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Background: Cuproptosis is a newly discovered unique non-apoptotic

programmed cell death distinguished from known death mechanisms like

ferroptosis, pyroptosis, and necroptosis. However, the prognostic value of

cuproptosis and the correlation between cuproptosis and the tumor

microenvironment (TME) in lower-grade gliomas (LGGs) remain unknown.

Methods: In this study, we systematically investigated the genetic and

transcriptional variation, prognostic value, and expression patterns of

cuproptosis-related genes (CRGs). The CRG score was applied to quantify

the cuproptosis subtypes. We then evaluated their values in the TME,

prognostic prediction, and therapeutic responses in LGG. Lastly, we collected

five paired LGG andmatched normal adjacent tissue samples from Sun Yat-sen

University Cancer Center (SYSUCC) to verify the expression of signature genes

by quantitative real-time PCR (qRT-PCR) and Western blotting (WB).

Results: Two distinct cuproptosis-related clusters were identified using

consensus unsupervised clustering analysis. The correlation between

multilayer CRG alterations with clinical characteristics, prognosis, and TME

cell infiltration were observed. Then, a well-performed cuproptosis-related risk

model (CRG score) was developed to predict LGG patients’ prognosis, which

was evaluated and validated in two external cohorts. We classified patients into

high- and low-risk groups according to the CRG score and found that patients

in the low-risk group showed significantly higher survival possibilities than

those in the high-risk group (P<0.001). A high CRG score implies higher TME

scores, more significant TME cell infiltration, and increased mutation burden.

Meanwhile, the CRG score was significantly correlated with the cancer stem

cell index, chemoradiotherapy sensitivity–related genes and immune
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checkpoint genes, and chemotherapeutic sensitivity, indicating the association

with CRGs and treatment responses. Univariate andmultivariate Cox regression

analyses revealed that the CRG score was an independent prognostic predictor

for LGG patients. Subsequently, a highly accurate predictive model was

established for facilitating the clinical application of the CRG score, showing

good predictive ability and calibration. Additionally, crucial CRGs were further

validated by qRT-PCR and WB.

Conclusion: Collectively, we demonstrated a comprehensive overview of CRG

profiles in LGG and established a novel risk model for LGG patients’ therapy

status and prognosis. Our findings highlight the potential clinical implications of

CRGs, suggesting that cuproptosis may be the potential therapeutic target for

patients with LGG.
KEYWORDS

cuproptosis, lower-grade gliomas, molecular subtypes, tumor microenvironment,
immune checkpoint inhibitors, chemoradiotherapy
Introduction

Lower-grade gliomas (LGGs; addressed as WHO grades II

and III here), consisting of diffuse low-grade gliomas and

intermediate-grade gliomas, are usually slow-growing,

infiltrative, and intermittently progressive, which accounts for

approximately 22% of all brain tumors in adults (1). Most LGGs

can be further divided according to their clinical histopathologic

features and classic molecular markers, including isocitrate

dehydrogenase (IDH) mutation and the 1p/19q codeletion

status (2). With tremendous progress that has been made in

therapy like surgical resection and chemotherapy, LGGs often

have better prognoses, while high-grade gliomas (HGG) have

worse prognoses due to their malignant aggressivity (3).

However, although 5-year overall survival (OS) for patients

with LGG is 85%, progression-free survival (PFS) for those

with unresectable/residual disease requiring treatment is

approximately 40%, making the prognosis grim (4).

Meanwhile, it was indicated that progression of LGGs occurs

in almost 70% of patients within 10 years, thus worsening the

prognosis (5). Hence, there is an urgent need to characterize

specific and practical molecular signatures for the accurate

diagnosis, individualized treatment, and assessment of the

prognosis of LGG.

Cuproptosis, first proposed by Todd R. Golub’s lab in 2022,

is a unique non-apoptotic programmed cell death distinguished

from known death mechanisms like ferroptosis, pyroptosis, and

necroptosis (6). It is copper-triggered and mediated by protein

lipoylation mainly in mitochondria. Mechanistically,

cuproptosis occurs through the direct binding of copper to the
02
lipoylated components of the tricarboxylic acid (TCA) cycle.

When respiring, the lipoylated TCA enzymes [particularly the

pyruvate dehydrogenase (PDH) complex] increase and result in

an abnormal aggregation of lipoacylated proteins and the loss of

Fe-S cluster–containing proteins, which leads to inevitably acute

proteotoxic stress and ultimately cell death (6). The research

provided a further in-depth look at the role of copper and

mitochondria homeostasis, demonstrating a potentially critical

role of cuproptosis in cell biology (7).

Numerous recent studies have consistently illuminated the

functions of copper homeostasis and mitochondria in many

diseases, including heart failure, neurodegenerative diseases,

metabolic diseases, and genetic disorders (8). Copper serves as a

catalytic and structural cofactor for enzymes that regulate

mitochondrial respiration, antioxidant defense, redox signaling,

kinase signaling, autophagy, and other processes (9–11). It can

also function as a signal to enable responses to the enhanced host

defenses resulting from immune activation (12). It has been an

excellent candidate for cancer treatment since the 1960s. Emerging

studies have shown that an elevated level of copper is directly

associated with cancer progression. Brady et al. demonstrated that

copper is critical in driving lung adenocarcinoma via regulating the

autophagic kinasesULK1/2 (13).Mittal and his colleagues found that

the depletion of mitochondrial copper significantly suppresses triple-

negative breast cancer in mice (14). The inhibition of copper

trafficking can attenuate cancer cell proliferation (15). Meanwhile,

mitochondria are critical in various cellular functions such as cellular

energy metabolism, ion homeostasis regulation, redox signaling, and

cell death, and its dysfunction has already been known in glioma

initiation, progression, and drug resistance (16–18). Different levels
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of mitochondrial aberrations might contribute to disparities in the

aggressiveness of patients with glioma. Yang et al. demonstrated that

mitochondrial PKM2 plays a vital role in the ROS adaptation of

cancer cells, which implicates the HSP90-PKM2-Bcl2 axis as a

potential target for therapeutic intervention in gliomas (19). The

suppression of mitochondrial ROS can also drive the glioma

therapeutic resistance due to the dysregulation of glioma stem-like

cells (20), while the activation of the mitochondrial-dependent

apoptotic pathway potentiates temozolomide sensitivity and thus

improves patients’ outcomes (21). These discoveries shed light on

the tumor copper and mitochondria homeostasis related to

cuproptotic plasticity and possibly explain whether and how

cuproptosis is associated with the persistence, differentiation, and

expansion of cancer cells. It is a conceivable complex interplay that

cuproptosis would be a newmolecular signature and target for future

investigations. The regulations of the cancer cells’ susceptibilities to

cuproptosis should be a fruitful area in cancer research. However, to

our best knowledge, it remains to be elucidated whether cuproptosis

plays a critical role in LGG, and the relationships with survival in

LGG patients have never been explored.

In this study, we aim to investigate the whole aspects of

cuproptosis-related genes (CRGs) and their values in the

prognosis, tumor microenvironment (TME) infiltration, and

responses to treatments in LGG through integrative bioinformatics

analyses. The results were further verified in clinical specimens from

Sun Yat-sen University Cancer Center (SYSUCC) through

quantitative real-time PCR (qRT-PCR) and Western blotting (WB).
Materials and methods

Data acquisition

The gene expression data and corresponding clinical

information of LGG samples were obtained from The Cancer

Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/) and

Chinese Glioma Genome Atlas (CGGA) (http://cgga.org.cn/)

databases. A total of 529 samples with a gene expression profile,

copy number variation (CNV), single-nucleotide variant (SNV),

and relevant clinicopathological data were downloaded from

TCGA-LGG. The fragments per kilobase million values of

TCGA-LGG were transformed into transcripts per kilobase

million. For all the included RNA-seq data, normalization and

log2 transformation were performed. The loss and gain levels of

copy-number changes have been identified using segmentation

analysis and the GISTIC algorithm. The SNV data were further

analyzed by R package “maftools” and visualized by R package

“oncoplot”. We further downloaded the TPM- normalized GTEx

RNAseq data of 1,152 normal human brain samples from the GTEx

data portal (https://xenabrowser.net/datapages/). Two CGGA

cohorts that contained 182 and 174 LGG samples (CGGA1,

mRNAseq_325, RNA-seq; CGGA2, mRNA-array_301,

Microarray) were obtained as external validation cohorts.
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Unsupervised clustering for cuproptosis-
related genes

