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Multiple sclerosis (MS) is a highly debilitating autoimmune disease affecting millions of
individuals worldwide. Although classically viewed as T-cell mediated disease, the role of
innate lymphoid cells (ILC) such as natural killer (NK) cells and ILC 1-3s has become a focal
point as several findings implicate them in the disease pathology. The role of ILCs in MS is
still not completely understood as controversial findings have been reported assigning
them either a protective or disease-accelerating role. Recent findings in experimental
autoimmune encephalomyelitis (EAE) suggest that ILCs infiltrate the central nervous
system (CNS), mediate inflammation, and have a disease exacerbating role by
influencing the recruitment of autoreactive T-cells. Elucidating the detailed role of ILCs
and altered signaling pathways in MS is essential for a more complete picture of the
disease pathology and novel therapeutic targets. We here review the current knowledge
about ILCs in the development and progression of MS and preclinical models of MS and
discuss their potential for therapeutic applications.

Keywords: multiple sclerosis, innate lymphoid cells (ILCs), natural killer cells, experimental autoimmune
encephalomyelitis (EAE), autoimmune disease, disease-modifying therapies (DMTs)
INTRODUCTION

Multiple sclerosis (MS) is a chronic autoimmune, inflammatory neurological disease of the central
nervous system (CNS) that most commonly affects young individuals between the age of 20 and 40
(1). The number of people worldwide living with MS has increased from 2.3 million in 2013 to 2.8
million in 2020 becoming the primary cause of non-traumatic disability in young adults (1).
Although disease-modifying therapies (DMTs) have alleviated symptoms and reduced the
subsequent disability coming from an MS diagnosis, the disease progression still cannot be
stopped (2). This is due to a complex disease etiology and pathogenesis, highlighting the unmet
need to identify key players and altered drivers in MS. For decades, MS has been viewed as an
immune-mediated disease primarily induced by the infiltration of classical T-cells (2). Subsequently,
studies on MS and experimental autoimmune encephalomyelitis (EAE) have mostly focused on
CD4+ T-cells, and DMTs that have been developed over the years mainly target these cells. The
traditional view has been altered to include the involvement of innate immune cells that have long
been neglected as disease mediators. Most studies investigating the role of ILCs in MS and
preclinical models of MS have been focused on NK cells as ILC1-3 have been identified and
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classified later. Nonetheless, recent studies suggest that also other
ILC family members play a crucial role in the initial activation of
the autoimmune response as well as the disease progression,
making them a potential target for future therapies (3–19).
MULTIPLE SCLEROSIS

MS can be divided into 3 subtypes: relapse remitting MS
(RRMS), primary progressive MS (PPMS), and secondary
progressive MS (SPMS) (20). The most common type is
RRMS, which is characterized by recurring episodes of
neurological dysfunction, followed by a clinical recovery. Many
RRMS patients develop SPMS within 10 to 15 years after the
RRMS diagnosis, whereby inflammatory lesions are no longer
the main characteristic. Instead, progressive neurological decline
occurs, followed by brain atrophy (2). Only 10 to 15% of the
patients have PPMS, whereby disability progression is present
from the beginning of the disease and relapses do not occur (20).
The disease symptoms are heterogeneous and depending on
where the lesions are in the CNS, sensory disturbances, bladder
dysfunction, cognitive deficits, limb weakness, ataxia, and fatigue
can occur (21). The disease pathology of MS is characterized by
confluent demyelinated areas in both the white and gray matter
of the brain and spinal cord. These lesions indicate loss of myelin
and myelin-producing oligodendrocytes, resulting in disrupted
conduction of electrical impulses (2). The pathology is due to an
autoimmune response directed against myelin, whereby immune
cells such as CD4+ T-cells and B-cells infiltrate the brain
parenchyma and cause local tissue damage. In addition, ectopic
lymphoid follicles (ELFs), which resemble germinal center-like
structures can be found in the meninges of 40% of the SPMS
patients. ELFs were also observed in RRMS and PPMS patients
but lack features of more developed follicles such as follicular
dendritic cells (FDCs), and distinct T and B cell zones (22, 23).
ELFs can cause local antigen-specific responses within tissues
and thereby support cortical degeneration and clinical disease
progression (22). Although the causes of MS are still unknown,
next to a genetic predisposition, many different environmental
factors such as vitamin D deficiency, obesity, smoking, and
infection with the Epstein Barr virus (EBV) have been
described to play a role in developing MS (2). Emerging
evidence from a longitudinal study shows that an EBV
infection increases the risk of getting MS 32-fold, suggesting
that EBV is the leading cause of MS (24).
INNATE LYMPHOID CELLS

