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Structural and functional variability of human leukocyte antigen (HLA) is the

foundation for competent adaptive immune responses against pathogen and

tumor antigens as it assures the breadth of the presented immune-peptidome,

theoretically sustaining an efficient and diverse T cell response. This variability is

presumably the result of the continuous selection by pathogens, which over

the course of evolution shaped the adaptive immune system favoring the

assortment of a hyper-polymorphic HLA system able to elaborate efficient

immune responses. Any genetic alteration affecting this diversity may lead to

pathological processes, perturbing antigen presentation capabilities, T-cell

reactivity and, to some extent, natural killer cell functionality. A highly

variable germline HLA genotype can convey immunogenetic protection

against infections, be associated with tumor surveillance or influence

response to anti-neoplastic treatments. In contrast, somatic aberrations of

HLA loci, rearranging the original germline configuration, theoretically

decreasing its variability, can facilitate mechanisms of immune escape that

promote tumor growth and immune resistance.

The purpose of the present review is to provide a unified and up-to-date

overview of the pathophysiological consequences related to the perturbations

of the genomic heterogeneity of HLA complexes and their impact on human

diseases, with a special focus on cancer.
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Highlights
Fron
• Variability of human leukocyte antigen (HLA) genes

underlies differences in presentation of antigenic

peptides, influencing the risk for autoimmune diseases,

infection and cancer

• The high heterogeneity of HLA molecules and

consequently high HLA evolutionary divergence

(HED) within an individual ensures the presentation

of a broad immune peptidome

• Immune surveillance targets neoantigens in tumor cells

and thus selects for somatic alterations of HLA and the

antigen presentation machinery

• Somatic alterations of HLA heterogeneity can impair

cancer or autoimmune target recognition by T-cell

responses providing an immune escape environment

• Characterizing germline and somatic HLA heterogeneity

can facilitate therapy decisions for cancer patients
1 Discovery of the major
histocompatibility complex: The
evolution of ideas

Antigen presentation via major histocompatibility complex

(MHC) glycoproteins to T and, in part, natural killer (NK) cells,

constitutes thebasis for the processes of specific immune surveillance

and central tolerance in most mammalian species (1–3).

The historical background leading to the discovery of the MHC

complex is characterizedbyanumberof landmarkstudies carriedout

during the first half of the XXth Century on the role of the immune

system in rejection or retention of tissue allografts, first in animal

models and later in humans. Pioneers of these researches were

(among others) Peter Medawar, Peter Gorer, George Snell, Jean

Dausset, Jon van Rood, Rose Payne, who contributed to the

understanding of fundamental concepts of transplant immunology

(4–9) In 1964 the International Histocompatibility Workshop

(IHW) was established to enable the progressive characterization

of the MHC gene cluster and the identification of serologically

defined alleles, contributing to portraying the medical and

evolutionary significance of HLA polymorphisms, their

relationship with human diseases and their importance in solid

organ and allogeneic hematopoietic cell transplantation (HCT). In

the following decades, the gradual advancement of molecular

genomics allowed the identification of an incredibly high level of

polymorphisms responsible for the exceptional variability of this

gene cluster, which to date encompasses more than 33,000 different

alleles among classical and non-classical HLA genes (IPD-IMGT/

HLA database, v3.48, July 2022, Figure 1) (13). This exceptional

variability has also triggered increasing MHC research in a wide
tiers in Immunology 02
range of non-model vertebrate species, which has advanced our

understanding of immune system evolution in natural populations

(14, 15). Overall, the intensive research of the last decades has

contributed to define how genetic variations within the MHC

region may determine predisposition to diseases, and the study of

the functional consequencesof this immunogeneticdiversity is nowa

paradigm for human and evolutionary genomics (16, 17).

