20 monoclonal antibodies, which

destroy circulating memory B cells and subsequently weaken the

immune system and increase the risk of infection (122). The

underlying causes are largely unknown and thought to be linked

to genetic factors and/or viral infection (123, 124). Figure 3

illustrates the potential role of gut dysbiosis in MS, although the

directionality of this interaction is not clear. Gut microbes are

definitely altered in MS patients, and this alteration is associated

with the varied severity of the disease (125–128). The microbiome

signature in MS patients is characterized by the lower abundance

of F. prausnitzii, Prevotella, and Bacteroides, and a higher

abundance of Akkermansia muciniphila (126, 128). Pediatric

MS patients show a signature reduction in SCFA-producing

Ruminococcaceae compared to healthy children (129). However,

the directionality of this association is not clear. Moreover, MS-

modifying drugs can alter the microbiota composition.

Administration of dimethyl fumarate and glatiramer acetate

resulted in a significant reduction in Lachnospiraceae and

Veillonellaceae (130).

Mechanistically, some evidence suggests the role of miRNAs

such as miR-141, miR-200a, and miR-155 in driving MS by

shifting Th17/Treg balance towards the Th17 side, promoting

production of the proinflammatory mediator IL17 (31) (Table 1).

These miRNAs are implicated in interfering with repressor

proteins that regulate Th17 differentiation (31-33). As microbes

regulate miRNAs, there is a hope that probiotics, antibiotics, or

specialized microbial metabolites might suppress Th17

production or induce Treg differentiation by checking MS

progression. Another possible mechanism of how microbial

dysbiosis drives MS might be through molecular mimicry.

Studies on neuromyelitis optica, a degenerative autoimmune

disease that results in inflammation, demyelination, and nerve

necrosis, suggest a possible molecular mimicry between brain and

microbial antigens (131). Neuromyelitis optica is characterized by

the presence of IgG1 autoantibodies that attack aquaporin 4

(AQP4), a predominant water channel in the CNS (132). This

attack results in deposition of immunoglobulin complements

causing demyelination and tissue damage (133, 134). The

mechanism involves a molecular mimicry between AQP4 and
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ABC transporter permease in the gut microbe, Clostridium

perfringens (131).

Transfer of microbiota from MS patients to mice elicits an

immune response and inflammation (6). Opposing this finding,

another research shows that the transfer of microbiota from a

mouse model of MS to another healthy mouse resulted in disease

protection thanks to miR-30d (135). The unexpected effects of

this miR could be attributed to its stimulatory effect on the

growth of Akkermansia muciniphila, which exhibits an anti-

inflammatory role (135). Another possible mechanism for MS

protection might be the induction of anti-inflammatory Treg

cells (135). Other cohort studies show enrichment in Eggerthella

lenta and Akkermansia muciniphila in MS patients (70, 71).

MS patients show an increase in anti-A muciniphila

immunoglobulin G while no difference in IgG is noted

for other gut microbiota such as Bacteroides fragilis,

Fusobacterium, and Acinetobacter baumannii (72). Other

studies suggest that certain gut microbiota such as A.

muciniphila interacts with spore-forming bacteria to escalate

the inflammation leading to MS through a direct effect on T

lymphocytes (73). Breakthrough research reported that some gut

microbiome taxa enriched in MS patients directly interact with

IgA-producing cells at the gut lining; the latter translocate to the

brain cells and locally produce immunoglobulin A (IgA), which

mediates severe inflammation. MS patients show a signature

decrease in Prevotella genera compared to healthy control.

Although this association lacks directionality, it varies

depending on the disease severity. This finding raises the

possibility of using probiotics to manage brain inflammation

in MS (136). A study shows that supplementation of Prevotella

histicola suppressed autoimmune encephalomyelitis (EAE) in

the HLA-DR3.DQ8 transgenic mouse model (137). This model

expresses HLA-DR3 and DQ8 genes and can develop EAE, a

severe spinal cord and brain inflammation that is very

comparable to MS in human (138). In a follow-up study, the

authors found that treatment with P. histicola yielded a similar

disease-suppression effect as the MS drug Copaxone. However,

co-administration of both P. histicola and Copaxone does not

provide a synergic effect. Copaxone acts by decreasing the

response of antigenic T cells in the brain (139). Data show

that treatment with P. histicola increased the level of regulatory

T cells and decreased proinflammatory cells, particularly those

producing IL-17 and IFN-g (140). Interestingly, a study shows

that microbial transplant from MS patients developed EAE in

transgenic mice (141). These results are a promising

development to microbiome-based therapeutics for

autoimmune diseases. However, some preclinical data claim

that the beneficial effects of probiotics in delaying MS

progression (142) are likely through indirect anti-

inflammatory and immune-modulatory activity.

