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Poor graft function (PGF) is a life-threatening complication that occurs after transplantation
and has a poor prognosis.With the rapid development of haploidentical hematopoietic stem
cell transplantation, the pathogenesis of PGF has become an important issue. Studies of the
pathogenesis of PGF have resulted in some success in CD34+-selected stem cell boosting.
Mesenchymal stem cells, N-acetyl-l-cysteine, and eltrombopag have also been investigated
as therapeutic strategies for PGF. However, predicting and preventing PGF remains
challenging. Here, we propose that the seed, soil, and insect theories of aplastic anemia
also apply to PGF; CD34+ cells are compared to seeds; the bonemarrowmicroenvironment
to soil; and virus infection, iron overload, and donor-specific anti-human leukocyte antigen
antibodies to insects. From this perspective, we summarize the available information on the
common risk factors of PGF, focusing on its potential mechanism. In addition, the safety and
efficacy of new strategies for treating PGF are discussed to provide a foundation for
preventing and treating this complex clinical problem.

Keywords: hematopoietic stem cell transplantation, poor graft function, prognosis, bone marrow
microenvironment (BMME), hematopoietic stem cell (HSC)
INTRODUCTION

Hematopoietic stem cell transplantation (HSCT) is an effective treatment for malignant
hematological diseases. However, delayed or incomplete hematopoietic recovery, also known as
poor graft function (PGF), limits the success of HSCT. The definition of PGF is currently
controversial. The European Society for Blood and Marrow Transplantation (EBMT) defined
PGF as two or three episodes of cytopenia lasting for more than 2 weeks, after day +28 in the
presence of donor chimerism > 5% (1). Given the chimerism kinetics and potential for confusion
with graft failure (GF), most recent studies based on clinical practice proposed that PGF should be
defined as the presence of at least two hematopoietic cell count lines that do not meet the
engraftment standard (absolute neutrophil count > 1.5 × 109/L, platelet (PLT) count > 30 × 109/L,
hemoglobin > 85g/L) lasting for more than two consecutive weeks beyond day +28 post-HSCT, in
the presence of full donor chimerism and primary disease in remission without severe graft-versus-
org June 2022 | Volume 13 | Article 9111741
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host disease (GVHD) and relapse (2). Secondary poor graft
function (sPGF) refers to the loss of donor cells after the initial
engraftment. Whereas primary PGF is characterized by no initial
donor cell engraftment, it is nearly impossible to recover
autologous hematopoiesis; thus, patients with this condition
are likely to die of infection and/or other complications and
urgently require a secondary transplant.

The cumulative incidence of PGF after allogeneic HSCT (allo-
HSCT) varies between 5% and 27% (3–5). Differences in
underlying diseases and management strategies affect the
incidence of PGF. At Peking University Institute of
Hemato logy , the inc idence of pr imary PGF af ter
unmanipulated haploidentical HSCT (haplo-HSCT) was found
to be approximately 5.6% (6, 7), and sPGF developed in 5.7% of
patients after allo-HSCT (4). In a prospective study,
approximately 15% of patients with severe aplastic anemia
(AA) who underwent haplo-SCT developed primary PGF (8).
Primary PGF shows a very poor prognosis, with a 1-year overall
survival (OS) rate of 25.0% (5) and 2-year OS of 6% in patients
without hematopoietic recovery (9). Because of persistent
leukocytopenia and thrombocytopenia, PGF is often
accompanied by complications such as infection and bleeding,
thus increasing the mortality rate. As PGF is a life-threatening
complication, new prevention and treatment strategies are
urgently needed.

The occurrence of PGF is related to numerous factors such as
primary disease, quality and quantity of hematopoietic stem cells
(HSCs), damaged bone marrow (BM) microenvironment,
donor-specific anti-human leukocyte antigen (HLA) antibodies
(DSA), and viral infection. Based on this information, we
hypothesized that the seed, soil, and insect theories of AA
pathogenesis can be applied to PGF (Figure 1). Based on this
theory, we review current research progress on the pathogenesis,
prevention, and treatment of PGF.
THE SEED