ILCs are a branch of the innate immune system and an important
source of innate effector cytokines (25, 26). In the last years, their
resemblance to T-cells has been described, which lead to the
recognition of ILCs as the innate counterparts of T-cells whereby
each subset resembles a specific T-cell population in particular.
There are different nomenclatures regarding ILCs, but in this
review, we use the nomenclature proposed by Vivier et al. (27).
Frontiers in Immunology | www.frontiersin.org 2
ILCs can be divided into five different subsets: lymphoid tissue
inducers (LTis); cytotoxic NK cells, which enter the circulation
and migrate through tissues; and ILC1, 2, and 3 which are tissue-
resident non-cytotoxic cells that exert their effects locally (25, 28).
Interestingly, recent studies have identified ILC1 and ILC3 subsets
that also have a cytotoxic nature (25, 28) suggesting that some key
features are yet to be discovered in terms of subsets, functions as
well as plasticity. LTis, NK cells, and ILC1, 2, and 3 differ in their
transcription factor profiles as well as functions. NK cells resemble
CD8+ cytotoxic T-cells whereas ILC1-3s, mirror CD4+ T helper
(Th)1, Th2, and Th17 in terms of function (25, 26) which is
visualized in Figure 1.

NK Cells
NK cells are dependent on the transcription factors, T-bet (Tbx21)
and Eomesodermin (Eomes) and are cytotoxic cells that control
tumors and viral infections by producing IFN-g, TNF, perforin, and
granzymes (25). In addition, NK cells exert regulatory effects by
influencing adaptive immune responses (27). In mice, three NK cell
populations have been characterized, based on their CD11b and
CD27 expression (29). The double-positive and the most mature
subset CD11b+CD27+ have cytolytic potential and secrete IFN-g
being the most potent killer cell population while CD11b+ CD27-

cells have lower proliferative capacity indicating replicative
senescent cells (29, 30). The NK cells subsets not only differ in
functions but as well in their tissue distribution; the CD11b- CD27+

NK cells are mostly found in the bone marrow and lymph nodes,
whereas the CD11b+ CD27- NK cells are predominantly found in
the blood, spleen, lung, and liver. The double-positive NK cells can
be found in all tissues and are evenly distributed (29). In humans,
NK cell maturation can be distinguished based on CD56 and CD16
expression – functional homolog to the CD27/CD11b subsets in the
mouse. Human NK cells are mainly divided into immature
CD56brightCD16- and mature CD56dimCD16+ and subsets (31). In
the peripheral blood and spleen, around 90% of the NK cells are
CD56dimCD16+. These cytotoxic cells express perforin and in vitro,
it was shown that they can produce IFN-g upon interaction with
tumor cells (32). In the lymph nodes and tonsils, most NK cells are
CD56brightCD16- and lack perforin but produce cytokines such as
IFN-g in response to stimulation with interleukin (IL)-12, 15, and 18
(31, 33). Although there are differences between human and mouse
NK cells such as the absence of the NKp30 and NKp44 activating
receptors and the CD56 marker in mice, many fundamental
principles such as the biology and function of NK cells can be
studied in mice and applied to humans (34).

ILC1
ILC1s defend against intracellular bacteria and parasites and play
a role against tumor and virus-infected cells by producing
cytokines (25). ILC1s, although having similar features as NK
cells such as the production of IFN-g, can be distinguished from
conventional NK cells as they are only dependent on the
transcription factor T-bet but not Eomes. Their similarity to
NK cells causes a hurdle to correctly identify them, as specific
ILC1 markers are lost upon cell activation and are tissue-
dependent. As well, many ILC1 markers are shared with NK
cells and ILC3s such as NK1.1, NKp44, and NKp46 (26). ILC1s
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can be further divided into CD127- and CD127+ cells whereby
CD127- cells can produce IFN-g and TNF upon stimulation by
IL-12, IL-15, and IL-18, and CD127+ cells produce IFN-g in
response to IL-12 and IL-18 in both mouse and humans (25).

ILC2
ILC2s are important for the defense against parasites and are
involved in asthma and allergic diseases (24). They are
dependent on the GATA3 transcription factor and when
activated via cytokine receptors, produce type 2 cytokines such
as IL-4, IL-5, IL-9, and IL13, and the transcription factor Areg in
both mice and humans (24). ILC2 can be identified by ST2, a
component of the IL-33 receptor (25).

ILC3s
ILC3s are dependent on the transcription factors RORgt, AHR,
and ID2. They are significant producers of IL-17A, IL-22 as well
as GM-CSF and TNF and promote antibacterial immunity,
chronic inflammation, and tissue repair as well they can
regulate adaptive Th17 cell response (25). ILC3s are
heterogeneous and in mice, there are two subsets, CCR6-ILC3s
whereas in humans all express CCR6 and CD117 but two subsets
can be distinguished based on NKp44 expression (25).

