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Secretory co-factors in
next-generation cellular
therapies for cancer

Atsushi Okuma*, Yoshihito Ishida, Taketo Kawara,
Shoji Hisada and Shinsuke Araki

Center for Exploratory Research, Research and Development Group, Hitachi Ltd., Kobe, Japan
Since chimeric antigen receptor (CAR) T-cell therapies for hematologic

malignancies were approved by the U.S. Food and Drug Administration,

numerous “next-generation” CAR T cells have been developed to improve

their safety, efficacy, and applicability. Although some of these novel

therapeutic strategies are promising, it remains difficult to apply these

therapies to solid tumors and to control adverse effects, such as cytokine

release syndrome and neurotoxicity. CAR T cells are generated using highly

scalable genetic engineering techniques. One of the major strategies for

producing next-generation CAR T cells involves the integration of useful co-

factor(s) into the artificial genetic design of the CAR gene, resulting in next-

generation CAR T cells that express both CAR and the co-factor(s). Many soluble

co-factors have been reported for CAR T cells and their therapeutic effects and

toxicity have been tested by systemic injection; therefore, CAR T cells harnessing

secretory co-factors could be close to clinical application. Here, we review the

various secretory co-factors that have been reported to improve the therapeutic

efficacy of CAR T cells and ameliorate adverse events. In addition, we discuss the

different co-factor expression systems that have been used to optimize their

beneficial effects. Altogether, we demonstrate that combining CAR T cells with

secretory co-factors will lead to next-generation CAR T-cell therapies that can

be used against broader types of cancers and might provide advanced tools for

more complicated synthetic immunotherapies.

KEYWORDS

CAR T cell, secretory co-factor, cytokine release syndrome (CRS), immune effector
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Introduction

Adoptive T-cell therapies with genetic engineering to express

chimeric antigen receptors (CARs) have demonstrated

remarkable efficacy in patients with some B-cell malignancies

and multiple myeloma (1–6). Despite successful outcomes

against these specific blood tumors, CAR T-cell therapies have

proven much less effective against solid tumors due to tumor

heterogeneity, physical barriers preventing T-cell infiltration,

and immunosuppressive tumor microenvironments (TMEs)

(7). In addition, currently approved CAR T-cell therapies are

associated with safety issues such as cytokine release syndrome

(CRS) and immune effector cell-associated neurotoxicity

syndrome (ICANS) (8). The “on-target/off-tumor” activity of

CAR T cells can cause life-threatening events in some cases (9–

11); therefore, it is important to develop tumor-specific CAR T-

cell therapies that target novel antigens.

To overcome the issues related to current CAR T-cell

therapies, numerous co-factor–expressing CAR T cells have

been investigated. These co-factors can be categorized into

three types based on protein localization: (i) secretory factors

released by CAR T cells can affect the CAR T cells themselves as

well as surrounding cells expressing a receptor for the factor; (ii)

membrane proteins penetrate or associate with the CAR T-cell

membrane and affect the CAR T cells and surrounding cells

through ligand binding; (iii) intracellular factors such as

transcription factors affect the CAR T cell itself by regulating

the expression of numerous genes to dramatically change the

state of the cell [e.g., Yamanaka factors: from a differentiated cell

to an inducible pluripotent cell (12)]. Secretory factors are

usually used to recruit other cells and/or affect cells in a wider

area in a contact-independent manner, unlike membrane

proteins. Moreover, secretory factors can improve the ex vivo

expansion of CAR T cells (13), suggesting that they can be used

to manufacture advanced CAR T cells. Because secretory factor

genes are generally much smaller than those of membrane

proteins, they can even be included in viral vectors with strict

transgene size limits. In addition, the majority of candidate co-

factors (cytokines and antibodies) have already been tested as

anticancer agents; therefore, T cells can be genetically designed

to express CAR and secretory co-factor(s) based on existing

administration protocols, efficacy, and safety data.

In this review, we first discuss the obstacles to conventional

CAR T-cell strategies and the functions that are required. Next,

we provide an overview of the secretory co-factors that have

already been tested in animal models or clinics from biological

and clinical perspectives (Figure 1, Tables 1, 2). Finally, we

describe current knowledge of constitutive and inducible types

of co-factor expression machinery which could overcome some

of the issues of current CAR T-cell therapies.
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Challenges of current CAR T-cell
therapies