Similar to seeds, HSCs have the potential of self-renewal and
multi-differentiation. Sufficient and functional stem cells have
historically been considered key to the success of HSCT. Defects
in HSCs, including changes in their quality and quantity, can
lead to PGF or GF (Figure 1). The donor’s choice directly
determines the seed source. Young people are considered
better donors than elders, men are superior to women as
donors, and matched sibling donors (MSDs) should be
prioritized over haploidentical donors (HIDs). However, an
older donor/recipient age, female-to-male transplants, and
donor-recipient ABO major-mismatch transplants are major
risk factors for transplant-related mortality (10). For patients >
50 years old and with high-risk leukemia, HID-HSCT led to a
better prognosis compared to MSD-HSCT, with a reduced
relapse rate and/or improved leukemia-free survival and OS
(11, 12). Interestingly, HID-HSCT may have a stronger graft-
versus-leukemia effect than that of MSD-HSCT (12, 13). Thus, in
2021, the Chinese Society of Hematology recommendations
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noted that “HIDs are the preferred donor choice over MSDs
for patients with high-risk leukemia or elderly patients with
young offspring donors in experienced centers” (14). The
peripheral blood (PB) and BM are the predominant sources of
stem cells. There is evidence that in haplo-HSCT with post-
transplantation cyclophosphamide using a PB graft, compared
with a BM graft, increased the risk of acute GVHD (aGVHD),
whereas the 2-year OS, chronic GVHD, relapse, or non-relapse
mortality (NRM) were comparable (15, 16). However, another
study showed that patients receiving BM had significantly higher
2-year relapse rates compared to those in the PB cohort (36% vs.
16%) (17). Before 2019, mixed grafts of BM + PB were preferred
over PB alone in HID-HSCT, because they achieved longer
disease-free survival (18). A recent study reported that mixed
grafts or PB alone did not influence clinical outcomes (19).
Except for haploidentical grafts, rapidly accessible cord blood is a
suitable alternative for pediatric patients without HLA-matched
donors. Interestingly, the lower incidence of GVHD was not
correlated with an increase in long-term survival. For example, in
T-cell depleted PB stem cell transplantation, because of the
delayed recovery of immune function, the incidence and
severity of GVHD are low but are accompanied by an
increased risk of infection, relapse, PGF, and transplantation-
related mortality, particularly following transplantation with
purified CD34+ cells (20, 21). As a result, different transplant
centers have attempted to use transplant protocols without T-cell
depleted conditions, suggesting that unmanipulated transplants
are an alternative strategy under haploidentical settings (22).
Additionally, a study at Peking University showed that haplo-
HSCT without T-cell depleted transplantation has a comparable
prognosis as MSD-HSCT (23, 24). Currently, the impact of
different graft sources on the incidence of PGF is not
well-understood.

A high CD34+ cell count is favorable for rapid hematopoietic
recovery (8). Cell thresholds were devised to guide whether to
carry out further apheresis collection. Currently, most centers
use 2 × 106/kg CD34+ cells as the minimum threshold. CD34+

cells ≥ 5 × 106/kg are currently recommended as the optimal dose
by the EBMT. Granulocyte colony-stimulating factor, alone or in
combination with chemotherapy, is a standard mobilization
regimen for collecting larger amounts of CD34+ cells.
Plerixafor, a recently approved mobilization agent, is a small-
molecule antagonist of CXC chemokine receptor 4 that can
effectively block the binding between this chemokine and
stromal cell-derived factor-1a, and then release HSCs from the
BM to the PB. The combination of granulocyte colony-
stimulating factor and plerixafor significantly increased the
yield of CD34+ cells without causing adverse reactions (25).
CD34 molecules were first identified on the surfaces of human
hematopoietic stem and progenitor cells (HSPCs). CD34 is also
an established marker of other non-hematopoietic cells,
including vascular endothelial progenitor cells (EPCs),
mesenchymal stem cells (MSCs), and embryonic fibroblasts
(26). Thus, the collected “CD34+ cells” should not be confused
with “CD34+ HSPCs.” Introducing new HSPCs markers, such as
the signaling lymphocytic activation molecule family (including
June 2022 | Volume 13 | Article 911174
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FIGURE 1 | Pathophysiology of PGF based on seed-soil-insect theory. Non-hematopoietic cells (such as MSC, EC) and HSC-derived cells (such as T-cell,
macrophages) participate as part of the bone marrow niche, which not only regulate the function of HSC, but also involved in the pathogenesis of PGF after
transplantation. Abnormal increased ROS is also contributing to the damage of both HSCs and BM niche of PGF patients. We compare CD34+ cells to seeds; bone
marrow microenvironment to soil; and various factors associated with immune imbalance to insects, such as GVHD, DSA, CMVR and IO. Seeds, insects and soil
interact to form a complex network that leads to PGF. Sufficient number of seeds with good quality and healthy soil are key to successful transplantation. Invading
insects damage seeds and soil through knock-on effects, resulting in the occurrence of PGF. CMVR, cytomegalovirus reactivation; DSA, donor-specific anti-human
leukocyte antigen antibody; EC, endothelial cell; GVHD, graft-versus-host disease; HSC, hematopoietic stem cell; IO, iron overload; MSC, mesenchymal stem cell;
MF, macrophage; PGF, poor graft function; ROS, reactive oxygen species.
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CD150, CD48, and CD244) (27), may enrich the purer stem cell
population. In a nested case-control study of 830 patients, CD34+