A total of 13 CRGs were extracted from the previous study

(6), and the details of genes were shown in Supplementary

Table 1. Based on the expression levels of CRGs, we

performed consensus unsupervised clustering analysis to

classify patients into distinct cuproptosis-related clusters (CRG

clusters) using the R package “ConsensusClusterPlus” (22), with

the parameters of reps = 1000 and pItem = 0.8. Principal

component analysis was conducted to show the classification

of CRG clusters. Then, we compared the OS probability of CRG

clusters using the R package “survival” and “jskm”. A landmark

time of 9 years was chosen. Chemoradiotherapy sensitivity–

related genes (CRSGs) and immune checkpoint genes (ICGs)

were further retrieved (23–28), and their expression levels

between CRG clusters were analyzed.
Estimation of tumor microenvironment
cell infiltration between cuproptosis-
related gene clusters

R package “ESTIMATE” can calculate TME scores including

the stromal score, immune score, and estimate score using gene

expression profiles (29). TME scores for LGG patients were

evaluated and compared between CRG clusters. A single sample

gene-set enrichment analysis (ssGSEA) algorithm was used to

quantify the immune infiltration degree of immune cells in the

LGG TME.
Gene set variation analysis and gene set
enrichment analysis

To investigate the difference of the biological function

between CRG clusters, gene set variation analysis (GSVA) was

p e r f o rmed w i t h “ c 2 . c p . k e g g . v 7 . 5 . s ymbo l s ” a nd

“c5.go.bp.v7.5.symbols” using R package “GSVA”. R package

“pheatmap” was applied to visualize the results. GSEA was

performed by R package “clusterProfiler” to determine

whether the prior-defined functional sets of genes differ

significantly between CRG clusters with the hallmark gene set

(“h.all.v7.2.symbols”) from the MSigDB database.
Identification of differentially expressed
genes between cuproptosis-related gene
clusters and functional annotation

The differentially expressed genes (DEGs) between different

CRG clusters were identified using R package “Limma”. The
frontiersin.org
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significance criteria for identifying DEGs was set as |log2

(FoldChange)| > 0.5 and adjusted P-value< 0.05. To explore

the biological functions of CRG cluster-related DEGs, Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analyses were conducted by

applying the “clusterProfiler” package (30).
Identification of cuproptosis gene
clusters in lower-grade glioma

We performed univariate Cox regression analysis for CRG

cluster–related DEGs to identify DEGs that were related to OS

(OS-related DEGs). According to the expression levels of OS-

related DEGs, we performed consensus unsupervised clustering

analysis using R package “ConsensusClusterPlus”, with the

parameters of reps = 1000 and pItem = 0.8. The TCGA-LGG

patients were divided into distinct cuproptosis gene clusters, and

the OS time was compared through Kaplan–Meier analysis.
Construction of the cuproptosis-related
prognostic model

Then, patients in the TCGA-LGG cohort were randomly

divided into the training cohort and internal testing cohort at a

ratio of 1:1 using R package “caret”. Based on OS-related DEGs,

the least absolute shrinkage and selection operator (LASSO) Cox

regression were performed to reduce the dimension of high-

latitude data using R package “glmnet”. Ten-fold cross-

validation was employed to avoid the overfitting problem and

select the penalty parameter (l) according to the minimum

criteria. We conducted a multivariate Cox regression analysis to

determine genes from candidate genes and further performed

GSEA analyses based on a single gene expression, respectively.

Next, we construct the cuproptosis-related predictive model in

the training cohort. We calculated the CRG score for each

sample using the following formula: CRG _ score =o
n

i=1
Coefi �

Expi, with Coef indicating the coefficient and Exp referring to the

expression level of each CRG.
Evaluation and validation of the
cuproptosis-related prognostic model

The prognostic scoring system for LGG patients was

established, and the median value of the predicted CRG scores

was regarded as the cut-off. Then, patients were divided into high-

risk (CRG score > median value) and low-risk (CRG score< median

value) groups accordingly. R package “survival” and “survminer”

was applied to compare the survival probability between the two

groups via Kaplan–Meier analysis. The R package “timeROC” was

employed to perform 1-, 3- and 5- year receiver operating
Frontiers in Immunology 04
characteristic (ROC) analysis and calculate the value of the area

under the curve (AUC). The calibration plots were further

conducted to better validate the advantage of the CRG_score. The

expression levels of CRGs were analyzed between different CRG

score groups. The internal testing cohort and two external cohorts

CGGA1 and CGGA2 were employed to verify the cuproptosis-

related prognostic model. The CRG score was calculated for LGG

patients in each cohort, and samples were divided into different risk

groups. Similarly, they were subjected to Kaplan–Meier analysis,

ROC analysis, and calibration analysis. In CGGA1 and CGGA2

cohorts, patients were also stratified into four risk-treatment

subgroups by the CRG score and treatment with temozolomide

(TMZ) or radiotherapy. In addition, survival analyses among risk-

treatment subgroups were conducted.
Correlations of cuproptosis-related gene
score with immune infiltrates and cancer
stem cell index in lower-grade glioma

In order to identify the gene sets of statistical differences

between high- and low-risk groups, GSEA was performed. The

annotated gene sets “h.all.v7.2.symbols” and “c5.bp.v7.2.symbols”

from the MSigDB database were adopted in our analysis. The

enrichments of gene sets with an adjusted P-value<0.05 were

regarded to be significant. We employed R package “ESTIMATE”

to evaluate the TME score levels between high- and low-risk groups.

Cell-type Identification by Estimating Relative Subsets of RNA

Transcripts (CIBERSORT) is a developed algorithm that uses a

set of reference gene expression matrices to evaluate 22 immune cell

type proportions from bulk tumor sample expression data based on

the principle of linear support vector regression (31). We processed

the TCGA-LGG RNA-Seq data (TPM normalized) to calculate the

relevant abundance of immune cells. We analyzed the Spearman

correlation between the abundance of infiltrating immune cells and

the CRG score. Furthermore, we downloaded the RNAss file named

“StemnessScores_RNAexp_20170127.2.tsv”. The tumor stem cell

characteristics were extracted from the transcriptome and

epigenetics of the samples and then used to evaluate the stem

cell-like features of tumors. We performed a correlation analysis the

investigate the association between the CRG score and Cancer Stem

Cell (CSC) index.
Correlations of cuproptosis-related gene
score with tumor mutation burden and
immune checkpoint genes in lower-
grade glioma

TMB and ICGs were associated with patients’ response rate

to immunotherapy. We extracted the mutation annotation

format (MAF) from the TCGA database with the “maftools” R

package to identify the mutational landscape of LGG patients
frontiersin.org
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between different CRG score groups. The TMB score was also

calculated for each LGG patient in the entire TCGA cohort.

Then, we evaluated the correlations of ICGs with the CRG score

and five genes in the cuproptosis-related prognostic model using

Spearman’s rank correlation coefficient.
Estimation of cuproptosis-related
prognostic model in immunotherapy
response

The immunotherapy response for LGG patients was

estimated through the Tumor Immune Dysfunction and

Exclusion (TIDE) algorithm (http://tide.dfci.harvard.edu),

which can help doctors select patients who are more suitable

for immunotherapy (32). Furthermore, GSE126044, GSE78220,

checkmate cohort (33), and IMvigor210 cohort (34) were used to

validate the predictive ability of the cuproptosis-related

prognostic model in immunotherapy response.
Correlations of cuproptosis-related gene
score with cuproptosis-related genes
and chemotherapeutic sensitivity in in
lower-grade glioma

We compared the expression levels of CRSGs between

different risk groups and performed the correlation between

CRG scores and gene expression levels. The calcPhenotype

function of the “oncoPredict” R package was applied to

estimate drug sensitivity scores for common drugs in the LGG

therapy regimen including TMZ, procarbazine, teniposide, and

vincristine in the TCGA cohort. The lower-imputed drug

sensitivity represents more sensitivity to the drug.
Independent prognostic analysis and
establishment of a nomogram

We obtained the clinical characteristics including the age,

grade, and IDH mutation status of LGG patients in the entire

TCGA cohort and two CGGA cohorts. In combination with the

CRG score, these variables were analyzed in univariate and

multivariable Cox regression analyses.