Adverse events: CRS and ICANS

The clinical success of CD19-directed CAR T cells has also

been accompanied by various limitations. CRS, the most

common adverse event of CAR T-cell therapies, is caused by

the overproduction of proinflammatory cytokines and mainly

correlates with tumor burden (8). It has recently been suggested

that during CRS, CD40L on CAR T cells and factor(s) from dead

cells known as “danger signals” stimulate monocytes/

macrophages to release interleukin-1 (IL-1) (41, 50). In

addition, granulocyte-macrophage colony-stimulating factor

(GM-CSF) from CAR T cells stimulates monocytes/

macrophages to simultaneously proliferate at the inflammatory

site (41, 43, 51). After IL-1 overproduction, the monocytes/

macrophages produce IL-6, which plays a pivotal role in CRS

(50). Current clinical protocols to treat CRS include

glucocorticoids and/or IL-6 blockade (tocilizumab) (1, 52),

whereas preemptive or early intervention with tocilizumab has

been reported to prevent severe CRS (53, 54). IL-1 blockade

(anakinra) is another promising strategy that is currently in

clinical trials (55). ICANS is a severe and life-threatening adverse

effect of CAR T-cell therapy (56, 57); however, the induction

mechanisms remain unclear and few working therapeutic

protocols have been verified. Although ICANS is associated

with early systemic inflammation and CRS, the rate of which

can be decreased through early intervention with tocilizumab,

this therapeutic strategy does not affect the frequency of severe

ICANS (58, 59). Conversely, prophylactic or early intervention

with high-dose anakinra has yielded promising results against

ICANS (55, 60). Together, these findings suggest that

constitutive IL-6 and IL-1 blockade during CAR T-cell therapy

may prevent CRS and ICANS, respectively.
Antigen specificity: “On-target, off-
tumor” effects

Another limitation of CAR T-cell therapy is specificity. As of

March 2022, four of the six CAR T-cell therapies approved by

the U.S. Food and Drug Administration target CD19 as a tumor

marker (1–4), whereas the others target B-cell maturation

antigen (BCMA) (5, 6). To expand their application, it is

necessary to develop CAR T-cell therapies targeting new

antigens; however, a lack of specificity can lead to “on-target,

off-tumor” effects which cause life-threatening toxicity

depending on the non-pathogenic cell type(s) that express the
frontiersin.org
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target antigen. For instance, a patient who received CAR T cells

targeting the tumor antigen human epidermal growth factor

receptor 2 (HER2) experienced rapid respiratory failure, multi-

organ dysfunction, and subsequent death due to reactivity

against pulmonary epithelia with slight HER2 expression (10).

This issue could be solved by CAR T-cell strategies that can

clearly discriminate between cancer cells and normal cells based

on an antigen density threshold, since tumor-associated antigens

are expressed at much higher levels in tumors than in normal

tissues (61). In addition, AND logic could be applied to produce

(A AND B) CAR T cells that can recognize cells expressing both

antigens A and B, but not cells expressing only A or B (46, 62,

63). Even if neither antigen is specific to the tumor, the

simultaneous expression of both antigens could be tumor-

specific and thus limit “on-target, off-tumor” effects.
Efficacy against solid tumors

The other major limitation of CAR T-cell therapies is their

ability to fight solid tumors, which is reduced by intratumor
Frontiers in Immunology 03
heterogeneity, an immunosuppressive TME, and/or physical

barriers (7). Intratumor heterogeneity makes it difficult to

identify appropriate tumor-specific antigens. Although non-

engineered T cells can be primed to react to neoantigens or

tumor-associated antigens, they are usually suppressed by

components of the TME, such as regulatory T (Treg) cells

and immune checkpoint ligands. Because the TME also

interferes with CAR T-cell activity, numerous studies have

attempted to modify the interaction between CAR T cells and

the TME. For instance, programmed cell death protein 1 (PD-

1) knockout CAR T cells can avoid PD-1–PD-L1 (programmed

death-ligand 1) immune checkpoint signals (64), whereas

dominant-negative transforming growth factor–b (TGF-b)
receptor–expressing CAR T cells can attenuate Treg

maintenance by blocking TGF-b (65). The TME also has

much lower levels of homeostatic T-cell–supportive cytokines

than lymphoid tissues, which may explain the limited

persistence of tumor-infiltrating CAR T cells and tumor-

reacting T cells. Indeed, CAR T cells that produce IL-7 and

CCL19 to mimic T-zone function in lymphoid tissues have

been reported to exhibit strong efficacy in animal solid tumor
A

B

FIGURE 1

Categorization of secretory co-factors. (A) The list of previously reported promoters and secretory co-factors of CAR T cells (see also Table 1).
ICB, immune checkpoint blockade; IL-1RA, IL-1 receptor antagonist; BiTE, bispecific T-cell engager; CD19-BP, CD19-containing bridging
protein. (B) Schematics of how CAR T cell can affect the environment via co-factor secretion. To enhance anti-tumor efficacy, CAR T cell can
secrete cytokines or ICBs to activate surrounding cells and CAR T cell itself (left). CAR T cell can secrete antagonists to block inflammatory
cytokines from macrophages (Mf) that induce CRS (middle). CAR T can secrete bispecific antibodies or zipFvs to redirect bystander T cells or
CD19-BPs to redirect CD19 CAR T cell itself (right).
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models, mastocytoma cell line–derived xenografts (CDXs),

hepatocellular carcinoma (HCC) patient-derived xenografts

(PDXs), and pancreatic carcinoma CDXs (32, 33). Prior to

their activation, intratumor CAR T cells and tumor-reacting T

cells must penetrate and survive in tumors; however, the

stromal structure of solid tumors acts as a physical barrier to

protect against T-cell infiltration. CAR T cells harnessing the

extracellular matrix-degrading enzyme heparanase are

expected to improve tumor infiltration (66).
Frontiers in Immunology 04
Secretory co-factors for enhancing
CAR T-cell efficacy