cell dose < 5 × 106/kg was an independent risk factor for primary
PGF (5). A low CD34+ cell dose (<median, 2.64 × 106/kg) was
also an independent risk factor for sPGF (4). In recent decades,
the use of CD34+-selected stem cells boosted without
preconditioning has significantly improved the prognosis of
patients with PGF. In a small-scale study (28), most patients
with PGF who received selected CD34+ PB stem cells from
matched unrelated or mismatched related donors achieved
rapid engraftment; more importantly, the procedure was safe,
with a low risk of de novo grade I–III aGVHD (6%), which was
resolved completely. In a long-term follow-up study, CD34+-
selected infusion without conditioning was feasible in recipients
with full donor chimerism and in those with mixed chimerism,
whose recovery was similar; patients showing complete recovery
had a longer 5-year OS than those with partial recovery (74.4% vs
16.7%) (29). Active infection was considered as the strongest
predictor of the efficacy of CD34+-selective infusion (29),
possibly because of the impaired immune microenvironment
caused by inflammation. Cryopreserved products are viable
alternatives when additional fresh stem cells cannot be
collected. Although the median selection of CD34+ counts per
kilogram of recipient weight was relatively low (1 × 106/kg), this
method achieved promising results; five of the eight
cryopreserved product recipients (63%) exhibited a complete
hematologic response (25).
Frontiers in Immunology | www.frontiersin.org 3
It is essential to maintain high-quality stem cells at each step
of the transplantation process. An increasing number of studies
have been performed to optimize the cell handling, freezing, and
thawing steps to ensure stem cell quality (30). Although methods
for improving the viability and recovery rate of thawed stem cells
are continuously being developed, the procedures still have a
negative effect on the product quality and potency (31). Colony
assays are the gold standard for stem cell proliferation and
differentiation potency in vitro, which are used as an additional
quality criterion. Watts et al. (32) demonstrated that if the
granulocyte-macrophage colony-forming cell dose exceeded 2
× 105/kg after 14 days in culture, total CD34+ cells between 1 and
1.9 × 106/kg were also acceptable. When colony assays cannot be
performed, cell doses below the threshold should be declared as
inadequate, and remobilization and recollection are necessary.
However, few centers routinely perform clonal analysis, as these
tests require technical support, laboratory standardization, and
higher expenses. A rapid method was recently developed to
assess the cord blood unit potency for frozen cord blood based
on aldehyde dehydrogenase (33). Further studies are necessary to
confirm whether this method can be used as an alternative to
clonal analysis. In addition, the detection of blood disease-related
mutations in donor stem cells prior to transplantation may be of
some significance in ensuring the quality of stem cells.

Accumulating evidence has suggested that excess levels of
oxygen species (ROS) are responsible for defective hematopoiesis
of HSC in patients with PGF, which may be related to
June 2022 | Volume 13 | Article 911174
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disruptions in the stem cell cycle caused by elevated ROS. After
transplantation, transiently elevated oxygen tension is beneficial
for the rapid proliferation of engrafted HSCs, because it
promotes the regeneration of hematopoiesis during the
“engraftment window” in the BM niche (34). The BM
microenvironment gradually returns to conditions of hypoxic
homeostasis with increased oxygen consumption after
hematopoietic reconstitution. In vivo imaging showed that
ROS mediated the initial homing and proliferation of HSCs in
lethally irradiated mice, but is not indispensable for long-term
hematopoietic reconstitution after transplantation (35). More
importantly, Cheng et al. (36, 37) found that in transplanted
human HSCs, radiation-induced bystander effects increased ROS
levels, contributing to HSC damage and a decrease in
transplantation efficiency. It has been hypothesized that
forkhead homeobox type O transcription factors are key
mediators of ROS regulation in HSCs, contributing to stem cell
maintenance and the DNA damage repair response (38). As a
negative regulator of forkhead homeobox type O transcription
factors, the phosphoinositide 3-kinase (PI3K)/AKT pathway is
suppressed in HSCs but activated in hematopoietic progenitors.
Activated PI3K/AKT signaling induced HSCs re-entry into the
cell cycle, and eventually exhaust HSCs through deletion of
phosphatase and tensin homologs (39). In BM, elevated ROS
levels induce DNA strand breaks and apoptosis, contributing to
the exhaustion of CD34+ cells through the p53-p21 pathway in
patients with PGF following allo-HSCT, even if the CD34+ cells
are functionally normal before transplantation (40). Thus,
activated p53 can induce HSC depletion. However, Hainaut
et al. (41) demonstrated that p53 can also function against
ROS-induced DNA damage through its intrinsic redox
dependence. Therefore, p53 as a regulator of ROS, playing a
dual role in stem cell maintenance.
THE SOIL