A recent study suggests a strong link between lung

microbiome dysbiosis and MS in rats. Microbiome shift to a
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FIGURE 3

Microbial dysbiosis is a potential factor driving multiple sclerosis. In this illustration, we show how the change in population dynamic of gut
microbes suppresses or drives multiple sclerosis. The increase in proinflammatory bacteria induces differentiation of Th1/Th17, which travel
systemically to the brain and recruit more proinflammatory cells producing inflammatory cytokines. In contrast, the decrease in
proinflammatory bacteria induces differentiation of Treg cells and production of anti-inflammatory cytokines, which balance or counteract Th1/
Th17. Interestingly, once MS is developed, a significant decrease in anti-inflammatory community is observed, but the exact signaling
mechanism is unknown.
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less lipopolysaccharide-producing phyla escalates MS while its

enrichment decreases the proinflammatory response (143). The

mechanistic underpinning is impairment in the responsiveness

of microglial cells in the brain to type II interferons, resulting in

a reduced recruitment of immune cells and further clinical

manifestations (143).

Activation of latent Epstein–Barr virus (EBV) infection is

linked to the development of MS (144, 145). EBV is a common

virus that is considered part of the commensal microbiome

(146). EBV infects B cells and epithelial cells, and because it

shares molecular mimicry to some host protein, the viral genome

integrates within the host DNA. When triggered, by yet

unknown signals, it can lead to systemic autoimmune diseases.

A recent study shows that EBV antibodies are associated with

99% of MS cases with the US military (145). The authors

identified a strong positive association between MS and EBV

where EBV infection increases the risk of developing MS by 32%

(145) and MS only develops after EBV infection. If EBV is truly a

prerequisite to MS, this discovery holds the promise of turning

these untreatable diseases into vaccine-preventable ones.
The role of microbial dysbiosis in
triggering rheumatoid arthritis

RA is a systemic autoimmune disease affecting joints, and

sometimes other internal organs, causing inflammation and

swelling. One of the first reports of the connection between

microbial dysbiosis and RA dates back to 1979 with the

discovery that germ-free rats are 100% susceptible to

developing RA upon injection of an intradermal adjuvant

(147), while conventional rats are only 0 to 20% susceptible

and further develop weak or delayed inflammation (147).

Interestingly, this induced inflammation is resolved by

inoculation of E. coli and slightly worsens by inoculation of

Lactobacilli (148). The authors claimed a possible role of the LPS

of E. coli in resolving RA (138). Studies show that the

microbiome in RA patients is enriched in specific microbial

taxa such as Provetella, Lactobacillus sabotage, and segmented

filamentous bacteria (62). Higher abundances of these microbes

increase their proinflammatory metabolites such as serum

amyloid protein A, which increases the production of Th1 and

Th17 that migrate systemically and contribute to the diseases

(62). Some members of the Provetella genus are implicated in

several inflammatory and autoimmune conditions that range

from low-grade inflammation to periodontitis, bacterial

vaginosis, and RA (67).

A growing body of research suggests a possible role of

Provetella copri in the development of RA (63–67).

Mechanistically, the ability of Prevotella copri to induce

mucosal inflammation is due to the activation of TLR-2

stimulating the differentiation of Th17 and leading to the

excessive production of proinflammatory interleukins such as
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IL-23 and IL-1 and the recruitment of neutrophils (67, 149). This

inflammation increases gut permeability and leakage of

microbes and proinflammatory molecules, leading to more

systemic inflammation and immune reaction. A higher

abundance of P. copri is also associated with RA in mice with

knocked out NLRP6 gene, a proinflammatory gene that is part of

the inflammasome (63). These mice are genetically modified to

produce lower levels of proinflammatory cytokines. Co-housing

of wild-type and knockout mice resulted in inflammatory

symptoms in the wild type and suggests that gut microbes can

induce autoimmune diseases even without a genetic

predisposition. This finding also suggests a possible role of

Provetella in arthritis etiology as a pathobiont, and it could be

potentially used as a diagnostic biomarker for RA (150).