IL-12

IL-12 is a proinflammatory cytokine that has been repeatedly

reported as a co-factor for CAR T cells. IL-12 induces the

differentiation of CD4+ T cells into a helper T-cell (TH1)

subtype that release interferon-g (IFN-g) and support the
TABLE 1 List of reported CAR T cells harnessing secretory co-factors.

Secretory co-factor Promoter CAR target Ref

Aim: To enhance efficacy

IL-12 6x NFAT-RE CEA (14)

IL-12 LTR in RVV CD19 (15)

IL-12 6x NFAT-RE GPC3 (16)

IL-12 LTR in RVV MUC16ecto (17, 18)

IL-12 Endogenous CD25 promoter CD22 (19)

IL-18 LTR in RVV CD19 (20)

IL-18 LTR in RVV CD19 (21)

IL-18 LTR in RVV CD19 (22)

IL-12 or IL-18 6x NFAT-RE GD2 (23)

IL-21 6x NFAT-RE CD19 (24)

IL-15 & IL-21 LTR in RVV GPC3 (25)

IL-23 (IL-12p40) LTR in RVV GD2, B7-H3 (26)

IL-36g LTR in RVV CD19 (27)

IL-15 LTR in RVV CLL-1 (28)

IL-15 LTR in RVV GD2 (29)

IL-15 LTR in RVV IL-13Ra2 (30)

CD40 agonist LTR in RVV MSLN (31)

IL-7 & CCL19 LTR in RVV CD20 (32)

IL-7 & CCL19 LTR in RVV GPC3, MSLN (33)

IL-7 & CCL21 LTR in RVV CLND18.2 (34)

Anti–PD-1 scFv (E27) LTR in RVV CD19 (35)

Anti–PD-1 scFv (E30) LTR in RVV EGFR (36)

Anti–PD-1 scFv LTR in RVV CD19 (37)

Anti–PD-1–TGF-bRII ectodomain LTR in RVV CD19 (38)

Anti-CD47, Anti–PD-L1, Anti-CTLA4 LTR in RVV, CMV PD-L1, EIIIB (39)

Anti–PD-L1 scFv LTR in RVV CAIX (40)

Aim: To protect CRS

IL-1RA LTR in RVV CD19 (41)

Anti–IL-6 and IL-1RA LTR in RVV CD19 (42)

Anti–IL-6 scFv and IL-1RA LTR in RVV CD19, BCMA (43)

Aim: To make circuit

BiTE EGFR-CD3 EF-1a EGFRvIII (44)

Various factors Gal4-UAS (SynNotch) CD19 (45)

Anti-AXL zipFv 4x NFAT-RE HER2 (46)

CD19–anti-Her2 bridge protein CMV CD19 (47)

CD19–anti-CLEC12A bridge protein MSCV CD19 (48)
frontie
LTR, long terminal repeat; RVV, retroviral vector; NFAT-RE, nuclear factor of activated T cell response element; BiTE, bispecific T-cell engaging antibody; UAS, upstream activation
sequence.
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cytotoxic activity of CD8+ T cells. Consequently, IL-12 was