The BM microenvironment, as the niche for HSC survival, consists
of blood vessels, nerves, and a variety of cells that form a complex
and precise network to regulate the functional characteristics of
HSCs; thus, we compared this microenvironment to soil. In recent
years, the mechanisms of various cell and molecular interactions in
the BM microenvironment involved in the pathogenesis of PGF
have been determined. Huang et al. (42) observed that patients in
the sPGF group had marked marrow hypoplasia, and the
proportion of CD34+ cells, EPCs, CD146+ perivascular cells, and
endosteal cells were significantly lower than those in the good graft
function and healthy control groups. Three years later, they
demonstrated that the BM microenvironment was equally
damaged in both early and late PGF (43). Recently, a series of
translational studies demonstrated that defective autophagy
regulated by Beclin-1 (44) or abnormal glycolysis induced by
PFKFB3 (45) results in damage to BM endothelial cells (ECs),
particularly their decreased hematopoiesis-supporting ability, which
is involved in the pathogenesis of PGF post-HSCT. Thus, some
transplant events, which may trigger an abnormal increase in ROS
Frontiers in Immunology | www.frontiersin.org 4
in the BMmicroenvironment, may be essential factors contributing
to damage to the BM niche in patients with PGF. As described
above, a dysfunctional BM microenvironment may contribute to
PGF pathogenesis (Figure 1).

Endothelial Cells
ECs play a crucial role in regulating hematopoiesis by secreting stem
cell factor and chemokine ligand 12 in the BM microenvironment
(46). An unexpected finding regarding the origin of BM ECs was
reported by Plein et al. (47) during early embryogenesis, ECs arise
from erythro-myeloid progenitors. Thus, HSCs may provide
survival and proliferation signals for EPCs. Accumulating
evidence has shown that decreased and dysfunctional BM ECs
post-HSCT contribute to the development of PGF (43, 48). Huang
et al. (49) provided further evidence that pre-HSCT, BM ECs
dysfunction was responsible for the pathogenesis of PGF after
haplo-HSCT. BM ECs <0.1% pre-HSCT was an independent risk
factor for PGF. Defective hematopoiesis caused by damaged BM
ECs is positively correlated with ROS levels (49). Radiation therapy
is commonly used in anticancer treatment and myeloablative
conditioning regimens before HSCT. Irradiation also severely
damages the BM vascular system, particularly sinusoidal ECs,
leading to elevated ROS in the BM (35). Notably, elevated ROS
levels are observed in ECs and recovering bones in the non-
hematopoietic state, even at 2 weeks after sub-lethal irradiation (7
Gy) (50). Huang et al. (48) also showed that the intracellular ROS
levels of BM EPCs were elevated after transplantation, and these
cells had decreased proliferation and migration capacities.
Vasculature reconstruction-mediated hematopoietic engraftment
after radiotherapy depends on the expression of vascular cell
adhesion molecule 1 on ECs (35), vascular endothelial growth
factor receptor 2 signaling in apelin+ ECs (51), and vascular
endothelial growth factor A provided by transplanted HSPCs (52).

Allogeneic EPCs infusions induced hematopoietic and
immune reconstitution in mice, accelerated BM microvascular
recovery, and ameliorated GVHD (53, 54). Few studies have
reported the infusion of EPCs in humans for clinical treatment,
likely because of the limited number of circulating EPCs. In
contrast, atorvastatin, a lipid-lowering drug widely used in
clinics, was reported to quantitatively improve the impaired
function of BM EPCs in vivo by downregulating the p38
MAPK pathway in subjects with PGF (48). The antioxidant N-
acetyl-l-cysteine can reduce ROS levels both in vitro and in vivo
(49, 55). Prophylactic intervention with oral N-acetyl-l-cysteine
not only prevents the occurrence of PGF post-HSCT, but also
promotes hematopoietic reconstitution effectively by repairing
impaired BM ECs in patients with PGF (49). These results
indicate that it is valuable to use antioxidant drugs to improve
PGF caused by elevated ROS levels.