LTis
LTis are CCR6+ transcription factor RORgt - dependent cells and
during embryonic development are crucial for the formation of
secondary lymph nodes and Peyer’s patches (PP) (35). In mice,
there are two different subsets, which can be differentiated based
on their CD4 expression. They produce similar cytokines as ILC3
whereby the only difference is that they produce IL-17A instead of
TNF (35).
Frontiers in Immunology | www.frontiersin.org 3
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EAE – A Preclinical Model for MS
The experimental autoimmune encephalomyelitis (EAE)
model is the most commonly used mouse model to study the
immune response in MS. EAE is a CD4+ T cell-driven disease,
directed against myelin antigens (36). Since it was first
introduced, over 60 years ago, it has been extensively used to
understand the autoimmune contribution to the pathogenesis
of MS (37). EAE is induced by active immunization with
myelin proteins or peptides derived from the myelin sheath,
whereby the most common models are myelin oligodendrocyte
glycoprotein (MOG33-55) immunized C57BL/6 mice or PLP139-
151 SJL mice. The mice present symptoms such as loss of
appetite, ascending paralysis, and significant inflammatory
infiltration which can be found predominantly in the spinal
cord but also the brain and which worsens with time (36). The
MOG33-55 immunized C57BL/6 mice and PLP139-151

immunized SJL mice mimic different disease stages. The SJL
mice show similarities to a relapse–remitting disease course,
which is the most common form of MS. Furthermore, it also
mimics a sex-dysmorphism that can be found in humans (38).
The MOG33-55 immunized C57BL/6 mice are more useful to
mimic the chronic stages of MS (37). Although differences
between the pathophysiology of the EAE animal model and
human MS exist, EAE is a very powerful tool for understanding
the autoimmune and inflammatory parts of the disease. In
addition, it is essential for the development of therapies and is
used in pre-clinical trials to test the efficacy of drug candidates
(37). Indeed, the use of EAE in pre-clinical trials has been essential
for MS drugs such as Interferon beta IFN-b, Glatiramer acetate
(GA), and Natalizumab (39).
FIGURE 1 | ILCs, their transcription factors, and cytokines. Figure 1 depicts the ILC family, their transcription factors, and cytokines in mice. NK cells are
transcription factor T-bet and Eomes dependent cytotoxic ILCs that release cytokines IFN-g, and TNF together with cytotoxic molecules such as perforin, and
granzyme. ILC1-3 and LTis are non-cytotoxic ILCs. ILC1s are dependent on the transcription factors Tbet, NFIL3, and RUNX2 and release IFN-g, TNF, and
IL-4. ILC2s are dependent on the transcription factors RORa, GATA3, Bcl11B, and GFI and release IL-4, IL-5, IL-9, IL-14, and transcription factor Areg. ILC3s
are dependent on the transcription factors RORgt, AHR, and ID2 and release TNF, IFN-g, IL-22, GM-CSF, and IL-17A. LTis are dependent on the transcription
factors RORgt, TOX, and ID2 and release IL-17A, GM-CSF, and IL-22. Abbreviations of transcription factors: NFIL3, nuclear factor IL-3 induced; ID2, inhibitor
of DNA binding 2; TOX, thymocyte selection associated high mobility group box protein; GATA3, GATA binding protein 3; T-BET, T-box transcription factor;
EOMES, Eomesodermin; RUNX3, runt-related transcription factor 3; RORa, RAR-related orphan recepto;, Bcl11b, B cell lymphoma/leukemia 11B; RORgt,
RAR- related orphan receptor gt; and AhR, Aryl hydrocarbon receptor. Abbreviations of cytokines: IFN-g, Interferon-gamma; TNF, Tumor necrosis factor-alpha;
IL, Interleukin; GM-CSF, Granulocyte-macrophage colony-stimulating-factor; Areg, amphiregulin.
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NK Cells in EAE
In the last decade, the role of NK cells in MS has been
investigated and both the beneficial and harmful role of NK
cells has been demonstrated (40, 41). The fact that NK cells could
play a role in MS, arises from findings of studies in MS patients,
the EAE model, and DMTs influencing NK cell numbers as well
as function and migration (3, 4, 40) (Table 1).