Since the discovery of MHC restriction, twomajor concepts have

been invoked to explain the high MHC genetic variability and the

related fitness advantage of diverse genotypes, namely the

heterozygote advantage and the divergent allele advantage

hypotheses (18–21). Both theories posit that presenting more

different peptides is advantageous, but the latter, which is an

extension of the former, stems from the observation that the more

different two homologous HLAmolecules are, the higher is their joint

capability of presenting a broader infectious or cancer peptidome (20,

21). This feature is particularly important for the elaboration of

antigen-specific adaptive responses and finds implications in many

aspects at the basis of immune competence and central tolerance.
2 Structure and evolution of the
human MHC gene cluster

The MHC genomic cluster in humans includes more than 280

genes and encompasses a region of approximately 4 Mb, embedded

on the short arm of chromosome 6 (6p21.3-22.1) (13). Three

distinctive regions can be conventionally identified within this

cluster, based on the topographical and functional homology of

the genes involved: class I, II and III (Figure 2). The class I region

contains classical (HLA-A, B, C) and non-classical (HLA-E, F, G)

class I loci, and MHC class I chain-related genes (MICA, MICB,

MICC, MICE, HFE) together with class I pseudogenes (H, J, K, L,

N, P, S, T, U, V, W, Y), and non-HLA genes not related to

immunity. The class II region comprises loci encoding a and b
chains of HLA-DQ, -DR, and -DP molecules and other genes

associated with antigen degradation, transportation and assembly

(including the IFN-g inducible immune proteasome components

LMP2 and LMP7 and the transporters TAP1 and TAP2). An

extended class II region incorporates a few genes with immune

functions, including TAP Binding Protein (TAPBP or tapasin) and

Retinoid X Receptor Beta (RXRB), associated with MHC-class I

post-translational processing and transcriptional regulation,

respectively. Finally, the class III region is densely populated by

genes with innate and adaptive immune functions, including,

among others, loci for the complement components C2 and

C4A-B, tumor necrosis factor (TNF) and heat shock protein

family A (HSPA1).

The study of patterns of inter-species conservation of these

genomic regions uncovers interesting aspects associated with

the evolution of the adaptive immune system. Some non-

mammalian vertebrates, such as chickens, carry only a

rudimental adaptive immune system in which only one MHC
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of each class is dominantly expressed, genes encoding proteins

for antigen processing machinery (TAP and TAPBP) are very

polymorphic and located next to class I MHC loci. This logistic

genomic relationship suggests that the coevolution of these two

clusters is of crucial importance for their function, likely

defining their specificities for immune responses and

resistance to pathogens (22, 23). Conversely, in humans and

most mammalian species characterized by a fully developed

adaptive immune system, specificities against pathogens are

essentially based on the hyper-polymorphic variable regions

within class I and II MHC loci, while genes encoding

transporters and other members of the antigen presenting

complex are characterized by a low (if not null) variability.

These genes are also located far from the class I region,

pointing towards reduced chances of co-evolution and
Frontiers in Immunology 03
diversification and underscoring the broader interaction of

one or few genomic products with multiple class I alleles

(22). Such differences in the genomic architecture of the

MHC cluster across the phylogenetic tree represent a by-

product of the evolutionary forces shaping vertebrate

immune systems. Indeed, mechanisms of genome wide

duplication, rearrangements, genetic drift and balancing

selection are responsible for the complex hyper-polymorphic

mammalian and human MHC systems, whose main feature is

the capability to adapt to a wide range of pathogens and

develop complex immune responses (23–25).

The evolutionary step allowing for the introduction of an

antigen-based immune specificity is assumed to be the

integration of RAG transposable elements in the jawed

vertebrates’ genome, ancestral transposons at the basis of
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FIGURE 1