Mesenchymal Stem Cells
MSCs are a type of BM stromal cells with multi-directional
differentiation potential, immunoregulatory and hematopoietic
support capabilities (56). MSCs show potential for use in treating
PGF after HSCT. The mechanisms of MSCs in the pathogenesis
of PGF are only beginning to be understood. Compared to in
patients with good graft function, BM MSCs from patients with
June 2022 | Volume 13 | Article 911174
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PGF exhibited increased intracellular ROS, higher levels of
apoptosis and senescence, and a significantly reduced
hematopoiesis-supporting ability in vitro (57). Animal
experiments and early-phase clinical trials showed that co-
infusion of MSCs and HSCs promoted HSC engraftment and
improved PGF (58–60). Nevertheless, whether MSCs with
immune-suppressive properties increase the incidence of
infection and relapse remains controversial. As early as 2007, a
clinical study demonstrated that all patients who underwent co-
transplantation of ex vivo expanded MSC with HLA-disparate
CD34+ cells showed continuous hematopoietic engraftment,
without additional infection compared to in the control group
(61). Recently, a systematic review and meta-analysis of children
and young individuals showed that MSC co-infusion improved
the absolute neutrophil count and PLT engraftment, and greatly
reduced the risk of chronic GVHD but had a minimal impact on
aGVHD and NRM (59). Similarly, in a systematic review and
meta-analysis of haplo-HSCT for severe AA, there was no
obvious difference in the 2-year OS, incidence of GVHD and
cytomegalovirus (CMV) infection between the MSC co-
transplantation group and group not transplanted with MSCs
(62). Although the effect of MSCs on PGF was not discussed in
the article, co-administration of MSCs with HSCs may not be
suitable for patients with severe AA undergoing haplo-HSCT.
When infusion of MSCs was performed after transplantation, 17
of 20 patients with primary or secondary PGF experienced
hematopoietic recovery when the MSCs were from a third-
party donor (60). Moreover, some patients also developed
varying degrees of CMV or Epstein-Barr virus infection, acute
or chronic GVHD of varying degrees, and even relapse or non-
relapse death (60). As summarized above, MSC infusion either
before or after transplantation is an effective option for
improving PGF, possibly because of their hematopoietic
support capabilities. Possible risk factors such as long-term
treatment with immunoinhibitors and HLA mismatch may
affect the susceptibility to infection. Further studies are needed
to determine whether MSCs increase the incidence of infection.

The Insects
Immune-mediated destruction of hematopoiesis is well-established
in the pathogenesis of AA, most likely in the form of AA, an
immune imbalance in abnormal hematopoiesis post-HSCT may be
responsible for PGF. We compare various factors potentially
associated with immune dysregulation post-transplantation, such
as GVHD and CMV infection, to insects. GVHD is a fatal
complication of allo-HSCT and occurs when donor
immunoreactive cells recognize and attack recipient tissue. Grade
III–IV GVHD is significantly associated with PGF development (9).
Various factors that lead to GVHD, such as ongoing immune
stimulation, may prevent hematopoietic reconstitution and exhaust
hematopoietic precursor cells, eventually resulting in PGF
development after transplantation.

Both CD4+ and CD8+ T cells are dramatically polarized
towards the type 1 immune response in patients with PGF
after allo-HSCT (63, 64). Thus, dysregulated T cell responses
in the BM immune microenvironment may be involved in the
pathogenesis of PGF after HSCT. Luo et al. (65) found that M2
Frontiers in Immunology | www.frontiersin.org 5
macrophages (MFs) supported and M1 MФ suppressed HSC
self-renewal and expansion in vitro. MFs derived from patients
with PGF exhibited significantly increased M1 and decreased M2
relative to those from patients with good graft function and
healthy donors (66). Furthermore, the function of MFs was
impaired, characterized by reduced hematopoiesis-supporting
ability, resulting in BM CD34+ cell dysfunction through p38
MAPK pathway upregulation, and aggravated pancytopenia in
patients with PGF (66). Moreover, Zhao et al. (67) confirmed the
opposing effects of M1 and M2 MФs on megakaryocytes: M1
MФs inhibit whereas M2 MФs promote MK maturation and
platelet formation. MФs in patients with prolonged isolated
thrombocytopenia also polarized towards M1, and unbalanced
MFs polarization impaired the megakaryopoiesis-supporting
ability of BM MФs, which was rescued by activation of the
PI3K-AKT pathway. Further studies are needed to determine
how these dysfunctional immune cells interact with other cellular
elements or directly affect hematopoiesis, which may provide
insight into the underlying molecular mechanisms and potential
therapeutic strategies for patients with PGF after HSCT.