To individualize the predicted LGG patients’ survival

probability, we developed a nomogram using clinical

characteristics and the CRG score. The R package “rms” and

“regplot” were employed. Time-dependent ROC analysis was

conducted to assess the predictive accuracy for 1-, 3-, and 5-year

survival probability. The calibration plots were applied to

compare model-predicted probability with observed outcomes

in the TCGA-LGG cohort and two validation cohorts (CGGA1

and CGGA2).
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Tissue samples, quantitative real-time
PCR, and Western blotting

To further validate the potential roles of signature genes in

LGG, five paired LGGs and matched normal adjacent tissue

samples were collected from the SYSUCC. Ethical approval was

confirmed by the ethical committee of the hospital. Associated

clinicopathological features were further confirmed as listed in

Supplementary Table 2. Tissue specimens were frozen in liquid

nitrogen and stored at –80°C until used.

Total RNA was extracted with a TRIzol Reagent

(ThermoFisher: #15596018), and the concentration was calculated

by the A260/A280 ratio. The PrimeScript RT reagent kit

(EZBioscience: #A0010CGQ) and SYBR-Green PCR reagent

(EZBioscience: #A0012-R2-L) were used to perform cDNA

synthetization and further conduct RT-qPCR based on the

LightCycler ® 480 System (Roche). The housekeeping gene

GAPDH was used as an endogenous control. The 2−DDCT cycle

threshold method was used to calculate the relative expression.

Supplementary Table 3 lists the primers used in this study.

The protein expression levels of crucial CRGs were

confirmed by Western blotting. Tissues were treated with

RIPA lysis buffer (Fdbio: #FD009) containing phosphatase and

protease inhibitors. The BCA protein detection kit

(ThermoFisher: #23227) was applied to detect the protein

concentration. Equivalent protein was then separated by 10%

Tris-Tricine SDS-PAGE and transferred onto polyvinylidene

fluoride (PVDF) membranes. After blocking with skimmed

milk in TBST for 2 h, the membrane was further probed using

antibodies against GAPDH (Proteintech: #60004-I-Ig),

C21orf62 (Signalway Antibody, SAB: #C08364H), DRAXIN

(Proteintech: #26342-1-AP), ITPRID2 (Proteintech: #14157-1-

AP), MAP3K1 (Proteintech: # 19970-1-AP), and MOXD1

(Bioss: bs-17733R) overnight at 4°C. The membranes were

subsequently washed with Tris-buffered saline containing

Tween and then incubated with an HRP‐conjugated anti-

rabbit antibody at 37°C for 1 h. Finally, the bands on the

membranes were observed with a ChemiDoc™ Imaging System.
Statistical analysis

All statistical analyses were performed using R software

(Version 4.1.2). Correlation coefficients were evaluated by

Spearman analysis. To compare variables between two groups, we

employed the independent sample t-tests for normally distributed

continuous variables, andMann–Whitney U tests for non-normally

distributed continuous variables. One-way ANOVA and Kruskal–

Wallis tests were used to perform the difference comparisons of

three or more groups. The survival analysis was conducted via the

Kaplan–Meier method, and log-rank tests were employed to

identify the significance of differences. The statistical significance

was defined as P< 0.05.
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Results

Landscape of genetic and transcriptional
variations of cuproptosis-related genes
in lower-grade glioma

TThe workflow of the study is outlined in Figure 1. A total of

13CRGs were included in our study The genetic mutation

landscape in LGG patients is shown in Figures 2A–D. Of the

506 LGG patients in the TCGA cohort, 488 (96.44%) had genetic

mutations and IDH1 had the highest mutation frequency (77%),

followed by TP53, ATRX, CIC, and TTN. However, only seven

samples had genetic mutations in CRGs (Supplementary

Figure 1). We investigated the frequencies of the CNVs of 13

CRGs in LGG. DLD exhibited the highest amplification

frequency, while ATP7B and DLST had a widespread

frequency of CNV loss (Figure 2E). Figure 2F shows the

location of the CNV alterations of 13 CRGs on 23 chromosomes.

We then explored the expression levels, molecular

interactions, and prognostic values of 13 CRGs. Twelve CRGs

were upregulated in tumor samples including FDX1, LIPT1,

LIAS, DLD, DBT1, GCSH, DLST, DLAT, PDHA1, PDHB,

SLC31A1, and ATP7A (P< 0.001), whereas only ATP7B was

downregulated (P< 0.001) (Figure 2G). Figure 2H exhibits the

molecular interactions between CRGs. Nine prognostic CRGs

were identified by Kaplan–Meier analysis and univariate Cox

regression analysis (Supplementary Figure 2). The result of

multivariate Cox regression analysis further revealed that three

prognostic CRGs (FDX1, GCSH, and ATP7B) were independent

prognostic factors (Table 1).
Identification of cuproptosis-related
gene clusters in lower-grade glioma

In order to investigate the expression features and potential

biological characteristics of CRGs in LGG, a consensus

clustering algorithm was utilized to classify LGG patients in

the TCGA cohort. Based on the expression of 13 CRGs, patients

were categorized into CRG cluster A (n=219) and CRG cluster B

(n=292) (Supplementary Figures 3A–3H). The PCA plot

demonstrated an obvious different distribution between CRG

clusters (Supplementary Figure 3I).
Correlations of cuproptosis-related gene
clusters with clinical features,
chemoradiotherapy sensitivity–related
genes, immune checkpoint genes and
tumor microenvironment

Figure 3A shows the different expressions of CRGs and

clinicopathological characteristics between CRG cluster A and
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B. CRG cluster A was preferentially associated with higher

expression levels of CRGs, higher grade (G3), and more death

events. As the Kaplan–Meier survival curves crossed, we

employed landmark analysis to compare the difference

between CRG clusters (Figure 3B). The result of landmark

analysis showed a longer OS in LGG patients in CRG cluster B

within 9 years (P = 0.003). Nevertheless, no significant difference

was found in the survival probability beyond 9 years (P = 0.149).

Then, we explored the correlation of CRG clusters with

ICGs, CRSGs, and the TME. We found that CRG cluster A was

associated with a higher expression of ICGs (Figure 3C). In

addition, CRSGs, including AKR1C1, EGFR, EZH2, HOXA9,

HGMT, SOX2, and TBX5, were differentially expressed between

two CRG clusters (Figure 3D). To explore the potential function

of CRGs in the immune infiltration of LGG, we compared the

TME score and the relevant abundance of immune cells between

two CRG clusters using “ESTIMATE” and “ssGSEA” algorithms.

Patients in CRG cluster B had higher immune scores than those

in CRG cluster A (Figure 3E). We observed that the immune

infiltration levels of the activated CD4+ T cell, gamma delta T

cell, and Type 2 T helper cell were significantly higher in CRG

cluster A than those in CRG cluster B, while the CD56 dim

natural killer cell and monocyte had significantly lower

infiltration levels in CRG cluster A than those in CRG cluster

B (Figure 3F).
Identification of differentially expressed
genes between cuproptosis-related gene
clusters and functional annotation

To further explore the functional annotation between CRG

cluster A and B, GSVA and GSEA were performed. The results

of the GSVA of the gene ontology biological process (GOBP)

showed that CRG cluster A was significantly enriched in

transportation-related processes including Golgi vesicle

transport, nuclear pore organization, and vesicle targeting

(Figure 4A). In addition, the GSVA of KEGG terms showed

that CRG cluster A was abundant in metabolism-related

pathways (citrate cycle TCA cycle, glycosylphosphatidylinositol

GPI anchor biosynthesis), cancer-related pathways (small cell

lung cancer, endometrial cancer), cell cycle–related pathways

(cell cycle), and genomic stability–related pathways (mismatch

repair, nucleotide excision repair) (Figure 4B). GSEA indicated

that CRG cluster A was predominantly associated with the cell

cycle, tumorigenesis, and metastasis including the G2M

checkpoint hallmark, E2F target hallmark, epithelial

mesenchymal transition hallmark, and angiogenesis hallmark

(Figures 4C–E) (Supplementary Tables 4–5).