Variability of HLA locus. (A) Circle graph capturing the distribution of the number of HLA class I, class II and non-HLA alleles known to date
within the human MHC region. Data extracted from the IPD-IMGT/HLA database v.3.48, downloaded in July 2022. (B) Bar graphs depicting the
distribution of the number of alleles, proteins and null alleles (characterized by the presence of truncating mutations), per locus among classical
and non-classical HLA genes. Of note is that HLA-DRB1 is responsible for the greatest variability within the copy number-variable DRB locus. (C)
3D crystallographic structure of TCR ab chains interacting with an MHC class I molecule (allele A*02:01 and b2 microglobulin – b2M). These
structures were extracted from the Protein databank (PDB) website and reoriented in order to show MHC-TCR synapsis (ref PDB:4MNQ) (10).
(D) Representation of the HLA binding motifs of selected epitopes from a HLA-A2 related dataset, extracted from the IEDB (11) an visualized
with Weblogo (https://weblogo.berkeley.edu ) (E) Crystallographic structure of the antigen binding domains of HLA-A*01:01 with some variable
residues highlighted. (F) WebLogo visualization of the variable amino acids within the peptide binding domains (corresponding to exon 2 and 3)
of the HLA-A alleles in a representative population of healthy controls (N=960). (12) The height of each letter corresponds to the relative
frequency of each amino acid in the population. This graphic represents an attempt to visualize the variability of the antigen binding domain of
HLA-A alleles, but does not capture the whole spectrum of heterogeneity, since it represents only a limited population.
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RAG1 and RAG2 recombinase activity governing the processes

of V(D)J recombination, responsible for the diversity of

antibody and T cell receptor repertoires (TCR) (26). This

evolutionary event has facilitated an adaptive immune system

that is based on highly diversified antigen-recognition elements.

Introducing this evolutionary perspective on antigen-

specific immunity is of crucial importance for understanding

the immunogenetic risk for certain infectious and immune-

related diseases and may help in tracking patterns of MHC

dysfunction at the basis of cancer evolution or susceptibility to

complex diseases.
3 Variability of antigen presenting
structures and divergent allele
advantage model

MHC class I and class II molecules have the ability to present

to immune effectors a broad assortment of protein-derived

antigenic peptides on the surface of cells and their molecular

and structural variability guarantees the breadth of this immune-

peptidome. The wide range of HLA polymorphisms currently

present in human populations has been selected by evolutionary

forces via a process of balancing selection, favoring alleles or

allelic combinations able to sustain the burden of diverse

pathogens to which human populations have been exposed to

throughout their history (21, 27–29) The extent of this genetic

variation, mainly consisting in an increased rate of single

nucleotide polymorphisms (SNPs), peaks within the antigen

binding sites, resulting from natural selection favoring the

diversification of peptide-binding capabilities (13). The basis
Frontiers in Immunology 04
for this pathogen-mediated selection is represented by the

unique pathogen-specific antigen repertoires that hardly

overlap among species, so that each pathogen species

challenges the immune system in a different way (30).

Different not mutually exclusive mechanisms of pathogen-

mediated balancing selection have been proposed over the last

decades to explain the exceptional variability of the HLA genes

(15, 31, 32). Among those, the heterozygote advantage

hypothesis, first formulated by Doherty and Zinkernagel in

1975, assumes that individuals with an heterozygous HLA

genotype are able to present a wider range of peptides and

consequently to support immune responses against a larger

range of pathogens, compared to homozygous genotypes (19).

This assumption is further expanded by the divergent allele

advantage model, stipulating that homologous HLA alleles with

higher sequence divergence have the capability to bind more

diverse and less overlapping peptide repertoires than less

divergent genotypes (20, 21, 33). Such theories led to a

paradigm shift for our understanding of antigen-specific

immunocompetence: the genomic and consequently structural

diversity of HLA molecules assures the elaboration of more

diversified T-cell responses allowing efficacious anti-infectious

and anti-tumor surveillance (21, 33–37).
4 HLA evolutionary divergence and
its clinical implications in cancer

HLA evolutionary divergence (HED) (21, 37), is a recently

implemented metric to quantitatively assess the functional

difference between two HLA molecules, based on the variance
FIGURE 2

Schematic structure of the human MHC region. Selection of class I, II and III HLA and non-HLA genes located in 6p22.1-21.3 region. Gene-locus
classification reported in legend follows IPD-IMGT/HLA database description. Distances among genes not to scale.
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in the corresponding amino acid sequence that encodes the

peptide-binding groove of the two given HLA molecules. The

HED metric is based on the Grantham distance score, which

predicts the functional distance between two amino acids based

on their physio-chemical properties, and which has been

proposed for the estimation of damaging or deleterious amino

acid substitutions (38). As higher Grantham scores reflect higher

functional amino acid distances, higher HED values define

functionally more divergent HLA sequences and vice

versa (Figure 3).