Thrombocytopenia caused by ongoing immune attacks limits
the recovery of PGF. The thrombopoietin (TPO) receptor
agonist (TPO-RA), romiplostim and eltrombopag showed
promising results for treating immune thrombocytopenia
(ITP). Additionally, the combination of eltrombopag with
standard immunosuppressive therapy (horse antithymocyte
globulin plus cyclosporine) shows great potential for treating
severe AA (68), because it improves the rate, rapidity, and
strength of hematologic responses in severe AA without
causing toxic effects. Moreover, eltrombopag has been
successfully used to treat PFG after allo-HSCT (69).
Eltrombopag has changed the paradigm of AA treatment,
however, some patients do not respond to this treatment.
Nakao et al. (70) reported that high-dose romiplostim (20 mg/
kg) was highly effective in patients with AA refractory to
eltrombopag. Avatrombopag is a second-generation TPO-RA
approved for second-line treatment of primary chronic ITP. A
multicenter study performed in the United States confirmed that:
patients with ITP who previously used other TPO-RAs
(eltrombopag or romiplostim) and responded poorly exhibited
a high response rate to avatrombopag (71). Thus, TPO-RA may
be another option for treating PGF.

Donor-Specific Anti-HLA Antibodies
Antibody-mediated graft rejection is considered to cause GF.
Various preformed antibodies are detectable in patients after
allo-HSCT (72). DSA refers to specific antibodies corresponding
to a mismatched antigen produced in patients after organ/tissue
transplantation. Circulating DSA can lead to hyperacute rejection
and thus is an important factor affecting HSC engraftment and is
related to PGF, particularly primary PGF (7, 73). In a retrospective
analysis of 394 patients who underwent haplo-HSCT, DSA with
median fluorescence intensity (MFI) ≥1000 was significantly
correlated with prolonged isolated thrombocytopenia (hazard
ratio 3.262; P = 0.009) (74). DSA with MFI ≥ 1000 was also
considered associated with the cumulative incidence of neutrophil
engraftment for 60 days after single-unit cord blood
June 2022 | Volume 13 | Article 911174
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transplantation (P = 0.03) (75). Ciurea et al. (76) found that
patients with high DSA levels (> 5000 MFI) and complement-
binding DSA antibodies (C1q-positive) exhibited graft rejection at
the time of transplantation, whereas patients whose C1q became
negative after desensitization therapy were successfully engrafted
by donor cells. In the absence of effective salvage approaches, the
mortality rate of patients with GF is close to 100%, particularly
after haplo-HSCT. A second early transplant can often successfully
salvage GF (77, 78). The absence of DSA was associated with lower
NRM and improved OS (79). These studies support the consensus
guidelines from the EBMT, suggesting that DSA and C1q levels
must be monitored to further assess the risk of allograft in patients
with DSAs ≥ 1,000 MFI (80).

Reducing DSA levels is essential for preventing primary PGF.
Plasma exchange, rituximab, PLT transfusions, bortezomib, and
immunoglobulin are often used clinically to decrease DSA levels.
The rate of granulocyte reconstruction in the DSA-positive group
was lower than that in the DSA-negative group after desensitization
therapy (81–83). During HLA-mismatched HSCT, a single dose of
rituximab was effective for desensitization and prevented the onset
of primary PGF in DSA-positive patients, whereas bortezomib and
immunoglobulin alone showed a limited ability to rapidly decrease
DSA levels (81). Patients were desensitized to a DSA level < 2000
MFI after combination therapy with rituximab and/or
plasmapheresis (83). However, DSA may rapidly rebound at any
time. In a case report by Hassan et al. (84), during hematopoietic
progenitor cell transplantation, DSA unexpectedly rebounded and
rapidly increased during desensitization with repeated plasma
exchange and immunoglobulin, finally leading to primary PGF.
However, the cause of this phenomenon remains unclear. As an
IgG-degrading enzyme of Streptococcus pyogenes, imlifidase can
inhibit complement-and FcgR-mediated effector functions by
cleaving donor-specific IgG into Fc and F (ab’) 2 fragments (85).
Endoglycosidase of S. pyogenes (EndoS) reduces the affinity of IgG
for FcgRs by specifically hydrolyzing glycans of all subclasses of
human IgG (86). Both imlifidase and EndoS partially block DSA’s
function. To further reduce the titer and inhibit the effector
functions of residual DSA, Anderson et al. (87) demonstrated that
a combination of imlifidase and EndoS can be used to inactivate
DSA and inhibit DSA-mediated killing of donor BM cells in
allogeneic BM transplantation. Further studies are needed to
confirm whether enzyme-mediated DSA blocking prevents
antibody rebound.