Prevotella intestinalis is another member of the family

implicated in intestinal inflammation and particularly colitis

through a reduction in SCFAs and the anti-inflammatory

interleukin IL-18 in mice (68). Other studies show that P.

histicola has anti-inflammatory activity and can protect mice

from arthritis (55). Interestingly, the mechanism of

inflammation suppression looks opposite to that induced by

other pathobionts from the same genus. The authors show that

P. histicola regulates DCs (CD103+), resulting in the

generation of Treg cells, which suppresses Th17, decreasing

proinflammatory interleukins, and increasing anti-

inflammatory interleukins such as IL-10 (55). In addition, P.

histicola upregulates the production of the tight junction protein,

which decreases gut permeability (55). These findings suggest a

potential application of P. histicola as a probiotic for arthritis and

possibly other autoimmune diseases (151). Figure 4 illustrates

the paradoxical activities of P. copri and P. histicola in

mediating RA.
The role of microbial dysbiosis in
triggering systemic lupus erythematosus

SLE is an autoimmune disease that affects joints, blood,

kidney, and other organs with yet an elusive etiology. The

hallmark of SLE is the formation and deposition of immune

complexes from the production of autoantibodies directed

towards nuclear antigen and could be detected several years

before the onset of the disease (152–154). This autoimmune

attack results in inflammation and organ failure (155). The

mechanism beyond stimulation of autoreactive T cells and

autoantibody production is still unclear, but various theories

exist such as genetic deposition or environmental factors

exhibiting molecular mimicry (153–155). This inflammation is

increasingly believed to be attributed to an imbalance in Th17

and Treg cel ls , leading to a higher production of

proinflammatory cytokines such as IL-17, IL-22, and IL-23

(156, 157) that drive systemic inflammation. Evidently, a high

level of IL-17-producing cells is reported to infiltrate tissues of
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kidney, lung, and skin of SLE patients, resulting in organ damage

(158). Understanding the role of the human microbiota in

driving, intensifying, or preventing SLE is gaining intriguing

interest (159). A unique gut microbiota signature is reported

with the inflammatory flares and as the disease progresses (160,

161). This signature is characterized by a reduction in

microbiota diversity with enrichment in some genera such as

Campylobacter, Streptococcus, and Veillonella, and depletion of

others such as Bifidobacterium (159). A significantly low

abundance of Lactobacillus and an increase in Lachnospiraceae

are associated with SLE in mice (162). The enrichment in

Lachnospiraceae is gender-specific, with more abundance in

females, which increases the disease’s severity. Interestingly,

lupus-susceptible mice showed enrichment in the metabolic

pathways of motility and sporulation genes (162), which might

be linked to the ability of microbes to cause systemic

inflammation. Restoration of lactobacilli abundance by feeding

retinoic acid resulted in improved symptoms of lupus,

suggesting a potential role of lactobacilli in preventing or

counteracting inflammation. Studies reported a shift in

Firmicutes/Bacteroidetes ratio accompanied by a change in

SCFAs and Th17 levels in serum of SEL patients (56, 163).

The shifted microbiota in SEL is characterized by an imbalance

in the Treg/Th17/Th1 ratio. Specifically, two strains from the

genus Clostridium drive an imbalance in Th17/Th1, promoting

differentiation of CD4+ lymphocytes into Th17 and resulting in

inflammation (56). Bifidobacterium bifidum inhibits the

excessive stimulation of CD4+ lymphocytes (56). Other studies

show that microbiota translocation might be implemented in

triggering autoimmune diseases including SLE (69, 164). A study

showed that translocation of Enterococcus gallinarum from the
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gut to the liver resulted in overproduction of autoimmune

antibodies, inflammation, and mortality in genetically

susceptible mice (69). While antibiotic treatment aimed to

eradicate E. gallinarum, it also eliminated the autoantibodies

in mice. Interestingly DNA of E. gallinarum recovered from the

liver of autoimmune patients induced proinflammation in

human hepatocytes mimicking the interaction in mice (69).