expected to improve CAR T-cell cytotoxicity; however, IL-12–

expressing CAR T cells have been reported to enhance monocyte

(23) and T cell (16) recruitment, macrophage antigen

presentation (14), and CAR T-cell persistence (19) rather than

their cytotoxicity. Local recombinant IL-12 delivery can reshape

the immunosuppressive TME (67, 68) and several clinical trials

for tumor therapies with recombinant IL-12 administration have

been conducted in recent decades (69). Unfortunately, high-dose

systemic IL-12 treatment can cause life-threatening adverse

events (70, 71) and milder regimens had no effect on advanced

renal cell cancer as they delivered insufficient local

concentrations of IL-12 to the TME (71). CAR T cells can

carry IL-12 into tumors and IL-12 expression systems with

inducible promoters, such as nuclear factor of activated T cell

(NFAT) promoter, may safely minimize systemic IL-12 leakage

(14, 16, 23). Because IL-12 is the most clinically characterized

CAR T-cell co-factor, it could reasonably be used in future CAR

T-cell therapies.
IL-15

IL-15 stimulates T cells and NK cells to enhance their

proliferation and cytotoxic capacity. The administration of

recombinant IL-15 has been reported to accelerate the anti-

tumor activity of cytotoxic T cells in mice (72) and recent reports

have shown that IL-15 can polarize T cells to central memory

and stem cell memory subtypes rather than the effector subtype

and thereby prevent the upregulation of inhibitory receptors

associated with T-cell exhaustion during ex vivo expansion (73–

75). The anti-tumor activity of IL-15–expressing CAR T cells

(28–30) is mainly thought to derive from cell-autonomous

effects and their effects on locally colonized non-engineered T

cells. However, clinical trials have indicated that systemic

recombinant IL-15 administration to treat metastatic cancers

can result in hypotension, thrombocytopenia, and liver toxicity

(76). Consequently, it has been reported that even IL-15–
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expressing CAR T cells have lethal toxicity in an acute

myeloid leukemia CDX model and TNF-a blockade

ameliorated the toxicity of IL-15 (28). Thus, inducible IL-15

production system like NFAT–IL-12 would be tried to improve

safety to avoid high systemic IL-15 levels.
IL-18

Like IL-12, IL-18 activates TH1 and NK cells to proliferate

and release IFN-g (20). In addition, IL-18–expressing CAR T

cells recruit and activate endogenous anti-tumor immune cells in

the TME (22). A previous animal study has suggested that IL-18

expressed by CAR T cells are more effective against advanced

pancreatic tumors than IL-12 (21). Although systemic IL-18

administration has been reported to exert moderate adverse

effects in clinical trials (77), IL-18 could be a safer and more

effective co-factor than IL-12. Combination therapy with CAR T

cells and recombinant IL-18 would be more costly than

monotherapy with IL-18–producing CAR T cells; however, the

additional clinical benefits of IL-18–producing CAR T cells

compared to the combination therapy, such as specific efficacy

and reduced adverse events, must be explored.
IL-21

IL-21 is a cytokine derived from follicular helper T cells that

promotes high-affinity immunoglobulin production by B cells,

TH1 and TH17 differentiation, and CD8 T-cell proliferation (78).

Recombinant IL-21 supplementation has been reported to

maintain an early memory T subtype during ex vivo CAR T-

cell expansion (24). Although CAR T cells with activation-

dependent IL-21 secretion (NFAT promoter-IL-21) displayed

increased tumor infiltration in a chronic lymphocytic leukemia

CDX model, no obvious improvement in anti-tumor efficacy has

been reported (24). However, CAR T cells with constitutive

expression of both IL-15 and IL-21 improved potency in a HCC
TABLE 2 Clinical trials of immune checkpoint blockade-expressing CAR T cells.

ICBs CAR target Sponsor Phase ClinicalTrials.gov ID Report

Anti–PD-1
Anti-CTLA4

MUC1 Shanghai Cell Therapy Research Institute 1/2 NCT03179007

Anti–PD-1
Anti-CTLA4

EGFR Shanghai Cell Therapy Research Institute 1/2 NCT03182816 (49)

Anti–PD-1
Anti-CTLA4

MSLN Shanghai Cell Therapy Research Institute 1/2 NCT03182803

Anti–PD-1 MSLN Ningbo Cancer Hospital 1/2 NCT03030001

Anti–PD-1 EGFR Ningbo Cancer Hospital 1/2 NCT02873390

Anti–PD-1 EGFR Shanghai International Medical Center 1/2 NCT02862028

Anti–PD-1
Anti–PD-L1

EGFRvIII Shenzhen Geno-Immune Medical Institute 1/2 NCT03170141
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CDX (25). To proceed to the clinical application, IL-21 needs

further study to explore the optimal cytokine combination.
IL-23

IL-23 has recently been reported as a promising secretory co-

factor for CAR T cells (26). IL-23 is composed of two subunits;

p40 (shared with IL-12) and p19. In activated T cells, the IL-23

receptor and p19 subunit are upregulated, but not the p40

subunit; therefore, Ma et al. engineered CAR T cells to express

p40 to compensate for the cell-autonomous IL-23–IL-23R axis

(26). These p40-expressing CAR T cells not only had a better

safety profile but also displayed better efficacy against

neuroblastoma and pancreatic cancer CDXs by promoting

antigen-dependent proliferation and CAR T-cell persistence

compared to IL-15 or IL-18. The data of this head-to-head

study are valuable, and IL-23 should be tested with various types

of CAR T cells to prove the concrete superiority of IL-23.
IL-36g

IL-36 is a member of the IL-1 superfamily, like IL-18, that

stimulates the NF-kB/AP-1 signaling pathway. The IL-36

receptor complex, which is composed of IL-36R (also known

as IL-1RL2) and IL-1RAP, is expressed on epithelial cells,

myeloid cells, and T cells. In terms of tumor immunity, IL-36

can induce anti-tumor immune responses, including the

activation of TH1 (79), CD8+ T, gdT, and NK cells (80). In a

recent study, IL-36g–producing CAR T cells exerted superior

therapeutic efficacy in leukemia xenograft and allograft mouse

models through CAR T-cell self-activation and antigen-

presenting cell activation (27); however, their effects against

solid tumors have not yet been reported.
IL-7 and CCL19 or CCL21

IL-7 and CCL19 secreted from T-zone fibroblastic reticular

cells recruit endogenous immune cells such as T cells and

dendritic cells (DCs) from the periphery. To fight

heterogeneous tumor cells, it is considered to be important to

make the TME “hot” by recruiting endogenous immune cells;