Cytomegalovirus Infection
CMV and Epstein-Barr virus reactivation are independent risk
factors for sPGF within the first 100 days of allo-HSCT (4, 88).
CMV and Epstein-Barr virus co-reactivation not only leads to a
shorter 1-year OS and leukemia-free survival, but also results in
poor regulatory T cell reconstitution at day 30 after allo-HSCT
(89). CMV reactivation (CMVR) after HSCT can lead to a variety
of common life-threatening infectious complications such as
pneumonia, retinitis, or sPGF. The prognosis of CMVR and
immune reconstitution of CMV-specific T-cells are closely
related (90, 91). In the first year post-transplantation, clonal
expansion of CMV-specific effector memory T-cells drives the
Frontiers in Immunology | www.frontiersin.org 6
reconstitution of CD4+ and CD8+ T-cells. Furthermore, the
heterogeneity and diversity of the remaining T-cell repertoire
are impaired in patients who experience reactivation (92, 93).

Previous studies suggested that CMVR after transplantation is
strongly associated with aGVHD. Recent evidence demonstrated
that mismatches in major or minor histocompatibility antigens
promote CMV disease by inducing non-cognate transplantation
tolerance, which inhibits the efficient reconstitution of antiviral
CD8+ T cells, eventually resulting in cytopathogenic tissue
infections (90). CMVR was associated with an increased risk of
NRM with or without GVHD; however, the interaction between
GVHD and CMVR was not significant (P = 0.326) (94).
Therefore, aGVHD does not appear to be necessary for
CMVR. However, the results of different studies varied based
on the baseline characteristics. Single-center studies reported
that CMVR after allo-HSCT is positively correlated with a
decreased risk of relapse in acute myelocytic leukemia but not
in other hematological malignancies. This benefit is of little
significance considering the increased NMR and overall
mortality (95). Another study of the Center for International
Blood and Marrow Transplant Research database confirmed
CMVR as a risk factor for poor prognosis, but showed no
benefit of CMVR on the relapse of hematologic disease (96).
CMV peak titers, disease stage, and T-cell depletion with
antithymocyte globulin, which are associated with immunity,
may modulate the impact of CMVR on leukemia relapse (97, 98).

In the era of PCR-based monitoring, universal prophylaxis or
preemptive therapy strategy is typically adopted to prevent and treat
CMV infections after HSCT (99). In the 1980s and 1990s, high-dose
acyclovir and valacyclovir showed limited efficacy in preventing
CMV disease (100). Some agents have been used for decades to
control CMV infection and lead to significant toxicity. For example,
ganciclovir (101, 102) is hemotoxic and frequently leads to
secondary bacterial and fungal infections. Additionally, foscarnet
(103) and cidofovir (102) exhibit severe renal toxicity. The
introduction of letermovir (LMV) is an important advancement.
As a CMV DNA terminase complex inhibitor, LMV can be
administered orally and intravenously and has no myelotoxicity
or nephrotoxicity (102, 104). Co-administration of cyclosporine
increased the bioavailability of LMV from 35% to 85%; thus, lower
doses are required in patients taking cyclosporine to prevent
GVHD. Increasing evidence has shown that prophylactic LMV
treatment effectively prevents the development of refractory or
resistant CMV infections and ultimately decreases transplant-
related mortality (105–107). In addition, Zamora et al. (108)
provided initial evidence that compared with ganciclovir
preemption, LMV prophylaxis-associated CMV antigen exposure
reduction delays CMV-specific T-cell reconstitution after HSCT.

Virological monitoring of CMV in the blood plasma is routinely
performed using quantitative PCR, but there is currently no
consensus on the plasma viral load threshold when initiating
CMV preemptive treatment. Real-time CMV-specific cell-
mediated immunity responses were successfully applied to predict
clinical CMV events and guide the early discontinuation of
antivirals (109). Future strategies may involve vaccination
dependent on functional reconstitution of CD4+ T cells and B
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cells (91, 110), other novel antiviral agents [maribavir (111),
CMX001 (112)], antibodies that block cell-to-cell spread and kill
latently infected cells (113, 114), and adoptive cell therapy not
limited by GVHD and steroids (115).