This quantitative parameter has rapidly found applicability

in many contexts due to its ability to capture the breadth of the

immune peptidome presented by two different HLA alleles and,

per extenso, by an individual with a given HLA genotype.

A recent landmark study in the field of immunotherapy shows

that cancer patients homozygous for at least one HLA class I locus

present a restricted and less diversified repertoire of tumor-derived

neoantigens to CD8+ T-cells compared to fully heterozygous

individuals, defining an immunogenetic configuration that may

reduce the chances to respond to checkpoint inhibitors (40). This

restriction of the neoantigenic pool may translate in a lower

immunogenicity of cancer cells resulting in a reduced stimulation

of anti-tumoral T cell effectors in class I homozygous patients as

compared to fully heterozygous cases. Interestingly, somatic loss of

heterozygosity within HLA class I loci, a phenomenon observed in

many tumor tissues, may mimic this configuration, possibly

representing an independent predictor for poor survival and poor

response to immunotherapeutic agents (41). These findings

underlie how selective pressures derived from the presentation of
Frontiers in Immunology 05
immunodominant peptides may be associated with certain HLA

genotypic patterns (40). Later on, the application of HED metrics

demonstrated how advanced-stage melanoma patients with more

divergent HLA class I alleles could respond better to

immunotherapy, regardless of tumor burden (37). Similar effects

can be assumed more generally, i.e. independent of

immunotherapy: compelling evidence shows that HLA class I

genotypes may sculpt tumor genomes by presenting more or less

immunogenic neopeptides, while frequent cancer-related oncogenic

mutations have been associated with breach in immunopeptidome

presentation, enabling the expansion of transformed cells

characterized by impaired presentation capabilities (42, 43).

Furthermore, the oncogenic mutational profile of a tumor may

depend on the interaction between HLA genotype and specific

cancer-derived neoantigens (44). In fact, HLA class I and class II

genotypes have been shown to influence mutational events in

cancers in a Darwinian fashion, being complementary to each

other in establishing the patterns of immune escape from both

CD8+ and CD4+ T-cell responses (44, 45). Hence, the mutational

landscape of a transformed cell depends on the concertation among

tumor genomic instability, neoantigen HLA binding predilection,

and anti-tumor responses. Also, alternative and aberrant splicing

has been shown as an important mediator of the shape of the

neoantigen landscape, further affecting HLA-restricted immune

surveillance (46). In this view, it is understandable how individual

variation of HLA genotypes may contribute to shape the dynamics

of anti-tumor adaptive immune response, restraining tumor

oncogenic potential, and/or inducing mechanisms of

immune escape.
FIGURE 3

HLA evolutionary divergence calculation and pathophysiological implications. The HED score between two HLA alleles approximates the
functional dissimilarity between the encoded molecule variants based on the Grantham distance between the amino acid sequences of their
peptide binding domains. This computation is made using a dictionary including all the protein sequences of exons 2 and 3 for class I alleles and
exon 2 for class II alleles, assembled from the IPD-IMGT/HLA database. (39) From a pathophysiological point of view, the divergence of HLA
binding sites can influence patterns of antigen presentation in different processes, from response to infections to tumor surveillance, with a
higher HLA divergence being associated with stronger immunocompetence and vice versa. At the right and the left as an example, A1 and A2
represent two alleles of the same locus. Each letter of A1 indicates an amino acid in the peptide binding site. In A2 letters designate variable
amino acids (polymorphisms) and dots denote constant residuals. A1 and A2 on the left harbor a lower variability (low number of polymorphic
residues) as compared to A1 and A2 on the right (higher number of polymorphic amino acids). Figure created with Biorender.
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5 Notes on peptide
binding prediction

Thanks to the advances in computational immuno-oncology

tools, the availability and the integration of HLA and genetic

information may enhance the prognostication and the design of

therapeutic algorithms for cancer patients. There are now

pipelines able to predict the production of neopeptides, their

affinity with HLAmolecules and potential immunogenicity. These

computational approaches are advancing the field of cancer

immunotherapies and precision oncology (39, 47–51). Despite

limits of early pipelines especially for class II-restricted epitopes,

associated with poor specificity, and narrow sets of HLA alleles

used as training frameworks, enhanced algorithms have been

developed to accrue the accuracy of peptide characterization

and immunogenicity quantification, including for class II-related

antigens (49, 52–54). The precise characterization of HLA class I

and II binding clefts plays a pivotal role in neoantigen prediction.