A study done in 1997, showed that C57BL/6 mice deprived
of NK cells, using an anti-NK1.1 depletion antibody before EAE
induction with MOG35-55, resulted in a serious form of
EAE with frequent relapses which occurred earlier than
in EAE induced control mice (40). To test that the seen
effects were not caused by the depletion of NK-T cells, which
are also targeted by an anti-NK1.1 antibody, they used a
b2-microglobulin-/- b2m-/- mice in which NK-T-cells are
absent. The b2m-/- mice depleted from NK cells developed a
chronic non-remitting form of EAE with high clinical scores,
providing evidence that NK cells can play a regulatory role in a
manner independent of CD8+ T cells or NK1.1+ T cells. In
addition, in the same study enhanced disease progression was
observed upon NK cell depletion in Rag2-/- mice lacking T-,
NK-T, and B-cells after disease induction by adoptive transfer
of MOG-specific T-cells (40). This study clearly indicates a
disease protective role of NK cells (40). Similar results were
found in NK-depleted SJL/J mice (5), whereby the depletion of
NK cells by an anti-NK1.1 monoclonal antibody, one day
before and 14 days after the immunization with PLP136–150
lead to an enhanced form of EAE (5). The authors describe that
Frontiers in Immunology | www.frontiersin.org 4
the disease protection of NK cells was mediated by a cytotoxic
effect on autoantigen-specific encephalitogenic T-cells, which
are known to play a vital role in the autoimmune attack in MS
(5). In contrast to this, another study demonstrated an NK cell
depletion with either anti-NK1.1, anti-asialo GM1, and anti-
Ly49 in C57BL/6 before EAE induction with MOG35-55 results
in a decrease in clinical pathology and relapses (41). The
authors also report higher survival, thereby showing a
disease-accelerating role of NK cells in EAE (41). It must be
noted that an NK1.1 antibody depletes not only NK cells but
also ILC1s and partially ILC3s and does not allow for
discrimination between the role of these cell types whereas
the used anti-asialo GM1 and anti-Ly49H preferentially deplete
NK cells. The authors also state without providing the data that
depletion of NK cells after the immunization did not alter the
clinical symptoms in the mice which supports the notion that
NK cells have only a regulatory role early in the disease
development. Another study supported the disease-
accelerating role of NK cells which was based on the fact that
IL-18 can promote the production of IFN-g by NK and Th1
cells. In the study, IL-18-/- mice were completely protected from
EAE after MOG immunization, while IL-18 administration
restored the disease partially in the presence of NK cells but
not when NK1.1+ cells were depleted before immunization (6).
Likewise as mentioned above the study also notes that NK
depletion after primary immunization has no effects on the
EAE course further providing evidence that NK cells have a role
in the initiation of the disease but not in the progression.
TABLE 1 | Overview of ILCs in preclinical models of MS and in MS patients.

ILC
type

Experiment Outcome Role of ILC

NK
cells

NK1.1 depleted C57BL/6 mice EAE induced with MOG35-55 (40) Enhanced disease progression Protective
NK1.1 depleted 2m-/- mice EAE induced with MOG35-55 (40) Enhanced disease progression Protective
NK1.1 depleted 2m-/- mice EAE induced with MOG35-55 (40) Enhanced disease progression Protective
NK.1.1 depleted SJL/J mice one day before and 14 days after EAE induction with PLP136–

150 (5)
Enhanced disease progression Protective

NK1.1,/-asialo GM1/Ly49 depleted C57BL/6 mice one day before and before secondary
EAE induction with MOG35-55 (41)

Diminished EAE onset Pathogenic

NK1.1 depleted IL-18-/- mice EAE induced with MOG35-55 (6) Resistant to EAE Pathogenic
Eomes f/f NKp46-Cre+ mice EAE induced with passive transfer of 2D2 wild-type Th17 cells
(4)

Equal disease progression None

ILC1 Tbx21-/- mice EAE induced with MOG35-55 (4) Diminished EAE onset/progression Pathogenic
NK1.1 depleted Tbx21−/− mice EAE induced by adoptive transfer of autoreactive CD4+

Th17 (4)
Resistant to EAE Pathogenic

Tbx21f/f NKp46-Cre+ EAE induced with MOG35-55 (4) Diminished EAE onset Pathogenic
ILC1-/- HSV-IL2 mice (16) Demyelination comparable to control mice None

ILC2 ILC2-/- HSV-IL-2 mice (16) Protection from demyelination Pathogenic
ILC2-/- with adoptive BM-derived ILC2s and infection with HSV-IL-2 virus (16) Severe demyelination in comparison to control

mice
Pathogenic

SJL-cKit-/- mice EAE induced with PLP136–150 (17) c-Kit mutation induces severe EAE in males but not
females

Protective

ILC3 Thy1+ depleted mice EAE induced with MOG35-55 (42) Equal disease progression None
C57BL/6 mice EAE induced with MOG35-55 (42) Increased number of IL-17, TNF and IFN-g

producing ILC3s in the meninges
Pathogenic?

ILC3-/- HSV-IL2 mice (16) Demyelination comparable to control mice None
LTis MS patients (43–46) Elevated levels in the CNS and blood Pathogenic?