Iron Overload
Iron is a raw material for hematopoiesis. Long-term blood
transfusion and inflammation are the most common factors
leading to iron overload (IO) in patients with hematological
malignancies. Studies have shown mixed results regarding the
impact of IO pre-transplant on PGF and prognosis, possibly
because of differences in marker selection and baseline data of the
study population. Serum ferritin (SF) is a biomarker of IO. In two
prospective studies by Zhao et al. (5) and Malki et al. (116), SF >
2000 ng/mL before HSCT was identified as an independent risk
factor for primary PGF and a strong poor prognostic factor. In a
subsequent prospective multicenter study, patients with SF > 1500
ng/mL before the start of conditioning with allo-HSCT had an
inferior OS (hazard ratio, 2.5, CI = 1.5-4.1, P = 0.0005) and
progression-free survival (hazard ratio, 2.4, CI = 1.6-3.8, P <
0.0001) (117). In contrast, in a prospective cohort study using
liver magnetic resonance imaging to quantify the liver iron content,
there was no significant correlation between IO (liver iron content
>1.8 mg/g) before allo-HSCT and the cumulative incidence of
multiple complications, OS, or NRM after HSCT (118).
Interestingly, using SF or the liver iron content as a marker of IO
revealed that IO was not related to the occurrence of acute or
chronic GVHD (117, 118). Hepcidin expressed by the liver, it
modulates iron absorption and release and is overexpressed when
IO decreases these processes, and the erythropoiesis demands can
eventually not be met (119). The rates of OS and PLT engraftment
were significantly lower in the high hepcidin group than in the low
hepcidin group (120). Hepcidin may be an alternative marker of IO
to predict delayed PLT engraftment after allo-HSCT; however, there
is currently no accepted validated method for evaluating hepcidin.
Growth differentiation factor 15 belongs to the transforming growth
factor-beta superfamily and has been proposed as an erythroid
regulator involved in hepcidin suppression (121). Erythroferrone is
a new erythroid regulator of hepcidin produced by erythroid
precursors in response to stress erythropoiesis via the Jak2/Stat5
signaling pathway (122).

Zhao et al. (123) reported that IO damaged the erythroid
colony-forming capacity of normal HSPCs and reduced the
frequency of abnormal HSPCs in MDS mice. Impaired
erythroid HSPCs are, at least in part, related to growth
differentiation factor 15-induced ROS (123). In addition, IO
contributes to MSC damage through the AMPK/MFF/Drp1
pathway, which displays increased cell apoptosis, decreased cell
viability, and extensive autophagy, all of which are ROS-
dependent (124). Excess iron levels can compromise BM
stromal cells, inhibit erythropoietin and thrombopoietin levels,
and disrupt hematopoietic function by increasing oxidative stress
(125). Thus, the holistic situation during treatment and the link
between IO and ROS should be considered. Currently,
deferiprone and deferasirox are the most commonly used iron-
chelating agents for removing IO in the clinic (126).
Eltrombopag is also a powerful iron chelator with intracellular
Frontiers in Immunology | www.frontiersin.org 7
iron mobilization characteristics that can reduce iron-induced
ROS and stimulate stem cell hematopoiesis independently of the
TPO receptor (127, 128). Tang et al. (69) preliminarily verified
the feasibility of treating sPGF post-allo-HSCT with eltrombopag
in a retrospective analysis. Co-administration of eltrombopag
with clinically available chelators, such as deferasirox, may be an
effective means for indirect PGF treatment (127). Additionally,
upregulation of ferritin (129) and transferrin infusion (130)
improve BM hematopoietic function induced by IO in mice;
further studies are required to confirm its clinical feasibility.

CONCLUSION

The pathogenesis of PGF involves a complex, interlocking network.
Future approaches to address PGF should focus on optimizing
seeds, improving soil, and killing insects, emphasizing the
importance of early detection and treatment to avoid PGF. With
regard to seeds, a certain scale of research has focused on improving
the quantity; and quality inspection before infusion should be
performed to prevent the occurrence of PGF. Emerging research
attempts to describe the relationship between the BM
microenvironment and PGF, and improve the understanding of
how various stromal cells, related factors, and abnormally activated
transduction pathways interact to promote the initiation and
development of PGF, these may lead to the development of
prevention and treatment strategies. From a superficial
perspective, different “insects” have different impacts on PGF
through different mechanisms. These insects are products of
immunodeficiencies. Therefore, new drugs that kill insects and
focus on targeted immune modulation are needed. The quality of
donor CD34+ cells should be routinely evaluated prior to
transplantation. If possible, to predict the incidence of PGF, the
content and functional status of donor cells and level of oxidative
stress in the recipient’s BMmicroenvironment should be detected to
determine whether to continue transplantation or administer
corresponding treatment in advance. These steps may be feasible
preventive measures for PGF and require further validation.
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