therefore, IL-7 and CCL19 have been combined as secretory co-

factors for CAR T cells in a mastocytoma model (32). IL-7– and

CCL19-expressing (7 × 19) CAR T cells showed a stronger

therapeutic effect against mouse mastocytoma with increased

endogenous DC and T-cell infiltration (32). A clinical trial of

advanced carcinoma with glypican-3 or mesothelin expression

found that two of the six patients had a complete or partial

response to 7 × 19 CAR T-cell treatment without CRS or ICANS

(33). Most recently, IL-7– and CCL21-expressing (7 × 21) CAR T
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cells were reported to yield better efficacy than 7 × 19 CAR T cells

in mouse solid tumor models of pancreatic carcinoma, breast

cancer, and HCC without preconditional lymphodepletion (34).

Importantly, more DCs and T cells and fewer blood vessels were

observed at the tumor sites of mice treated with 7 × 21 CAR T

cells. CCL21 shares the same receptor (CCR7) with CCL19;

however, the differential ability of CCL19 and CCL21 for

desensitizing CCR7 (81) and/or the ability of CCL21 for

binding other receptors like CXCR3 might cause the

differential anti-tumor potency.
Anti–PD-1/PD-L1

The major immune inhibitory receptor PD-1 and its ligand

PD-L1 are molecular targets of immune checkpoint blockade

(ICB) therapies for various tumors (82–84); however, the

therapeutic efficacy of these therapies depends on the TME

immune status and the frequency of somatic mutations/

neoantigens in tumor cells (83, 85, 86). CAR T cells could be

an ideal booster to expand the applications of PD-1/PD-L1 ICB

as they can recognize non-mutated proteins rather than

neoantigens and can trigger endogenous immune reactions

against tumors. In addition, ICBs could improve the

persistence and efficacy of CAR T cells by altering the

immunosuppressive TME (86–88). Clinical investigations of

therapies combining CAR T cells and systemic ICBs are

currently ongoing (89) and CAR T cells that secrete PD-1/PD-

L1 blockades are also in development (35–40). Indeed, CAR T

cells secreting PD-1 blockades have shown better results in a

mouse model of pulmonary mucoepidermoid carcinoma than

CAR T cells alone or CAR T cells combined with systemic PD-1

blockade (37). Several PD-1/PD-L1 blockade-secreting CAR T

cells have been developed and are currently in clinical trials

(Table 2) (90). Other approved ICBs against the inhibitory

receptors CTLA-4 (84) and LAG-3 (91) and the upcoming

ICB-targeting CD47, which inhibits phagocytosis-mediated

cancer cell removal (92–94), may be also good CAR T-cell co-

factors. Thus, the optimal co-factors for each cancer could be

selected based on existing evidence from ICB monotherapies.
IL-1 and/or IL-6 blockade to protect
against CRS and ICANS

Treatment with the anti–IL-6 drug, tocilizumab, can prevent

CRS in mouse models but not abolish neurotoxicity (41, 50),

whereas the natural IL-1 receptor antagonist (IL-1RA; human

IL-1RA also known as anakinra) can prevent severe CRS and

fatal neurotoxicity. To maximize the preventative effects of IL-1

blockade, mouse IL-1RA has been utilized as a secretory co-

factor for CAR T cells that reduced CRS-related mortality

without decreasing anti-tumor activity in a mouse model of
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CRS (41). Recent early-stage clinical investigations of CAR T

cells that autonomously secrete anti–IL-6 and IL-1RA resulted in

moderate CRS with neurotoxicity during CRS (Figure 1B

middle) (42, 43). Considering the promising clinical effects of

preemptive tocilizumab or anakinra administration (53–55, 58–

60), CAR T cells incorporating those secretory co-factors may be

the closest to practical application.
Engineered antibodies to redirect
bystander T cells or CAR T cells

Bispecific T-cell engager (BiTE) is a tool that can be used to

redirect T cells to attack tumor cells by acting as a bridge

between CD3 and a target antigen (Figure 1B right). To achieve

both tumor specificity and overcome tumor heterogeneity,

EGFRvIII CAR T cells expressing BiTE against EGFR were

developed against glioblastoma (44). EGFRvIII is a

glioblastoma-specific tumor antigen and EGFR is highly

expressed in glioblastoma and normal tissues, such as skin,

but not in normal brains. EGFRvIII CAR acted as an anchor to

the tumor, whereas EGFR-targeted BiTE redirected both CAR

T cells and bystander T cells to attack the heterogeneous

tumor. In addit ion, bic is tronic CAR T cel ls have

demonstra ted potent and spec ific e fficacy aga inst

heterogeneous tumors in animal models of glioblastoma (44).