In fact, key residues of the antigen binding site of HLA molecules

may determine the binding motifs of the respective T cell epitopes.

The study of the physiochemical composition of these motifs may

be deployed to enhance binding prediction performance (55). In

addition, characterization of complementarity determining 3

regions (CDR3) within the variable portion of TCR beta chains

may be used to enhance reverse prediction of bound antigens (10,

56, 57). Theoretically one could predict the characteristics and the

specificity of each epitope (i.e. autoimmune, cancer, pathogen-

related), the related bound HLA alleles, or the function of the

recognized T-cells (i.e. CD4 vs CD8) (58). Nonetheless because of

the limited number of HLA alleles, disease and T-cell subtypes

tested in experimental conditions, the identification of each motif

group and, consequently, epitopes’ characterization and

prediction to date remain challenging. As an example, we

reported in Figure 1 the representation of the HLA-A2

restricted binding motifs of selected nonameric peptides,

extracted from The Immune Epitope Database (IEDB) (11).
6 Impact of HLA variability on NK
reactivity and role of non-classical
HLA peptide presentation

If HLA-antigen-TCR interactions restrict the specificity of

adaptive immunity, HLA variability can also impact tumor

surveillance via the innate strand of the immune system

characterized by NK control. NK cells are capable of integrating

and elaborating activating and inhibitory signals, thus modulating

their reactivity against compromised cells according to the intensity

of the feedback (59). Specifically, NK cells recognize self-peptides

derived from classical and non-classical HLA, adhesion molecules

and others via activating or inhibitory killer cell immunoglobulin-
Frontiers in Immunology 06
like receptors (KIRs) (60). Allelic heterogeneity directly influencing

the surface density and binding affinities, weights the global avidity

of KIR-HLA interactions (61). NK cells are also able to recognize

patterns or molecular configurations characterizing transformed

cells, (for instance downmodulation of HLA class I molecules –

“missing self”), thereby sparing healthy tissues (59, 62, 63). These

aspects are particularly important in NK-based immune

surveillance and may shape the degree of anti-tumor control

defining an “immunogenetic” predisposition to develop solid

tumors, respond to immunotherapy, or induce post-HCT

alloreactivity (64–68).

Non-classical class I HLA molecules (in particular HLA-E, G

and F) have shown an important role in both immune surveillance

and tolerance, essentially displaying regulatory functions towards

NK and T cell activation. Although similar in structure to classical

class I molecules, non-classical HLA class I alleles are oligomorphic

and often exhibit a limited tissue distribution, modulated in

inflammatory conditions. The decreased variability accounts for a

limited immune peptidome repertoire and specific

immunoregulatory functions. In physiological conditions, HLA-E

binds self-peptides generated from the peptide leader sequence of

class I molecules (HLA-A, HLA-B, HLA-C and HLA-G),

participating in immune tolerance (69, 70). Other non-classical

HLA molecules display instead antigen-presenting features,

interacting with specific a/b TCRs and intervening in adaptive

immunity (69). HLA-G has been linked to immunosuppressive

phenomena by inhibiting NK and T-cytotoxic activation and

chemotaxis (71, 72). Variation at the HLA-G locus has been

demonstrated as affecting its mRNA translation and stability,

impacting on tumor susceptibility or treatment outcomes (73–75).
7 Somatic dysfunction of HLA
diversity: HLA loss and beyond

Downregulation of the antigen presentation machinery

represents a paradigm of evasion from anti-tumor

immune surveillance.