CSF samples from MS patients (43) Increased frequency of CD56-RORyt+ LTis Pathogenic?
Rorc-/- mice EAE induced with MOG35-55 (42) Resistant to EAE Pathogenic
June 2022 | Volume 13 | A
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NK Cells in MS
Human studies have implicated NK cells directly in the process
of demyelination and thus support the notion of a disease-
accelerating role. In a study, using human brain-derived
oligodendrocytes (OLs) from surgery, it was found that
CD3+CD19+CD14+ depleted mononuclear cell preparations
(MNCs) were cytotoxic toward OLs (7). This effect was visible
when using NK cell-enriched MNCs and OLs from either the
same donor (autologous donors) or healthy volunteers and OLs
from epilepsy patients (heterogenous donors). NK cell-mediated
cytotoxicity towards OLs was further increased when NK cells
were activated with IL-2. The same group showed in another
study that OLs from patients with MS lesions express MICA/B
ligands for the activating NK cell receptor NKG2D that were not
detected in healthy control samples. Blocking NKG2D on NK
cells significantly inhibited the killing of OLs indicating an
NKG2D-mediated killing of OLs by NK cells (8). Using
cortical CNS biopsies of patients diagnosed with inflammatory
demyelination a study showed the presence of brain perivascular
granzyme B+ NK cells. The authors further showed in a Th/+

(BCR transgenic for MOG) mouse model that NK cells strongly
aggravate the extent of perivascular cortical demyelination,
providing evidence for the relevance of NK cells in
perivascular cortical demyelination and contribution to the
neurodegeneration of MS (9). In addition, autoreactive 2D2 T-
cells were either transferred into RAG1−/− (lacking mature T–
and B–cells) or into RAG1−/− gc−/− (no mature T– and B–cells,
no NK cells) mice and the latter ones showed significantly less
perivascular cortical demyelination. However, the extravasation
of NK cells into the cortical parenchyma required activated T
cells. These data suggest that NK cells contribute to the
demyelination process in the presence of pathogenic antibodies
by performing ADCC (10).

Recently, EBV infection has been proven to be a leading cause
of MS (24). As NK cells protect against viral infections, they play
a vital role in the early defense against an EBV infection (11).
Findings suggest that during infectious mononucleosis (IM)
caused by a primary EBV infection, NK cell numbers were
significantly elevated both at the diagnosis and during the first
month of an IM diagnosis (12, 13). Furthermore, significant
changes in cell phenotype and function of NK cells were
also detected.

ILC1
Induction of EAE in transcription factor T-bet-deficient mice
showed that myelin-reactive pathogenic CD4+ Th-17 cells
invaded the CNS and caused major lesions throughout the
CNS tissue in immuno-competent hosts but were completely
absent from the CNS parenchyma in T-bet-deficient hosts (4).
Furthermore, disease induction by an adoptive transfer of
autoreactive CD4+ Th17 cells into NK1.1 depleted mice
resulted in resistance to EAE. In addition, mice with NKp46-
lineage-specific deletion of the transcription factor T-bet
significantly decreased the incidence of inflammation using the
adoptive transfer model (4). Interestingly, the study also used
NKp46 lineage-specific deletion of transcription factor Eomes in
Frontiers in Immunology | www.frontiersin.org 5
mice as a tool to study the absence of conventional NK cells only
and found that these NK cell-deficient mice developed a similarly
severe paralysis after EAE induction compared to NK cell-sufficient
mice. This indicates, in contrast to prior studies, that ILC1s but not
NK cells play a role in the immunopathogenesis of EAE. The
authors concluded that the pathogenic function of the transcription
factor T-bet is rather dependent on ILC1 and the NKp46+ subset of
ILC3s. A study investigating phenotypic and functional plasticity of
murine ILCs found that the meningeal subsets of NKp46+ ILC1s
and ILC3s are also characterized by a specific gene signature that
was not found in splenic or meningeal NK cells and might
contribute to the disease pathology (14). Another study found an
increase of ILC1s in the meninges of EAE-diseased in comparison
to healthy wild-type C57BL/6 mice (19). Others also found that in
contrast to NK cells, ILC1s are enriched in the choroid plexus as
well as in the brain parenchyma and meninges after EAE induction
(15). However, while ILC1s maintain stable IFN-g and TNF levels,
NK cells show increased production of these cytokines during EAE
progression. These findings at least indicate again that besides NK
cells, CNS-ILC1s could be involved in the control of
neuroinflammation in the brain (15).