Atotalof1,966CRGcluster–relatedDEGswereidentifiedbetween

CRG clusters using R package “Limma”. Consistent with GSVA and

GSEA, the result of GO and KEGG showed that these DEGs were

associated with the cell cycle, genomic stability, and cancer, which
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revealed that cuproptosis plays a significant role in tumorigenesis and

metastasis (Figures 4F–H) (Supplementary Table 6).
Identification of cuproptosis gene
clusters in lower-grade glioma

Subsequently, the prognostic values of the above 1,966 CRG

cluster-related DEGs were assessed by univariate Cox regression

analysis and a total of 1,424 genes associated with OS (OS-related

DEGs) were screened out (P< 0.05). Based on the expression levels

of OS-related DEGs, a consensus clustering algorithm was

employed and LGG patients were classified into three gene
Frontiers in Immunology 07
clusters, termed gene cluster A (n=215), gene cluster B (n=88),

and gene cluster C (n=208) (Supplementary Figures 4A–H). PCA

analysis revealed that gene clusters could be identified clearly

(Supplementary Figure 4I). The expression profiles and clinical

information of OS-DEGs in different gene clusters are shown in

Figure 5A. We found that gene cluster B was correlated with high

gene expression levels, an advanced grade (G3), and more death

events. Patients in gene cluster B were proven to be related to worse

prognosis than those in gene cluster A and C by Kaplan–Meier

analysis (P< 0.001) (Figure 5B). Furthermore, CRGs were

differentially expressed among three gene clusters, with the

highest expression levels in gene cluster B and the lowest

expression levels in gene cluster C. (Figure 5C).
FIGURE 1

Flow chart of this study. *P< 0.05; **P< 0.01; ***P< 0.001
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Construction and evaluation of the
cuproptosis-related prognostic model

We performed LASSO andmultivariate Cox regression analysis

for 1,424 OS-related DEGs to establish the cuproptosis-related

prognostic model. Patients in the TCGA cohort were divided into

training and test cohorts at a ratio of 1:1. In the TCGA training

cohort, 11 genes were obtained, followed by LASSO Cox regression
Frontiers in Immunology 08
analysis, and were subjected to multivariate Cox regression analysis

(Supplementary Figure 5). Ultimately, five key genes remained,

including Chromosome 21 Open Reading Frame 62 (C21orf62),

Dorsal Inhibitory Axon Guidance Protein (DRAXIN), ITPR

Interacting Domain Containing 2 (ITPRID2), Mitogen-Activated

Protein Kinase Kinase Kinase 1 (MAP3K1) and Monooxygenase

DBH Like 1 (MOXD1). Further GSEA analyses based on a single

gene expression indicated that B-cell-mediated immunity,
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FIGURE 2

Landscape of genetic and transcriptional variations of cuproptosis-related genes (CRGs) in lower-grade glioma (LGG). (A, B) Summary of
variation across 506 lower-grade glioma (LGG) patients including the variant classification, variant type, single-nucleotide variant (SNV) class,
variants per sample, and top 10 mutated genes. (C, D) Landscape of genetic variations of 506 LGG patients in The Cancer Genome Atlas (TCGA)
cohort. (E) Copy number variation (CNV) amplifications and deletions of CRGs in LGG patients. (F) The circus plot showed the location of CNV
alteration of CRGs on 23 chromosomes. (G) Differences in the expression levels of 13 CRGs between tumor and normal samples. (tumor, red;
normal, blue) P-values were shown as: ***P< 0.001. (H) The network showed interactions among CRGs in LGG. LGG, lower-grade glioma (WHO
II and III); TCGA, the Cancer Genome Atlas; SNV, single-nucleotide variant; CNV, copy number variation; CRGs, cuproptosis-related genes.
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complement cascade, interferon-gamma response, chromosome

segregation, mitotic spindle checkpoint, G2M checkpoint, T-cell

receptor complex, CD22-mediated BCR regulation, epithelial–

mesenchymal transition, cell cycle checkpoints, voltage-gated

potassium channels, and other biological processes related to

immunity or cancer were significantly enriched (Supplementary

Figure 6). Next, we constructed a five-gene cuproptosis-related

prognostic model and the associated CRG score can be calculated

as follows: CRG_score= 0.164859* C21orf62 + 0.293187* DRAXIN

+ 0.882099* ITPRID2 + 0.625577*MAP3K1 + 0.256801*MOXD1.

We also explored the relationship between CRG clusters, gene

clusters, and CRG scores. We found that CRG scores in CRG

cluster A were significantly higher than that in CRG cluster B, and

the expression of CRGs were upregulated in the high-risk group,

which suggested that a high CRG score and the high expression of

CRGs were associated with tumorigenesis and metastasis

(Figures 5D, E). Meanwhile, the rank order of the CRG score in

gene clusters was B > A > C (Figure 5F). The Sankey diagram

showed subgroup distributions in groups with different CRG scores

and survival outcomes (Figure 5G).

The heatmap showed the different expressions of C21orf62,

DRAXIN, ITPRID2, MAP3K1, and MOXD1 between the high-

and low-risk groups in TCGA training and test cohorts

(Figure 6A). In addition, the risk plot of the CRG score

revealed that patients with a high CRG score were related to

more cases of death and shorter survival time (Figures 6B, C).

Kaplan–Meier analysis showed that patients in the high-risk

group had a worse OS than low-risk patients in both TCGA

training and testing cohorts (P< 0.001) (Figures 6D, E). The 1-,

3-, and 5-year survival probability of the CRG score was

represented by the AUC values of 0.876, 0.863, and 0.844,

respectively, in the TCGA training cohort (Figure 6F). In the

TCGA testing cohort, AUC values for predicting 1-, 3-, and 5-

year OS were 0.852, 0.856, and 0.805. Meanwhile, the calibration

curve also manifested a satisfactory agreement between

predictive and observational values at the probabilities of 3-

and 5-year survival (Supplementary Figures 7A, B).
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External validation of the cuproptosis-
related prognostic model

To further verify the prognostic performance of the model, we

applied two external validation cohorts (CGGA1 and CGGA2)

(Supplementary Table 7). Patients were also classified into high-

and low-risk groups according to CRG scores. Kaplan–Meier

analysis showed a significantly better prognosis in the low-risk

group compared to that in the high-risk group (Figures 7A, B).

Meanwhile, the model also demonstrated a high AUC value in

external validation cohorts (Figure 7C, D), and the calibration curve

also exhibited a satisfactory agreement between predictive and

observational values at the probabilities of 3- and 5-year survival

(Supplementary Figures 7C, D).

Then, patients were stratified into four groups by the CRG

score and treatment strategies. Kaplan–Meier analysis showed

that patients in low-risk and no-radiotherapy groups had the

best prognosis (Figures 7E, F). However, the predictive ability of

the model was not impacted by TMZ treatment. Whether

patients received TMZ or not, the low-risk group always

showed a strong survival advantage (Figures 7G, H).
Correlations of cuproptosis-related gene
score with immune infiltration and
cancer stem cell index in lower-grade
glioma

GSEA was conducted to explore the potential biological

functions between high- and low-risk groups (Figures 8A, B)

(Supplementary Table 8). We observed that a high CRG score

was mainly related to the cell cycle (negative regulation of

metaphase–anaphase transition of the cell cycle, G2M checkpoint

hallmark, E2F target hallmark), tumor progression (epithelial–

mesenchymal transition hallmark, angiogenesis hallmark), and

immunity (interferon gamma–mediated signaling pathway, T-cell

activation via T-cell receptor contact with antigen bound to the

MHC molecule on antigen-presenting cell, inflammatory response

hallmark). TME scores including the stromal score, immune score,

and ESTIMATE score were significantly higher in the high-risk

group (Figure 8C). We assessed the correlation of immune

infiltration with the five genes cuproptosis-related prognostic

model (Figure 8D). Macrophage M0 and Macrophage M1 were

positively correlated with the CRG score, while mast cells activated,

monocytes, neutrophils, and NK cells activated were negatively

correlated with the CRG score (Figures 8E–K).