This strategy can be applied to strict intercellular circuits

by changing the co-factor and its expression machinery. For

instance, in SUPRA platform, the CAR stimulus-inducible

NFAT promoter was utilized to express an engineered

antibody, AXL zipFv, that acts as a bridge between T cells

expressing the compatible chimeric receptor zip CAR and the

tumor antigen AXL (46). An intercellular AND gate (inputs,

HER2 and AXL; output, receiver cell activation) was developed

using sender cells harnessing HER2 CAR and the NFAT-AXL

zipFv cassette and receiver cells harnessing the compatible

zipCAR that were co-cultured with HER2 and AXL double-

positive cells (Figure 2A). Beyond conventional CAR T-cell

therapies, these synthetic biology techniques can engineer

b enefi c i a l c e l l - c e l l c ommun i c a t i on v i a a r t ifi c i a l

secretory factors.

Another strategy utilizing recombinant CD19-containing

bridging proteins (CD19-BPs) can redirect CD19 CAR T cell

itself (Figure 2B) (47, 48). CD19 CAR T cells that secrete

CD19-BP–targeting HER2 killed HER2-positive cells and

CD19-positive cells (OR gate) and showed the comparable

efficacy to HER2 CAR T cells in an ectopic HER2-positive

ovarian cancer CDX model (47). In AML CDX models, CD19

CAR T cells that secrete CD19-BP–targeting CLEC12A

exhibited the similar anti-tumor activity to CLEC12A-

targeting CAR T cells (48). Like the BiTE secretion system,

this system might be useful to tackle tumor heterogeneity and
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relapse due to antigen escape. CD19-BPs might have stronger

effect than BiTE in that CAR signal is leveraged, although CAR

T-cell exhaustion caused by repeated stimulation would be a

concern in this system.
Co-factor expression machineries

Constitutive expression

Utilizing a strong constitutively active promoter can be the

best way to maximize the expression of secretory co-factors.

Compared to systemic administration, the area of co-factor

efficacy can be regulated by CAR T-cell localization, even if

they produce the co-factor at very high levels, thereby reducing

the side effects of the co-factor. Despite the remarkable anti-

tumor efficacy of IL-12 in various animal models, clinical trials of

recombinant IL-12 showed severe toxicity, including mortality

(70, 95). Therefore, various localized IL-12 delivery strategies

that could be more effective and less toxic, including IL-12–

expressing CAR T cells (15, 17, 18), are currently in clinical

trials (96).

Since retrovirus vectors are generally used for T-cell

transduction, the expression of secretory co-factors and CAR

is often driven by the retroviral long terminal repeat (LTR)

promoter or the CMV (cytomegalovirus), EF1a (elongation

factor 1a), PGK (phosphoglycerate kinase), and SFFV (spleen

focus-forming virus) promoters (97–100). In many cases, the

EF1a and SFFV promoters are stronger, but do not always lead

to a better transcriptional activity. In addition, CAR

overexpression can lead to tonic signals and premature

exhaustion (100, 101). Various gene drivers can be constructed

by combining promoters, introns, and enhancers and can be

optimized for the application of interest.
NFAT promoters

To avoid the unexpected effects of co-factors, inducible

CAR/TCR activation– inducible promoters with low

background activity have been used to localize co-factor

delivery. NFAT promoters including NFAT response

elements (REs) are widely used to monitor TCR activation.

For instance, an NFAT promoter driving IL-12 secretion from

ex vivo expanded tumor-infiltrating lymphocytes (TIL) was

tested for metastatic melanoma clinical therapy (102). Clinical

toxicity was still observed after high-dose infusion, possibly

due to non-localized TILs with unknown TCR stimulation.

Combining NFAT promoters with CARs could allow better

control over the input signal to reduce unexpected co-factor

expression. IL-12 and IL-18 have been selected as co-factors to

be induced by NFAT promoters (14, 16, 23) due to their
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systemic toxicity, which can cause fever, leukopenia, and on-

study death (20, 70, 71). However, there is concern that the

NFAT promoter might not be strong enough to express less

toxic co-factors, such as PD-1 blockades and anti–IL-6.

Increasing the number of NFAT-RE repeats (103) and

changing the minimal promoter (23) have been reported to

improve the NFAT promoter, resulting in stronger induction

of the fluorescent reporter EGFP. Thus, customized NFAT

promoters could have various applications.