Large genomic aberrations, fine somatic mutations, epigenetic

silencing and transcriptional modifications involving directly the

HLA region or genes encompassing antigen degradation,

transportation and processing have been invoked across large

cohorts of solid tumors and hematological disorders, all as a result

of a common lynchpin: the selective pressure induced by the

antigen-specific adaptive immune system.

To better understand the complex mechanisms underpinning

immune escape, it is important to consider the fascinating concept of

immunoediting deriving from the study of immune responses in

tumor physiopathology. Cancer immunoediting is a complex

network of events that characterizes the double capability of tumor

immune surveillance to both coerce and endorse tumor growth, by

inducing evolutionary pressures culminating in specific patterns of
frontiersin.org
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clonal selection (76–78). Three phases can be identified in this

pathophysiological phenomenon after cancer initiation:

elimination, equilibrium and escape (Figure 4) (76).

In a first phase of the development of a cancer, both innate

and adaptive immune system can identify and destroy cells

undergoing processes of malignant transformation that evade

intrinsic cellular mechanisms of control (77). This initial phase

of tumor surveillance contributes to sculpt the tumor genomic

landscape, eliminating clones with more immunogenic

mutational products (e.g. , via HLA-presentation of

neoantigens with high capabilities to elicit T-cell responses).

Such a process may last for a long time (equilibrium phase)

during which tumor surveillance opposes cancer progression.

However, the constant pressure operated by the immune

surveillance on the instable cancer genome may culminate in

genomic or transcriptional aberrations in HLA, antigen

presenting and processing machinery- or checkpoint- related

genes (e.g., HLA mutations, PDL1 upregulation), allowing

tumor cells to evade immune surveillance (76). Such immune-

edited tumors can then enter into the final escape phase,

characterized by an uncontrolled proliferation, after

destabilization and exhaustion of immune surveillance

mechanisms (76). The consequences of this multiphase

process become clear when characterizing responses to

immunotherapy. Failure or resistance to immunomodulatory

strategies in cancer treatment can in fact derive from the

development of such mechanisms of immune evasion, and

their molecular characterization is suggested to clinically

predict the response to such targeted therapies (76, 79).

Genomic aberrations involving the HLA region, such as the

loss of an entire haplotype or an allele, have been described in

different solid cancers and hematological malignancies and may
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occur through mechanisms of deletions or copy-neutral loss of

heterozygosity (CN-LOH) of chromosome 6p21 (80–85)

Recently, somatic mutations in HLA class I genes have been

identified as important contributors in the landscape of cancer

immune-evasion, especially for tumors characterized by

upregulation of T-cell cytotoxic activity signatures and high

immunoediting potential (86).

Several other mechanisms underlying down-regulation or

loss of HLA class I in human tumors have been described,

resulting in many different phenotypes (87). Total loss of HLA

class I presentation may also be due to mutations in b2M or in

other genes involved in the antigen-presenting machinery, such

as immunoproteasome subunits LMP2 and LMP7 or the

transporters TAP-1 and TAP-2 (88, 89).