Cancer stem cells are a group of cells with the features of self-

renewing, being multipotent, and tumor-initiating, which can drive

the growth and recurrence of tumors and are resistant to many

current treatments. The CRG score and CSC index were synthesized

to evaluate their relationship. A mild but significant negative

correlation (R = -0.24, P = 4.2e-08) was detected (Figure 8L).
Table 1. Multivariate Cox regression analysis of 10 cuproptosis-
related genes associated with overall survival in lower-grade glioma
patients.

Gene HR (95% CI) P-value

FDX1 1.524 (1.026-2.262) 0.037

LIPT1 1.255 (0.852-1.849) 0.251

DLD 1.352 (0.904-2.021) 0.142

DBT 0.927 (0.631-1.361) 0.698

GCSH 0.615 (0.428-0.882) 0.008

DLAT 1.004 (0.649-1.554) 0.985

SLC31A1 1.536 (0.957-2.464) 0.076

ATP7A 1.329 (0.846-2.090) 0.218

ATP7B 0.566 (0.395-0.812) 0.002
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FIGURE 3

Correlations of CRG clusters with clinical features, CRSGs, immune checkpoint genes (ICGs), and tumor microenvironment (TME). (A) The
heatmap showed the different expressions of CRGs and clinicopathological characteristics between CRG cluster A and (B)(B) Landmark survival
analysis for two CRG clusters. The overall survival probability of LGG patients in the two CRG clusters was calculated by Kaplan–Meier analysis
(log-rank tests). A landmark time of 9 years was set. (C) The heatmap showed the different expressions of ICGs and clinicopathological
characteristics between CRG cluster A and B (D) Differences in the expression levels of seven chemoradiotherapy sensitivity–related genes
(CRSGs) between CRG cluster A and B(E) Correlations between the two CRG clusters and TME scores. (F) Differences in the abundance of
infiltrating immune cells between CRG cluster A and B (CRG cluster A, blue; CRG cluster B, red) P values were shown as: *P< 0.05; **P< 0.01;
***P< 0.001. CRGs, cuproptosis-related genes; CRSGs, chemoradiotherapy sensitivity–related genes; ICGs, immune checkpoint genes; TME,
tumor microenvironment; LGG, lower-grade glioma (WHO II and III).
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Correlations of cuproptosis-related gene
score with tumor mutational burden and
immune checkpoint genes in lower
grade glioma
Previous studies demonstrated that high TMB scores are

associated with increased treatment response to immunotherapy.

Here, patients in the high-risk group (64%) had a markedly lower
Frontiers in Immunology 11
mutation incidence of IDH1 than those patients in the low-risk

group (91%) (Figures 9A, B). The TMB score was significantly

higher in the high-risk group (P = 4.8e-0.8), and the CRG score was

positively correlated with the TMB score (R = 0.31, P = 2.8e-12)

(Figures 9C, D). Considering that the expression levels of ICGs have

been reported to correlate with the clinical benefit of checkpoint

blockade immunotherapy (35, 36), we further explored the

relationship between the CRG score and ICGs. We found that

most ICGs were significantly correlated with the five genes in the
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FIGURE 4

Functional enrichment analysis and identification of differentially expressed genes (DEGs) between CRG clusters. (A) Gene set variation analysis
(GSVA) of gene ontology biological process (GOBP) terms between CRG cluster A and B, in which red and blue represent activated and
inhibited, respectively. (B) GSVA of Kyoto Encyclopedia of Genes and Genomes (KEGG) terms between CRG cluster A and B, in which red and
blue represent activated and inhibited, respectively. (C-E) Gene set enrichment analysis (GSEA) of significant HALLMARK enriched in CRG cluster
(A) (F–H) GO and KEGG enrichment analyses of DEGs between two CRG clusters. DEGs, differentially expressed genes; GSVA, gene set variation
analysis; GOBP, gene ontology biological process; GSEA, gene set enrichment analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of
Genes and Genomes.
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model (Figure 9E). The expression levels of 61 ICGs including

CD276, BTN2A2, PDCD1LG2, CD274, and CD40LG increased with

the increasing CRG score (Figure 9F). Only BTNL9 was negatively

correlated with the CRG score (R = -0.24, P = 2.6e−08)
Frontiers in Immunology 12
(Supplementary Table 9). Then, we found that patients with a

high CRG score and high expression levels of CD276, CD274,

BTN2A2, PDCD1LG2, and CD40LG were associated with poor OS

than others (Supplementary Figure 8).
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FIGURE 5

Identification of cuproptosis gene clusters and construction of the cuproptosis-related prognostic model in LGG. (A) The heatmap showed the
different expressions of overall survival (OS)–DEGs and clinicopathological characteristics among gene cluster A to C (B) Kaplan–Meier OS
curves for patients in the three gene clusters (log-rank test). (C) Differences in the expression levels of 13 CRGs among gene cluster A to C.
(D) Differences in CRG scores between CRG cluster A and B (E) Differences in the expression levels of 13 CRGs between high- and low-risk
groups. (F) Differences in CRG scores among gene cluster A to C, (G) Sankey diagram of subtype distributions in groups with different CRG
scores and survival outcomes. P-values were shown as: *P< 0.05; **P< 0.01; ***P< 0.001. LGG, lower-grade glioma (WHO II and III); OS, overall
survival; DEGs, differentially expressed genes; CRGs, cuproptosis-related genes.
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Estimation of cuproptosis-related
prognostic model in immunotherapy
response

The TIDE algori thm was appl ied to est imated

immunotherapy response for LGG patients based on the

transcriptomic data. The results showed that the TIDE score

of the high-risk group was significantly higher than that of the

low-risk group, indicating that the patients in the low-risk group

could benefit more from immunotherapy (Figure 10A). Patients

in the low-risk group were associated with a higher dysfunction

score and lower exclusion score (Figures 10B, C). Moreover,

patients were classified into no responders and responders by the

TIDE algorithm. We found that immunotherapy responders

were correlated with a lower CRG score (Figures 10D, E).

Patients with a combination of a high CRG score and high

TIDE score group showed an association with the worst

prognosis (Figure 10F). Then, we validated the predictive value

of the cuproptosis-related prognostic model in immunotherapy

response. The clinical response to immunotherapy in patients
Frontiers in Immunology 13
with non-small cell lung cancer or metastatic melanoma in the

low-risk group compared to those in the high-risk group were

confirmed (Figures 11A, B). However, no differences were

identified in renal cell carcinoma patients and urothelial cell

carcinoma patients (Figures 11C–E). Figure 11F shows the

subtype distributions in groups with different CRG scores and

immunotherapy response in the IMvigor210 cohort.

Furthermore, in the IMvigor210 cohort, the CRG scores were

different among different immune phenotypes, tumor cell (TC)

levels, and immune cell (IC) levels (Figures 11G–I).
Correlations of cuproptosis-related
gene score with chemoradiotherapy
sensitivity–related genes and
chemotherapeutic sensitivity in
lower-grade glioma

Additionally, we observed a strong correlation between the

expression levels of CRSGs and the expression levels of C21orf62,
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FIGURE 6

Evaluation of the cuproptosis-related prognostic model in the TCGA cohort. (A) The heatmap showed the different expressions of genes in the
cuproptosis-related prognostic model between the high- and low-risk groups in TCGA training and test cohorts. (B) Distribution of the CRG
score in TCGA training and testing cohorts. (C) The risk point plot showed the patterns of the survival time and survival status between the high-
and low-risk groups in TCGA training and test cohorts. (D) The Kaplan–Meier OS curves for patients in the high- and low-risk groups in the
TCGA training cohort (log-rank test). (E) The Kaplan–Meier OS curves for patients in the high- and low-risk groups in the TCGA testing cohort
(log-rank test). (F) ROC curves showed the prognostic performance of the cuproptosis-related prognostic model in TCGA training and testing
cohorts. TCGA, the Cancer Genome Atlas; CRGs, CRGs, cuproptosis-related genes; OS, overall survival.
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FIGURE 7