Activation of latent EBV infection is also linked to the

development of SLE (165–167). The tumorigenic activity of

EBV might resonate with its ability to evade the immune

system. Antigens of EBV share molecular mimicry to SLE

antigens, which leads to an autoimmune response during EBV

activation (168, 169). Furthermore, EBV suppresses the anti-

inflammatory interleukins, resulting in more systemic

inflammation (168, 169). A trial EBV peptide vaccine in

experimental animals generated cross-reactive antibodies and

caused SLE-like symptoms (170, 171). Although EBV is known

to induce a transit increase in autoantibodies and inflammation,

some studies show that this inflammation can further escalate

and spread systemically (172, 173).
Microbiome-based therapeutics for
tackling autoimmune diseases

The prevalence of autoimmune diseases and allergies

especially in children increased 40% over the last decade (174),

resulting from the change in lifestyles such as diet, stress, and

pollution. These changes result in a significant shift in

microbiome composition (175). A recent study reported a

strain-level significant microbiome signature in pediatric
FIGURE 4

The influence of Prevotella species in preventing or mediating RA. The figure illustrates the role of P. histicola in upregulating the tight junctions,
which prevent leakage of proinflammatory metabolites and subsequently prevents inflammation (right side). On the contrary, P. copri stimulates
differentiation of Th17, leading to upregulation of proinflammatory cytokines’ production and systemic inflammation.
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allergy characterized by a higher abundance of Ruminococcus

gnavus, which is enriched in genes for the production of

proinflammatory polysaccharides and lowers the potential for

fiber-degrading enzymes (76). An interesting study shows that

gut microbes drive sex-biased regulation of autoimmunity by

directly regulating serum testosterone in NOD mice (176, 177).

The authors show that an elevated testosterone level protects

against T1D in male mice, and this protection is transferable to

immature female mice by microbiome transplant (177). Another

interesting study suggests that gut fungi induce behavioral

change in mice through stimulation of immune response

mediated by IL17, which binds to receptors in the brain (178).
Manipulating the virome to control
autoimmune diseases

One of the striking findings is the ability of some gut viruses

of the Iridoviridae family to produce insulin-like molecules that

mimic host insulin by 50% and can form the critical 3D

molecules needed to bind and activate the insulin receptors

(179). Interestingly, these viruses are primarily sequenced from

fish (180) and recently have been identified in human fecal

genomes (181). Recent studies show that the presence of LCDV-

Sa is a risk factor for developing T1D in children (182).

However, it is unclear if the presence of these insulin-mimic

molecules helps to trigger diabetes or protect from diabetes.

Previous studies show that microbial metabolites that mimic the

host-derived molecules can trigger an immune reaction against

insulin-producing cells resulting in T1D. Although we know

much about the structural diversity of the microbiome bacteria,

relatively much less research has been done on the human

virome. A recent study identified 1,700 viral species in the gut

microbiome. However, to date, only 2% of viruses are sequenced.

This makes the virome research and its association with human

diseases a very exciting area of development that will certainly

advance our understanding of the microbe’s host interaction and

association with human diseases. The use of phages to modulate

the microbiome is still an unexplored avenue with unpredicted

interspecies interactions (114).
Tackling autoimmune diseases by
microbial transplant or
microbial metabolites

A study shows that germ-free mice remain immune-

compromised even if they are colonized with animal or

human microbiota (183). An interesting approach is the fecal

transplant of gut microbes from a healthy donor to patients with

autoimmune diseases. A randomized controlled clinical trial

shows that fecal microbial transplant in newly diagnosed T1D

patients prevents the further decline of insulin production by
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associated with a shift in plasma microbial metabolites,

autoreactive T cells, and gene expression of the intestine (50).

This trial not only provides hope for microbiome-based

interventions for the treatment of autoimmune diseases but

also provides solid evidence that microbiota dysbiosis drives

T1D. Another possible scenario is the use of critical microbial

metabolites such as butyrate as a supplement. Since butyrate has

a protective role against autoimmunity (97), a diet rich in

butyrate might dial down the autoimmune reaction. A study

in NOD mice shows that butyrate and acetate supplementation

decreased inflammation and might be a good candidate for

therapeutic interventions to control autoimmune diseases such

as T1D.
Conclusion

Each living organism requires specific microbial species that

are coevolved to prime the immune system (183). Changing the

microbiome structure impairs important functions such as (1)

gut permeability leading to leakage of antigens and

inflammatory mediators to the blood circulation, (2) inability

to produce anti-inflammatory microbial metabolites or to

degrade food, and (3) loss of immune homeostasis leading to

allergy and autoimmune reactions (6, 184-186). Understanding

how gut microbes drive or suppress autoimmune diseases is

crucial to developing innovative microbiome-based diagnostic

tools and therapeutics.
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158. Crispıń JC, Oukka M, Bayliss G, Cohen RA, Van Beek CA, Stillman IE,
et al. Expanded double negative T cells in patients with systemic lupus
erythematosus produce IL-17 and infiltrate the kidneys. J Immunol Baltim Md
1950 (2008) 181(12):8761–6. doi: 10.4049/jimmunol.181.12.8761