Inducible constructs, such as the CAR and NFAT co-factor

system, tend to involve the loading of a larger fragment that

contains two promoter-coding gene cassettes: a constitutively

active promoter, CAR, an inducible promoter, and a co-factor.

Transposon systems can insert a much larger DNA fragment into

the genome than viral vectors with a strict transgene size (104).

Indeed, the transposon system piggyBac has been used to engineer

CAR T cells harnessing NFAT–IL-21 instead of viral vectors (24).

Large gene transfer techniques such as these could therefore be
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used to improve gene therapies by allowing them to become more

complex and contain multiple gene cassettes.
NR4A promoter

The CAR/TCR-inducible NR4A promoter has been reported

to have a comparable maximum activity but greater sensitivity

than the conventional NFAT promoter (105). CAR T cells with

the NR4A promoter showed greater responses when they met

cancer cells with low target antigen expression. In addition, the

NR4A promoter improved poorly responsive CAR T cells by

inducing the higher expression of T-cell–supportive cytokines.

Therefore, the NR4A promoter could expand the applications of

co-factor–harnessing CAR T cells by improving the co-factor

expression in non-ideal situations such as CAR T cell against a

weakly immunogenic target and poorly responsive CAR T cells

derived from chemotherapy-received patients.
A B

C

FIGURE 2

Synthetic biology tools to make circuits by secretory co-factors. (A) Schematics of intercellular AND gate with the SUPRA CAR platform. A HER2
CAR-expressing sender cell secretes AXL zipFv in a CAR stimulus–dependent manner using the NFAT promoter. When AXL zipFv bridges a
zipCAR-expressing receiver cell and AXL on a target cell, the receiver cell is activated. (B) Schematics of OR gate with a CD19 bridge protein
(CD19-BP). This engineered cell expresses both CD19 CAR and the CD19-BP that is composed of recombinant CD19 and anti-HER2 scFv.
Secreted CD19-BP engages CD19 CAR and a HER2-expressing target cell. (C) Schematics of how synNotch induces a co-factor. Upon ligand
recognition by the synNotch receptor, a transcription factor (TF) integrated in the synNotch cytoplasmic domain is cleaved and released. The
released TF induces the expression of a custom co-factor.
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Endogenous promoters

Genome-editing technologies have enabled us to generate

CAR T cells in which an endogenous promoter drives CAR

expression. Utilizing well-characterized endogenous promoters

can not only strictly regulate CAR expression but also that of

multiple additional transgenes. CAR is usually inserted in the

TRAC locus, which encodes TCRa. This produces uniform and

cell type–specific CAR expression (19, 106, 107) that enhances

CAR T-cell potency without unexpected differentiation and

exhaustion. Sachdeva et al. reported CAR T cells producing

IL-12 under the control of CD25 or PDCD1 regulatory elements

(19), suggesting that various promoter types can be applied to

express co-factors. Therefore, endogenous promoters and highly

efficient techniques for gene transfer and transgene genome

integration should be validated.
Other synthetic promoters

Hypoxia-inducible promoters are often used for hypoxic

TME-specific CAR expression and are composed of hypoxia-

responsive elements that allow HIF1a-dependent transcription
under low oxygen conditions (108, 109). To recognize the TME

through both hypoxia and inflammation, synthetic promoters

composed of multiple consensus promoter response element

sequences for IFN-g, TNF-a, and hypoxia were tested in human

T cells (110). In vitro experiments confirmed additive gene

expression due to IFN-g, TNF-a, and hypoxia; thus, synthetic

promoters could provide CAR T cells with artificial genetic

circuits that can allow more complex therapeutic applications.
SynNotch

The SynNotch system is a type of molecular switch for

artificial gene circuits that is composed of an extracellular

antigen recognition domain (single-chain variable fragment,

scFv), a Notch core regulatory region, an engineered

transcriptional factor as an intracellular domain, and a gene

expression cassette with a promoter that is compatible with the

transcription factor (111). Once scFv recognizes the antigen on

target cells, the Notch core is cleaved by a metalloprotease and g-
secretase. The transcription factor is released and translocated to

the nucleus, triggering the transcriptional activation of the gene of

interest (Figure 2C). Roybal et al. developed T cells to express

CAR after synNotch receptor activation as a combinatorial

antigen-sensing system (AND gate) (63). The synNotch system

was subsequently modified so that the engineered cells could

secrete diverse therapeutic factors in an antigen-specific manner

(45, 112). Because synNotch itself does not induce CAR/TCR

activation, the system could be used for the local delivery of
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biologics rather than amplifying CAR T-cell efficacy. In addition,