Validation of the cuproptosis-related prognostic model in CGGA cohorts. (A) The Kaplan–Meier OS curves for patients in the high- and low-risk
groups in the CGGA1 cohort. (B) The Kaplan–Meier OS curves for patients in the high- and low-risk groups in the CGGA2 cohort. (C) ROC
curves showed the prognostic performance of the cuproptosis-related prognostic model in the CGGA1 cohort. (D) ROC curves showed the
prognostic performance of the cuproptosis-related prognostic model in the CGGA2 cohort. (E–G) The Kaplan–Meier OS curves among four
groups classified by the CRG score and treatment with radiotherapy in CGGA1 and CGGA2 cohorts. (G–H) The Kaplan–Meier OS curves among
four groups classified by the CRG score and treatment with TMZ in CGGA1 and CGGA2 cohorts. CGGA, Chinese Glioma Genome Atlas; ROC,
receiver operating characteristic; OS, overall survival; TMZ, temozolomide; CRGs, cuproptosis-related genes.
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DRAXIN, ITPRID2,MAP3K1, andMOXD1 (Figure 12A). As the

CRG score increased, the expression levels of CPZ, EGFR, EZH2,

and HOXA9 increased, but the expression levels of AKR1C1

decreased, which revealed a potential association between the
Frontiers in Immunology 15
CRG score and chemoradiotherapy (Figures 12B–G). To explore

the values of the CRG score as a biomarker to predict the

chemotherapeutic response in LGG patients, we performed drug

sensitivity analysis using the “oncoPredict” R package. A higher
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FIGURE 8

Correlations of the CRG score with immune infiltration and the cancer stem cell (CSC) index in LGG. (A) GSEA of significant GOBP terms
enriched in the high-risk group. (B) GSEA of significant HALLMARK terms enriched in the high-risk group. (C) Correlations between CRG scores
and TME scores. (D) Correlations between the abundance of immune cells and five genes in the cuproptosis-related prognostic model.
(E–K) Correlations between the abundance of immune cells and the CRG score. (L) Correlations between the CSC index and the CRG score. P-
values were shown as: *P< 0.05; **P< 0.01; ***P< 0.001. CRGs, cuproptosis-related genes; CSC, cancer stem cell; LGG, lower-grade glioma
(WHO II and III); GSEA, gene set enrichment analysis; GOBP, gene ontology biological process; TME, tumor microenvironment.
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imputed sensitivity score represented lower sensitivity to the

drug. We found patients in the high-risk group had higher

imputed sensitivity scores of TMZ and procarbazine, while the

imputed sensitivity scores of teniposide and vincristine were

lower in patients in the high-risk group (Figures 12H–L).
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Independent prognostic analysis and
establishment of a nomogram

To determine if the CRG score could be used as

an independent prognostic predictor for OS, we combined
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FIGURE 9

Correlations of the CRG score with TMB and ICGs in LGG. (A, B) The mutational landscape of LGG patients in high- and low-risk groups.
(C) Correlations between the TMB and the CRG score in different gene clusters. (D) Difference in the TMB scores between high- and low-risk
groups. (E) Correlations between the expression of ICGs and five genes in the cuproptosis-related prognostic model. (F) Correlations between
the expression of ICGs and the CRG score. P-values were shown as: *P< 0.05; **P< 0.01; ***P< 0.001. CRGs, cuproptosis-related genes; TMB,
tumor mutation burden; ICGs, immune checkpoint genes; LGG, lower-grade glioma (WHO II and III).
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clinical characteristics and the CRG score to conduct univariate

and multivariate Cox regression analyses. In the TCGA cohort,

age, grade, IDH mutation status, and CRG score demonstrated

significant differences (Figures 13A, B). The prognostic value of

the CRG score was also verified in external CGGA cohorts, and

the results showed that CRG score is an independent prognostic

predictor for LGG patients (Supplementary Figure 9).

Then, we combined the CRG score and clinical chrematistics

(age, grade, IDH mutation status) to establish a nomogram in

the TCGA cohort, which exhibited a quantitative method to

generate personalized predictions for LGG patients

(Figure 13C). The AUC values of the model were estimated,

and calibration analyses were performed to assess the predictive

ability and accuracy for prognosis. Figure 13D showed that 1-, 3-

and 5-year AUC values of the model in the TCGA cohort were

0.893, 0.887, and 0.828, respectively. The model also had good

predictive ability in the CGGA1 cohort (AUC > 0.75) and

CGGA2 cohort (AUC > 0.7) (Figures 13F, H). Subsequently,

the calibration plots demonstrated good agreement between
Frontiers in Immunology 17
model-predicted probability and the observed outcomes

(Figures 13E, G, I).

Tissue samples, quantitative real-time
PCR, and Western blotting

To verify the expression level of signature genes in LGG, we

collected five paired cancer- and adjacent normal tissues from

SYSUCC. As shown in Figures 14A–D, qRT-PCR showed that the

expressionoftheDRAXIN,ITPRID2,andMAP3K1weresignificantly

upregulated while MOXD1 was downregulated in tumor samples.

Nevertheless, there was no significant difference in the expression of

C21orf62 (Figure 14E). Further investigation indicated heterogeneity

in the expression of C21orf62. Briefly, it was upregulated in two

patients but downregulated in the remaining patients (the relative

expression was 5.33, 1.68, 0.36, 0.07, and 0.04, respectively). The

results of WB also demonstrated the heterogeneity in C21orf62,

MAP3K1, and MOXD1 but consistently a significant upregulation

inDRAXIN and ITPRID2 at the protein level (Figure 14F).
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FIGURE 10

Estimation of the cuproptosis-related prognostic model in immunotherapy response in LGG. (A) Difference in TIDE scores between high- and
low-risk groups. (B) Difference in dysfunction scores between high- and low-risk groups. (C) Difference in exclusion scores between high- and
low-risk groups. (D) Difference in CRG scores between responder and no responder groups based on the TIDE algorithm. (E) The distribution of
immunotherapy response in indicated groups stratified by the CRG scores based on the TIDE algorithm. (F) The Kaplan–Meier OS curves among
four groups classified by the CRG score and TIDE score. TIDE, tumor immune dysfunction and exclusion; CRG, cuproptosis-related genes; OS,
overall survival.
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Discussion

Cell death is critical for maintaining organismal homeostasis,

developing, and preventing excessively proliferative malignancy (37,

38). As a hallmark of cancer, metabolism plays an indispensable role

in cell death (39).Numerous studies have demonstrated a correlation

between metabolism and multiple cell deaths in cancer (40). In
Frontiers in Immunology 18
gliomas, stress-induced cell death signaling usually involves the

mitochondria and endoplasmic reticulum, which activates reactive

oxygen intermediates and regulates lipid mediators in cell

proliferation, migration, and interaction with endothelial and

microglial cells (41, 42). Nevertheless, the underlying mechanisms

and correlations amongmetabolism,mitochondria, and cell death in

gliomas still remain poorly understood.
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FIGURE 11