159. Li Y, Wang H-F, Li X, Li H-X, Zhang Q, Zhou H-W, et al. Disordered
intestinal microbes are associated with the activity of systemic lupus
erythematosus. Clin Sci Lond Engl 1979 (2019) 133(7):821–38. doi: 10.1042/
CS20180841

160. Luo XM, Edwards MR, Mu Q, Yu Y, Vieson MD, Reilly CM, et al. Gut
microbiota in human systemic lupus erythematosus and a mouse model of lupus.
Appl Environ Microbiol (2018) 84(4). doi: 10.1128/AEM.02288-17

161. Chen B, Jia X-M, Xu J-Y, Zhao L-D, Ji J-Y, Wu B-X, et al. An
autoimmunogenic and proinflammatory profile defined by the gut microbiota of
frontiersin.org

https://doi.org/10.20452/pamw.4246
https://doi.org/10.1056/NEJMra1401483
https://doi.org/10.1038/s41582-018-0058-z
https://doi.org/10.1056/NEJMra1401483
https://doi.org/10.1056/NEJMoa1601277
https://doi.org/10.1093/brain/awaa117
https://doi.org/10.1177/1352458517737370
https://doi.org/10.1038/s41598-022-07336-8
https://doi.org/10.1038/ncomms12015
https://doi.org/10.1177/1352458516682105
https://doi.org/10.1016/j.msard.2019.101427
https://doi.org/10.1002/acn3.51476
https://doi.org/10.1212/NXI.0000000000000517
https://doi.org/10.1002/ana.23651
https://doi.org/10.1016/j.jneuroim.2011.01.007
https://doi.org/10.1074/jbc.M112.344325
https://doi.org/10.1016/j.jneuroim.2013.04.015
https://doi.org/10.1016/j.jneuroim.2013.04.015
https://doi.org/10.1016/j.chom.2019.10.008
https://doi.org/10.1126/sciimmunol.abc7191
https://doi.org/10.1016/j.celrep.2017.07.031
https://doi.org/10.1016/j.celrep.2017.07.031
https://doi.org/10.4049/jimmunol.0803918
https://doi.org/10.1073/pnas.85.24.9724
https://doi.org/10.3389/fimmu.2019.00462
https://doi.org/10.1073/pnas.1711233114
https://doi.org/10.1039/d0fo03203d
https://doi.org/10.1039/d0fo03203d
https://doi.org/10.1038/s41586-022-04427-4
https://doi.org/10.1038/s41598-020-59269-9
https://doi.org/10.1038/s41598-020-59269-9
https://doi.org/10.1126/science.abj8222
https://doi.org/10.1186/s12875-019-0954-3
https://doi.org/10.1128/iai.26.3.791-794.1979
https://doi.org/10.1128/iai.26.3.791-794.1979
https://doi.org/10.1002/art.1780290413
https://doi.org/10.1155/2020/9607328
https://doi.org/10.1016/j.febslet.2014.05.034
https://doi.org/10.3389/fimmu.2020.578648
https://doi.org/10.1038/nrrheum.2010.68
https://doi.org/10.1111/sji.12894
https://doi.org/10.1155/2012/823085
https://doi.org/10.1155/2013/968549
https://doi.org/10.1155/2013/968549
https://doi.org/10.4049/jimmunol.181.12.8761
https://doi.org/10.1042/CS20180841
https://doi.org/10.1042/CS20180841
https://doi.org/10.1128/AEM.02288-17
https://doi.org/10.3389/fimmu.2022.906258
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mousa et al. 10.3389/fimmu.2022.906258
patients with untreated systemic lupus erythematosus. Arthritis Rheumatol
Hoboken NJ (2021) 73(2):232–43. doi: 10.1002/art.41511

162. Zhang H, Liao X, Sparks JB, Luo XM. Dynamics of gut microbiota in
autoimmune lupus. Appl Environ Microbiol (2014) 80(24):7551–60. doi: 10.1128/
AEM.02676-14
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