ILC2
ILC2s are the predominant ILC population in human as well as
mouse brains and have been implicated in the development of
several diseases such as allergy, asthma, dermatitis, and fibrosis
(16). Studies also suggest the involvement of ILC2s in the
disease pathology of MS (15, 16, 40). Like ILC1s, ILC2s have
also been found in the meninges of wildtype C57BL/6 mice
(19). A study from 2020, using an HSV-IL-2 model of CNS
demyelination where mice were infected with a recombinant
HSV-1 expressing murine interleukin-2 showed that NK cells
did not play a role in demyelination in this model (16).
However, ILC2-/- mice infected with the HSV-IL-2 virus were
protected from demyelination whereas ILC1-/- and ILC3-/- mice
showed demyelination to the same extent as wild type mice.
Additionally, adoptive transfer of bone marrow-derived ILC2
from wild-type mice into ILC2-/- infected HSV-IL-2 virus
restored demyelination visible in the brain, spinal cord, and
optic nerve implying that CNS demyelination is dependent on
ILC2s but not ILC1s and ILC3s (16). As previously mentioned,
studies of EAE in SJL mice serve as a useful model of sex-
dimorphism in MS (38). A recent study suggested that the
female bias for disease development comes from a lack of male-
specific IL-33 expression in mast cells, likely influenced directly
by testosterone (17). Interestingly, instead of IL-33, immunized
wild-type females express IL-1b and TNF that exert a variety of
pathogenic effects and disease promotion. IL-33 plays an
important role in the activation of ILC2s, a population that is
essential for skewing the immune environment towards a
protective Th2-dominated response of wild-type males rather
than the harmful Th17-dominated response seen in females
(17). The protective role of ILC2s was further corroborated in
SJL-cKit mutant mice (SJL-KitW/Wv) where it was shown that c-
kit mutations induce severe EAE in males, but not females, due
to the deficit of c-kit+ ILC2s and mast cells (18).
June 2022 | Volume 13 | Article 909275
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ILC3
A study investigating the contribution of ILCs to autoimmune
neuroinflammation via their immediate responsiveness to IL-23
signaling found that ILC3s are not only present at mucosal surfaces
but indeed can be found in the CNS during steady-state and
inflammation (19). Especially IL-17A-producing ILC3s have been
found in the CNS but the depletion of Thy1+ ILCs did not alter the
progression of EAE (19). The same study that identified ILC1s and
ILC2s in meninges of wildtype C57BL/6 mice identified an ILC3
subset (CD45+Lin-IL-7Ra+RORgt+), which also resides in the
meninges (42). To assess the role of this ILC3 subtype, the authors
induced EAE with MOG35-55 in the C57BL/6 mice and found an
increasednumberof IFN-g,GM-CSF,andIL-17producingILC3s in
themeninges of EAE inducedmice. It is therefore assumed that this
subset plays an essential role inMSbypromoting inflammationand
thereby creating an environment that promotes the survival and
reactivation of encephalitogenic T-cells (42).

LTis
LTi cells are elevated in the CNS and circulation of MS patients,
providing evidence for a possible pathogenic role of LTis (42–45).A
study published in 2016, used Cerebrospinal fluid (CSF) samples
from MS patients and healthy controls to compare the levels of
different ILCs (43). They found that CSF samples fromMSpatients
compared tohealthy controls have an increased frequencyofCD56-

RORgt+ LTis while the frequency of CD56+ RORgt ILC3s was
unaltered. LTis are important producers of IL-22 and during anMS
relapse, the balance of cytokines is shifted towards a pro-
Frontiers in Immunology | www.frontiersin.org 6
inflammatory profile whereby IL-22 is assumed to promote
blood-brain barrier (BBB) disruption and CNS inflammation
(42). The same study that found an increased number of ILC3s in
the meninges of EAE induced mice, showed that also LTis are
significantly increased in the meninges and the CNS at the peak of
EAE (19). They also showed that Rorc-/- mice are protected against
EAE, which might be due to the lack of LTis or their subsequent
inability to mobilize to the meninges providing further support for
the involvement of LTis in the development of ELFs (42). That LTi
subtypes also reside in themeninges, is an importantfinding as LTis
are also speculated to be involved in the development of ELFs inMS
patients, and ELFs are commonly formed in the meningeal tissues
inhumans andmice. It is assumed that theLTi subset residing in the
meninges has a direct role in orchestrating the formation of ELFs,
which are hallmarks of chronic autoimmune inflammatory diseases
such as MS.

Together, these findings provide evidence that ILC subtypes
reside in the meninges and can infiltrate the CNS. Next to this,
these findings show that ILCs release cytokines that regulate the
inflammatory response of T-cells, as well as cytokines that are
pro-inflammatory and exacerbate the immune response in MS,
which can be seen in Figure 2. The specific role of ILCs is still
unclear as contradictory results have been found.

Role of ILCs in MS: Lessons Learned
From DMTs
Next to IFN-b and Glatiramer acetate other immunomodulatory
therapies for MS have been approved in the last years, such as the
anti-inflammatory Dimethyl fumarate (DMF), the highly potent
migration inhibitors such as Natalizumab and Fingolimod
(FTY720), and the IL-2 receptor modulating Daclizumab (10).
Importantly, all aforementioned drugs also influence NK cells
next to their original target. Some drugs, such as Daclizumab and
Fingolimod, show an additional effect on other members of the
ILC family (Table 2).