Correlation of the CRG score with immunotherapy response in mutiple cohorts. The distribution of immunotherapy response in indicated
groups stratified by CRG scores in (A) GSE126044, (B) GSE78220, (C) the CheckMate cohort, and (D) the IMvigor210 cohort. (E) Difference in
CRG scores among four immunotherapy response groups in the IMvigor210 cohort. (F) Sankey diagram of subtype distributions in groups with
different CRG scores and immunotherapy response in the IMvigor210 cohort. Differences in the CRG score among (G) three immune
phenotypes, (H) three TC levels, and (I) three immune cell (IC) levels in the IMvigor210 cohort. CRGs, cuproptosis-related genes; TC, tumor cell;
IC, immune cell.
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Cuproptosis, first named by Todd R. Golub, sheds light on

copper metabolism and mitochondrial dysregulation in cell

death. Several studies have focused on a single cuproptosis

regulator in cancer; however, the overall effect of multiple

CRGs has not been fully characterized. The specific role of

cuproptosis in LGG remains unclear. Furthermore, although

many prognostic signatures have been established based on the
Frontiers in Immunology 19
patterns of pseudogenes (43), N6-methylandenosine (44),

immunity (45), ferroptosis (46), and pyroptosis (47) their

predictive ability needs to be further improved, and there is

still a lack of a prognostic signature based on the characteristics

of cuproptosis. In the present study, we systematically

investigated the global alterations in 13 CRGs at genetic and

transcriptional levels in LGG, established a scoring system
A B

D E F

G IH

J K L

C

FIGURE 12

Correlations of the CRG score with CRSGs and chemotherapeutic sensitivity in LGG. (A) Correlations between the expression of CRSGs and five
genes in the cuproptosis-related prognostic model. (B–G) Correlations between the expression of CRSGs and the CRG score. (H) Correlations
between the imputed sensitivity score of TMZ and the CRG score. (I–L) Difference in chemotherapeutic sensitivity between high- and low-risk
groups. P-values were shown as: *P< 0.05; **P< 0.01; ***P< 0.001. CRSGs, chemoradiotherapy sensitivity–related genes; CRGs, cuproptosis-
related genes; TMZ, temozolomide.
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consisting of five signature core genes, and eventually

constructed a quantitative nomogram by integrating the CRG

score and clinicopathological features including grades, IDH

status, and age. Compared to other models, our model has better

performance overall and has better clinical application value

(Supplementary Table 10).

Copper metabolism plays a crucial role in diverse biological

processes (48). We first characterized the landscape of genetic

and transcriptional variations of CRGs in LGG. Although only

seven samples had genetic mutations in CRGs, we were
Frontiers in Immunology 20
surprised to find that 12 CRGs were upregulated between the

LGG and normal tissues, while ATP7B was downregulated. We

noticed that the expression of most CRGs was significantly

correlated with poor prognosis. Based on CRG expression

profiles, we further divided LGG patients into two distinct

molecular subtypes with the unsupervised clustering approach.

Compared to patients with subtype B, patients with subtype A

had a worse prognosis within the early 9 years and more

advanced clinicopathological features. We speculate that the

differences may be partially attributed to different responses to
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F G IH

C

FIGURE 13

Independent prognostic analysis and establishment of a nomogram. (A) Univariate Cox regression analysis of the CRG score and clinical
characteristics in the TCGA cohort. (B) Multivariate Cox regression analysis of the CRG score and clinical characteristics in the TCGA cohort.
(C) The nomogram was extablished to predict 1-, 3-, and 5-year overall survival probability of LGG patients in the TCGA cohort. (D) ROC curves
showed the prognostic performance of the model in the TCGA cohort. (E) The calibration curves measured the relationship between the
outcomes predicted by the model and the observed outcomes in the TCGA cohort. (F) ROC curves showed the prognostic performance of the
model in the CGGA1 cohort. (G) The calibration curves measured the relationship between the outcomes predicted by the model and the
observed outcomes in the CGGA1 cohort. (H) ROC curves showed the prognostic performance of the model in the CGGA2 cohort. (I) The
calibration curves measured the relationship between the outcomes predicted by the model and the observed outcomes in the CGGA2 cohort.
CRGs, cuproptosis-related genes; TCGA, the Cancer Genome Atlas; LGG, lower-grade glioma (WHO II and III); ROC, receiver operating
characteristic; CGGA, Chinese Glioma Genome Atlas.
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treatment. To further validate the speculations, we analyzed the

patterns of immune checkpoints and chemoradiotherapy-

associated genes. AKR1C1, EGFR, EZH2, HOX9, HGMT,

SOX2, and TBX5 have been implicated in chemoradiotherapy

resistance due to their roles in DNA damage repairing, signaling,

angiogenesis, and TME remodeling (49–51). For example, the

overexpression of AKR1C1 can reduce the production of reactive

oxygen species, eliminate free radicals, and inactivate

anthracycline anticancer drugs, thereby decreasing DNA

damage and inhibiting cell apoptosis, which can finally reduce

the sensitivity of chemotherapy (24). High EGFR expression was

a s s o c i a t e d w i t h poo r r e s pon s e t o r a d i a t i on o r

chemoradiotherapy, and specifically targeting EGFR and EGFR

variant receptors is undergoing clinical evaluation in patients

with glioma (52). Consistent with the above assumption, we

verified that different subtypes vary significantly in the

expression of the therapy-associated genes, including CRSGs
Frontiers in Immunology 21
and ICGs. In addition, the characteristics of the TME like the

stromal score, immune score, and ESTIMATE score also

indicated significant differences. Increasing evidence has

shown that multiple immune cells play a vital role in the

immune defense of LGG (53). The densities of tumor-

infiltrating T cells were also proven to be critical for the initial

stage and development of LGG, and the gdT cell can effectively

recognize and kill tumor cells (54). Here, we observed striking

differences in the type of CD4+ T cell, CD56+ T cell, gdT cell,

and T helper2 cell between subtypes, which demonstrates a close

relevance between cuproptosis and tumor immunity. These

results strongly implied the potential roles of cuproptosis in

LGG prognosis.

The essence of cuproptosis is a copper-induced cell death

mediated by protein lipoylation (6). TCA enzymes (in particular,

the PDH complex) are indispensable for initiating lipoylation,

which contributes to the induction of HSP70 and is reflective of
A B
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C

FIGURE 14

The expressions of five signature genes were validated by quantitative real-time PCR (qRT-PCR) and Western blotting (WB). (A–E) Expression of
genes at the mRNA level by qRT-PCR. (F) Expression of genes at the protein level by WB. qRT-PCR, quantitative real-time PCR; WB, Western
blotting. *P< 0.05; **P< 0.01; ***P< 0.001. ns, no significance.
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acute proteotoxic stress (7). Consistent with the facts, functional

enrichment analyses demonstrated that protein alteration like

local izat ion to the microtubule organizing center ,

polyubiquitination, lysine degradation, ubiquitin-mediated

proteolysis, and citrate cycle TCA cycle processes showed a

significant difference in the subtypes we identified. Moreover,

our results revealed that the G2M checkpoint, E2F targets, MYC

targets, epithelial–mesenchymal transition, and angiogenesis

were also mainly associated with different subtypes based on

the CRG expression, which have been known in the progression

of malignancies (55–57). In addition, the GO and KEGG results

about the differential expression genes between subtypes

indicated a close link between cuproptosis and the cell cycle as

well as genomic stability, including organelle fission, nuclear

division, and chromosome segregation. As many studies have

illustrated the role of copper metabolism in cancer, our study

added to the evidence that directly or indirectly targeting

cuproptosis may bring a satisfactory effect in anti-

glioma therapy.

Increasing evidence has illustrated the function of copper in

the initial stage and progression of tumors at the transcriptomic

level (58). In this study, mRNA transcriptome differences

between distinct cuproptosis patterns have also been

explored. Through multivariate Cox analyses about DEGs

between CRG clusters, 1,424 OS-associated DEGs remained.

Similar to the clustering of the CRG phenotypes, three genomic

subtypes were identified based on the above DEGs, which

demonstrated a close relationship with patients’ prognosis,

indicating its predictive ability for LGG. To better evaluate

the cuproptosis pattern of individual patients with LGG, we

further constructed a predictive cuproptosis-related prognostic

model and a CRG score system, which consisted of C21orf62,

DRAXIN, ITPRID2, MAP3K1, and MOXD1. As a coding gene

for chromosome 21 open reading frame, C21orf62 has a great

impact on the gene structure, thus regulating the biological

homeostasis (59). DRAXIN, a recently identified axon guidance

protein, is crucial for the formation of forebrain commissures

and repulsion of netrin-stimulated spinal commissural axons

(60, 61). DRAXIN also plays a vital role in lung carcinomas

(62). However, its role in LGG remains elusive. ITPRID2, also

known as SSFA2, has been reported in the development of

many malignancies (63, 64). In LGG, the inhibition of ITPRID2

can regulate the cell cycle to significantly reduce the

proliferation ability and induce the early apoptosis rate (65).