synNotch allows stronger gene induction and more precise

control of signal pathways than other inducible promoters like

the NFAT promoter. An artificial transcription factor consisting

of a Gal4 DNA binding domain fused to a tetrameric VP64 viral

transcriptional activator domain (Gal4-VP64) is often used and

has great transcriptional activity. Gal4-VP64 specifically binds to

an upstream activation sequence (UAS) and induces downstream

gene expression. Artificial transcriptional factors like Gal4-VP64

can minimize the unexpected activation of non-target genes and

crosstalk between synNotch signaling and native signaling. One of

the disadvantages of the synNotch system is immune rejection due

to non-human-derived components; however, this can be avoided

using fully humanized synNotch synthetic intramembrane

proteolysis receptors (SNIPRs), which are expected to enter

clinical use shortly (113).
Discussion

Various secretory co-factor–expressing CAR T cells are

under development to improve their anti-tumor efficacy and

safety. It is difficult to directly compare the ability of secretory

co-factors to enhance the efficacy of CAR T cells against solid

tumors because no ideal animal models of human solid tumors

have yet been established. However, ICBs, IL-12, IL-15, and IL-

18 have the advantage of existing clinical data for their

recombinant administration in patients with advanced or

metastatic solid tumors (69, 71, 76, 77). Indeed, several clinical

trials of PD-1– or PD-L1–secreting CAR T-cell therapies are

ongoing in China (Table 2), and we anticipate that at least one of

these cytokines will be tested as a co-factor for CAR T cells in the

near future. Due to the abundance of different types of solid

tumors, multiple CAR T-cell types should be developed to allow

clinicians to make the best therapeutic choice for each patient.

For instance, IFN-g enhances ICAM-1–mediated CAR T-cell

cytotoxicity against various types of solid tumor but not the

leukemia, lymphoma, or myeloma CDX models (114), although

this different IFN-g sensitivities are unclear in clinical level. In

addition, multiple cytokines and ICBs can be loaded onto a CAR

construct to exert additive or synergistic effects against more

tumor types. IL-7 and CCL19/CCL21 combinations, which are

intended to recruit and maintain nonengineered immune cells,

are leading the race for optimal co-factor combinations for CAR

T-cell therapies (32–34); however, various co-factor

combinations must be tested after single co-factor CAR T-cell

clinical trials.

In terms of genetic engineering, wherein the co-factor gene is

added to a CAR-coding construct, “next-generation” CAR T

cells are expected to have equivalent or even better efficacy than

promising combination therapies involving the same factor

without additional administration. To maximize clinical

outcomes, the automated regulation of the amount and timing
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of co-factor expression could be the next development focus. For

instance, IL-6 and IL-1 blockades are promising co-factors to

prevent CRS; however, their constitutive expression might be

problematic due to unexpected immunosuppressive effects.

“CAR T-cell activation–dependent” or “tumor site–specific”

expression machineries could solve this issue. Although weak

NFAT promoter activity is the biggest concern for activation-

dependent machinery, the modification of the NFAT promoter

and the newly verified NR4A promoter could enhance

maximum co-factor production. SynNotch is a synthetic

biology solution for antigen-dependent high co-factor

expression, whereas hypoxia-inducible promoters can achieve

site-specific expression to maximize co-factor efficacy. In

addition, genome-editing techniques could produce various

types of endogenous promoters that could be used

simultaneously to control multiple co-factors.

To regulate the spatial range of effects more strictly,

synthetic chimera forms of cytokines have also been reported.

Membrane-bound cytokines are chimera forms fused to a

transmembrane domain or a cell surface receptor. Expressing

the membrane-bound cytokines is intended to enhance the

potency of engineered cells themself and minimize the effect

on surrounding cells, which is supposed to work as a

conditioned culture even in vivo (115–117). Therefore, this

strategy could strongly support recently spotlighted fast CAR

T-cell manufacturing procedures that expect in vivo expansion

of CAR T cells instead of conventional ex vivo expansion (118,

119). Another synthetic chimera form of cytokines is a target-

tethered cytokine composed of a cytokine and an antibody

fragment or a specific binding domain (68, 120). TME-specific

accumulation or immune cell–specific tethering can enhance the

anti-tumor efficacy of IL-12 while limiting systemic toxicities.

Similar to BiTE, zipFv-zipCAR, and CD19-BP (in Section 4),

this approach could be applied to CAR T-cell therapy as a

secretory co-factor that plays an immunomodulatory role in

synthetic cell-cell communication.

In summary, synthetic biology approaches could expand the

T-cell engineering tool kit and enable CAR T cells to be

programmed with more complex functionality. Beyond cancer
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therapy, future secretory co-factors could enable synthetic

communication between engineered cells and nonengineered

cells or among engineered cells to build a synthetic immune cell

consortium. Altogether, combining CAR T cells with secretory

co-factors will lead to next-generation CAR T-cell therapies

against broader types of cancers and provide advanced tools

for more complicated synthetic immunotherapies.
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