IFN-b reduces T-cell proliferation, leads to a reduction of
MHC class II molecule expression, and lowers IL-17A, TNF,
and IFN-g production in Th17/Th1 cells (47). It also upregulates
MHC class I, which is the main inhibitory ligand for CD56dim NK
cells thereby dampening cytotoxicity of the CD56dim NK cell
population (61). In parallel, IFN-b alters the CD56bright and dim
population ratio in the peripheral blood with an expansion of
CD56bright NK cells after treatment (48).Whether these changes in
the NK cell immune phenotype are relevant for therapeutic
success is not understood (49, 61). In patients treated with
Natalizumab- a humanized alpha 4 integrin (CD49d) antibody
inhibiting leukocyte migration, an increase of total NK cells and
CD56bright NK cells in blood comes concomitantly with reduced
NK cell numbers in the CSF suggesting that transmigration of NK
cells into the CNS is CD49d dependent (50, 51, 53). Daclizumab
- a monoclonal antibody blocking the IL2 receptor a (CD25) is
assumed to reduce early T-cell activation by the expansion of
CD56bright NK cells (52, 62). Daclizumab both boosts NK cell
cytolytic function in a DC-dependent manner and renders
antigen-activated T cells more sensitive toward NK-mediated
lysis, thus restoring defective NK cell-mediated control of T cell
FIGURE 2 | Schematic Overview of potential pathophysiology of MS and
role of ILCs. T-cells and B-cells infiltrate the CNS through a leaky blood-
brain barrier whereby ILC subtypes that reside in the meninges release
pro-inflammatory cytokines that influence the extent of CD4+ T-cell infiltration
into the CNS. T-cells interact with B-cells and release cytokines and antibodies
that cause inflammation which damages the myelin sheath of neurons and
thereby induce demyelination. NK cells can also kill oligodendrocytes directly
thereby potentially contributing to the extent of demyelination of the neurons.
ILC2s are assumed to play a role in demyelination. LTis are assumed to play
a role in the development of ELFs.
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activity in MS (51, 52). Next to this, in MS patients treated with
Daclizumab, a decrease in circulating ILCs can be found as well as
a shift in the phenotype of ILCs, from LTis toward an NK cell
lineage (44). However, Daclizumab has been withdrawn from the
market in 2018 due to cases of severe inflammatory brain disease
with fatal outcomes (63).

Alemtuzumab, a humanized monoclonal antibody that is
specific for the membrane glycoprotein CD52, is highly
effective in long-lasting suppression of the disease activity in
RRMS patients (54). A study investigating the phenotype and
effector function of innate immune cells in RRMS patients shows
that the decrease of CD4+ T-cells was accompanied by an
increase in ILCs which mainly was due to an expansion of the
CD56bright NK cells although it has to be mentioned that the
cytolytic function of NK cells was not altered 6 months after
alemtuzumab treatment (54).

DMF is an Nrf2 activator with immunomodulating, as well as
anti-inflammatory and anti-oxidative effects (55). Studies show
that MS patients treated with DMF have reduced percentages of
pro-inflammatory CD4+ and CD8+ T cells and an expansion of
CD56bright NK cells and a modest increase in absolute numbers
of CD56dim cells (55, 56). FYT20, a sphingosine 1-phosphate
receptor agonist used as an oral compound for the treatment of
MS shows efficacy in reducing inflammation in the CNS of MS
patients (57). NK cells express two receptors affected by this
treatment- S1PR1 and S1PR5 consequently affecting their egress
from the lymph nodes (3). Data on the effect of long-term FTY20
treatment on NK cells are however contradictory (57, 59, 64). In
a clinical phase IV trial in 17 RRMS patients, the longitude
impact of FYT20 treatment on NK cells was assessed (58). An
increased frequency of circulating CD56dim mature NK cells was
found while the frequency of CD56bright and CD127+ ILCs
decreased over time (58). This is in line with two other
studies reporting a significant decrease of CD56bright NK
cells in the peripheral blood of FYT20 treated patients (55, 57).
Other studies found that in FYT20 treated MS patients the
percentage of NK cells increased when compared to treatment-
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naïve patients (56) or that NK cells were not affected by
FYT20 (59).

A study investigating whether ILC subsets such as ILC1-3,
like NK cells, also express S1PR1, which is targeted by FYT20
found that ILCs 1-3 indeed express S1PR1 in both humans and
mice (65). A comparison between treatment-free MS patients
and patients receiving FYT20 further showed that the absolute
number of total ILC from all ILC subsets was reduced in the
peripheral blood. Similar results were also found in mice (20). In
mice, injections with FYT20 resulted also in a blocked ILC2
migration from intestines to lung or bone marrow during an
inflammatory state (65) indicating that FYT20 treatment affects
several immune subsets.
CONCLUSION AND FUTURE
PERSPECTIVES

NK cells and other ILCs have long been neglected as players in
MS but accumulating evidence shows that ILCs indeed play a
role in the disease pathology. While on the one hand ILCs have
been described to prevent autoimmunity, several studies
implicated them in a disease-promoting role in EAE by
influencing T-cells and releasing cytokines that enhance the
pro-inflammatory response.