As a member of mitogen‐activated protein kinases, MAP3K1 is

an important regulator of evolutionarily conserved proteins in

various cellular physiologies (66). Numerous studies have

confirmed that the activation of MAPKs was positively

correlated to the progression and therapy resistance of glioma

(67). Based on the public database, Xie and his colleagues

identified MAP3K1 as a novel prognostic biomarker and

potential therapeutic target in glioma (68). MOXD1 has also

been predicted to enable copper ion–binding activity (69), and
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MOXD1 knockdown significantly suppresses the proliferation

and tumor growth of glioblastoma cells via ER stress-inducing

apoptosis (70). Accumulating evidence seems to indicate the

potential roles of signature genes in glioma. In our validation

experiments, although there was heterogeneity in their

expressions at the protein level, almost all genes were

significantly verified at the mRNA level. Further function

enr ichment analyses based on a s ing le gene a lso

demonstrated a close link between signature genes and

immunity as well as malignant processes. Meanwhile, patients

with gene cluster B exhibited a higher CRG score and the worst

outcomes, and a higher CRG score is usually accompanied by

higher expression levels of CRGs in LGG tissues. Correlation

analysis among the CRG cluster, gene cluster, CRG score, and

survival status further indicated our scoring system’s robust

and stable prognostic-predictive ability. The distribution plots

and K-M plot validated that survival times decreased when the

CRG score increased in the TCGA training and validation

cohorts. In addition, this prediction ability was further

confirmed by two cohorts from CGGA as well. Furthermore,

patients with low- and high-risk CRG scores showed significant

differences in responses to radiotherapy or chemotherapy.

Taken together, we demonstrated an independent and

predictive role of CRG score in LGG.

Accumulative in-depth research has suggested some

prognosis factors for LGG. Immunobiology has been

acknowledged as a dominant factor for malignant processes

(71). Additionally, the immune infiltrating cell signature has

also been indicated as a prognostic marker in gliomas (72, 73).

As copper has been strongly indicated in the regulation of

immunity (74), identifying the role of cuproptosis in the TME

cell infiltration might enhance our understanding of LGG

antitumor therapy response, thus guiding more effective

immunotherapy strategies. In this study, GSEA enrichment

analysis illustrated the key role of immune processes between

high- and low-risk CRG score patients. The patterns characterized

by the immune-inflamed phenotype, higher stromal score, and

higher ESTIMATE score exhibited a higher CRG score, while the

other showed a lower CRG score. Five OS-associated gene

signatures were found to be significantly correlated with

immune cells. In addition, a higher CRG score was positively

associated with the infiltration of B cells naive, macrophages M0

and M1, T cells CD4 memory activated and T cells follicular

helper, while it was negatively correlated with mast cells activated,

monocytes, and NK cells activated. Evidence has shown the

crucial roles of these cells in LGG. Myeloid-derived suppressive

ce l l s were repor t ed to promote B-ce l l -med ia t ed

immunosuppression via the transfer of PD-L1 in gliomas (75).

Infiltrated tumor-associated macrophages have been revealed to

be negatively associated with the survival of glioma patients, and

its related prognostic model based on MScores demonstrated a

high accuracy rate (76). T cells were thought to infiltrate gliomas

at an early stage, mediating immunosuppression and resistance to
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treatment (77). NK-cell-targeted therapies have also been

highlighted in the immune escape of IDHmut gliomas (78). As

immune cells participate in various biologies, including

tumorigenesis and progression of LGG, targeting these cells may

benefit LGG patients with unfavorable prognosis. Meanwhile,

combined with the potential correlation between the above

signature genes and immune checkpoints, targeting these

immune checkpoints may benefit patients more. Furthermore,

we noticed that the RNA stemness score increased with increasing

CRG score, suggesting the critical role of cuproptosis patterns in

LGG tumor maintenance.

Despite great advances in LGG therapy over the past decade,

a substantial room for progress remains and improvements are

in demand. Even standard-of-care multimodal treatment

approaches including surgery, radiation, immunotherapy, and

chemotherapy have been proposed (79); LGG patients show

heterogeneity in their treatment response and outcomes when

considering the pathologic features, especially in terms of

mutation and therapy resistance (80). Further studies are

required to assess the impact of intratumor heterogeneity and

its TMB characteristic on prognosis and response to treatment.

Alireza Mansouri and his colleagues reported that the

methylation of the MGMT promoter provides better outcome

prediction when patients receive temozolomide chemotherapy

(81). IDH1/2 mutation, which induced a high concentration of

2-hydroxyglutarate through the upregulation of HIF-1a and

VEGF, could also benefit the patients (82). Similar to previous

studies, our data revealed a markable difference in tumor

mutation burden between CRG score subgroups. Patients with

a low CRG score showed a higher rate of IDH1 and IDH2

mutation. In addition, the lower mutation rates of TP53, EGFR,

and PTEN were also observed in low-risk patients, which has

been demonstrated to correlate with worse clinical outcomes

(83). Additionally, it has been reported that ATRX and CIC can

also influence the prognosis. The profiling of gliomas has

revealed that the majority (~75%) of low-grade gliomas that

carry IDH1 and TP53 mutations also harbor ATRX mutations,

thus underscoring their crucial role in gliomagenesis, which has

been indicated in the procession of impairing non-homologous

end-joining DNA repair (84, 85). Recent genomic analyses of

brain cancers have implicated CIC as a critical suppressor gene

in diffuse gliomas (86). Here, we discovered the significant

mutations of these genes in our cohort, which provides a

deeper understanding of LGG. Given the correlation between

TMB and enhanced clinical response to immunotherapy, we

further explored immunotherapy effectiveness in the subgroups

of LGG. In the present study, 33 immune checkpoints were

observed to be differentially expressed in the two groups. Five

CRG signatures and the total CRG score were respectively

associated with CD276, BTN2A2, and PDCD1LG2, which may

be a potential treatment response predictor in the clinic.
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Furthermore, we explored the role of cuproptosis patterns in

the radiation and chemotherapy of LGG. Results showed a

correlation between the CRG score and expression profiles of

radiotherapy-associated genes. Targeting CRGs might

contribute to enhancing therapeutic effects. Moreover, it has

been considered reasonable to apply adjuvant temozolomide for

patients with gliomas (87). TMZ can act as a radiosensitizer and

be given full consideration to be part of standard treatment for

newly diagnosed glioblastoma (88, 89). In our study, we

discovered that patients with low CRG scores were more

susceptive to the TMZ and procarbazine, suggesting a higher

response to treatment and better clinical outcomes. Though low-

risk patients in CGGA here did not benefit from the addition of

TMZ, the complexity of TMZ in LGG is still worth exploring.

Finally, to further improve the performance and facilitate the

application of the CRG score, we established a quantitative

nomogram that can be used for the prognosis stratification of

LGG patients. Given the superior performance validated by

multiple cohorts, the nomogram enables patients and

physicians to create a more individualized surveillance

program for LGG, thus improving the prognosis.

Nevertheless, there are still several issues to be addressed.

First, the CRG risk signature was conducted based on the data

retrospectively obtained from public databases, which was

inevitably limited by an inherent case selection bias. More

large-scale prospective and multicenter clinical studies are

needed to confirm our findings. Second, some critical clinical

variables like chemoradiotherapy and surgery were lacking for

analysis in some datasets, which may influence the results of

treatment response and cuproptosis state analyses. Though we

analyzed several immunotherapy datasets in this study, most of

them were not based on data from LGGs, which should be

further studied. Furthermore, more clinical pathology samples

should be included for validating the expression of signature

genes, and more functional in vivo or in vitro experiments

are further needed to verify the roles of signature genes in

the future.
Conclusion

Briefly, we demonstrated a comprehensive overview of CRG

profiles in LGG and established a novel risk model for LGG

patients’ therapies status and prognosis, which was partially

constituted by a 5-CRG signature (C21orf62,DRAXIN, ITPRID2,

MAP3K1 and MOXD1). We also determined the roles of these

genes in LGG by affecting the tumor-immune-stromal

microenvironment, clinical features, therapy strategies, and

prognosis. These findings highlight the potential clinical

implications of CRGs, suggesting that cuproptosis may be the

potential therapeutic target for patients with LGG.
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