In addition, in vitro, and in vivo mouse studies suggest that
NK cells are also able to directly target oligodendrocytes-
adding a layer of complexity as they might not only be
involved in the neuroinflammation aspect but also directly in
the neurodegenerative portion of MS.

Different depletion methods of NK cells and additional different
experimental conditions such as gender and age of mice, peptides
used for EAE induction, or housing conditions (SPF status,
microbiota) might play a role in the contradictory findings of the
aforementioned studies. As well the amount of peptides used and
whether a direct EAE induction or passive EAE induction was
TABLE 2 | Overview of DMTs for MS influencing ILCs.

Drug Mechanism ILC type Effects on ILCs

Interferon
beta 1a

Reduction of T-cell proliferation (47)
Reduction of MHC class II molecule expression (47)
Lowered IFN-b production by Th17 cells (47)

NK cells Upregulation of MHC class I dampened cytotoxicity of CD56dim NK cells (47)
Altered CD56dim/CD56bright population ratio with an expansion of CD56bright NK
cells (48, 49)

Natalizumab Humanized alpha 4 integrin antibody inhibiting
leukocyte migration (50)

NK cells Increase of total NK cell numbers (including CD56bright NK cells) in the blood and
reduced NK cell numbers in the CSF (50, 51)

**Daclizumab Monoclonal antibody against IL2 receptor CD25 (52) NK cells
ILCs

Expansion of immunoregulatory CD56bright NK cells in peripheral blood and CSF
(51, 53)
Decrease in circulating ILCs and shift in LTi phenotype towards NK lineage (43)

Alemtuzumab Monoclonal antibody specific for the membrane
glycoprotein CD52 (54)

NK cells Expansion of CD56bright NK cells with no altered cytolytic function (54)

Dimethyl
fumarate

Nrf2 activator with immunomodulating, anti-
inflammatory and anti-oxidative effects (55)

NK cells Expansion of CD56bright NK cells (56)
decrease in absolute numbers of CD56dim cells (55)

Fingolimod Sphingosine 1-phosphate receptor agonist (57) NK cells
ILCs 1-3

Decreased number of CD56bright NK cells (55, 57, 58)
CD56dim NK cells are increased in the circulation (54, 58)
Percentage of total NK cells increased (59)
Interrupted ILC circulation in both humans and mice (3)
-ILC2 migration blockade to lung or bone marrow in mice (60)
**has been withdrawn from the market in 2018.
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used, could additionally have influenced the outcome of the studies.
Next to this, several studies have been performed before the
discovery or strict classification of different ILC subsets making it
hard to clearly interpret their role in MS. In addition, a certain
plasticity of ILCs has been reported and, likely, ILCs can also adapt
to environmental cues during neuroinflammation changing their
transcription factor and cytokine profile.

Given that ILCs interact with other immune cells such as T- and
B-cells, it would be important to get a deeper understanding of the
interaction of the different innate and adaptive immune subsets
during the disease initiation and progression. The fact that all types
of ILCs are recruited to the meninges and CNS indicates a complex
interaction of these cell types. Another question that still needs to be
addressed is whether ILC subsets are only involved in the initiation
phase of disease by opening the blood-brain barrier and recruiting
other immune cells, thereby triggering local T-cell and B-cell
responses, or whether they are also crucial for the maintenance
and progression of the disease. Deepening our understanding of the
role of ILCs in the progression and not the initiation phase would be
of importance to design better therapies.

Although there are several treatment options for MS, most of
the treatments are perceived as burdening the patients due to the
administration route and severe side effects Consequently, there
is a high unmet medical need for new therapeutics which are
more patient-friendly and possibly delay and minimize the
neurodegenerative part of the disease (20). Due to their
pharmacological safety, tolerability, and efficacy profiles,
peptides present a unique starting point for creating new
treatments for a wide range of diseases (58, 60). Thus, it is
attractive to further explore the option of peptide therapeutics
for MS. Indeed, the circular plant peptide T20J kB1 (T20K) has
been shown to silence T-cell proliferation in an IL-2-dependent
mechanism, and treating MOG-induced mice with the peptide
led to a significantly delayed onset of clinical symptoms in the
EAE model (58). This compound is currently tested in clinical
trials and it is attractive to speculate that T20K might have an
additional impact on innate lymphoid cells as IL-2 can promote
activation and cell growth of ILCs.
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Next to this, the finding of ILC subset residing in the
meninges could be of deep interest since they lie outside of the
blood brain barrier and are more targetable. It is therefore
essential to further investigate how ILCs accumulate in the
meninges. It is not clear yet whether meningeal ILCs are
homeostatic gatekeepers and have the potential to locally
proliferate in a disease-promoting environment or whether
circulating ILCs are recruited to the CNS during the disease.

In conlusion, increasing our understanding of the complex
interplay of different immune cells including ILCs during the
disease initiation and progression will be crucial to find
alternative treatment options.
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