A paradigmatic example of how somatic aberrations in the HLA

region can lead to immune escape via abolition of the presentation of

immunogenic peptides is the CN-LOH of the non-matched HLA

allele in allogeneic HCT. Such a complex genomic phenomenon,

which occurs in the setting of mismatched HCT transplants,

underlies the duplication of the matched allele replacing the

mismatched gene in recipient-derived hematopoiesis, as

mechanism of leukemic relapse (90, 91). In this context, the

elimination of the incompatible HLA alleles by malignant cells,

would restrain the presentation of immunogenic alloreactive

peptides, without decreasing the overall level of expression of HLA

class I molecules. As a result, NK cell recognition, which is principally

activated in response to the absence or downregulation of self-HLA

class I molecules, would be disabled, as shown with functional essays

in the setting of acute myeloid leukemia relapse after haploidentical

transplantation (91). Therefore, the anti-tumoral effect of the

allogeneic HCT (graft versus leukemia effect) is circumvented,

allowing disease relapse.
FIGURE 4

Phases of cancer immunoediting. In the natural history of a tumor, aberrant cells that fail intrinsic mechanisms of control and tumor
suppression, are exposed to an external control operated by innate and adaptive immunities, which initially contain cancer progression,
contributing to sculpt its genomics, by eliminating cells with higher immunogenic potential. This immunological mechanism starts a process
called immunoediting, in which cancer cells are exposed to T-cell and NK selective pressures. This phase of elimination is in general followed by
an equilibrium phase, where all the mechanisms of tumor-surveillance are operative and constrain tumor cells, reaching a balance. In this
context, rare cells can develop immune resistance, ultimately reducing the presentation of immunogenic neoantigens and T cell activation and
entering into an escape phase in which tumor progression takes over, because not restricted anymore by the immune system. Figure created
with BioRender.com
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8 Immunoediting forces
shaping clonal evolution:
A common lynchpin in cancer
and autoimmunity?

As mentioned above, the HLA-restricted antigen-specific

immune response exerts a mechanistic pressure against

unknown and non-self-peptides and, by this virtue, cancer

cells harboring mutated, strong immunogenic proteins are

eliminated. This process underscores an important

pathophysiological aspect. Tumors with higher levels of

immune infiltration may have (at least at an initial stage of

immunoediting) a lower mutational burden, in line with the

observed better outcomes of patients whose cancers are

characterized by stronger immune signatures (92–94). The key

for tumor cells to achieve a clonal advantage would thus be to

lose the capability for presenting immunogenic peptides without

losing their fitting advantage or proliferation propensity. As a

consequence of such impaired immune restriction, tumors

adapting this way to evade immune surveillance may develop

a different molecular landscape, with higher mutational burden

and genomic instability, compared to those that are still evolving

under a competent antigen presenting machinery (95, 96).

In tumor biology, the down-modulation of HLA-restricted

immunity becomes an example of evolutionary adaptation

established by mutated cells undergoing immune selection. In

this context, one of the multiple outstanding issues is how to

treat cancer patients who present with “the stigma” of immune

escape, i.e. whose tumor has developed one or more immune

evasion phenotypes. For instance, in case of disease recurrence

after allo-HCT, a lower response rate to donor lymphocyte

infusion and other immunomodulatory strategies has been

shown in case of loss of the mismatched haplotype, with a

slight improvement in survival when patients receive a second

transplant from a different donor, thereby re-establishing the

HLA heterogeneity balance (91, 97). Also, in pan-cancer studies,

loss of HLA class I has been described as a negative predictor of

survival and response to immune checkpoint inhibitor treatment

(40, 41) pinpointing an important pathophysiological aspect:

highly immune-edited tumors exhibiting features of immune

escape are less likely to respond to pharmacological T-cell

activation. It is also noteworthy to recognize the complexity of

the association between immune escape and tumor mutational

burden (TMB): a recent pan-cancer study suggested that the

prevalence of HLA class I loss may follow a “Goldilocks” pattern.

Indeed, tumors with the highest (i.e., cutaneous melanoma) and

lowest TMB (i.e., neuroendocrine tumors) had lower incidence

of HLA losses as compared to malignancies with an intermediate

TMB, underscoring the non-linearity of this association and the

possibility of additional patterns of evasion from immune

recognition in highly instable tumors (41).
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All these observations are in line with the inconsistent

immunotherapy efficacy across cancer cohorts and with the

unmet clinical need for providing non-HLA restricted

immunomodulatory strategies overcoming the above-

mentioned issues. An important example of non-HLA

restricted immunotherapy is represented by genetically

engineered T cells (TCRs and chimeric antigen receptor

-CAR- T cells), or bispecific T cell engager therapies (BiTE)

whose specificity is designed to be directed against precise

tumor neoantigens bypassing MHC restricted epitope

presentation by means of modified T cell surface molecules

able to target specific overexpressed cancer antigens (i.e. CD19

in lymphoproliferative disorders) (98, 99). Nonetheless it is

noteworthy to highlight that similarly to the pression induced

by the HLA-restricted immune selection, conducting to

somatic rearrangement of HLA region and loss of immune-

dominant antigen presentation, one of the major mechanisms

of treatment resistance is the down-modulation of the targeted

molecule. This process may represent another operative

mechanism of immune antigen escape, associated with the

pressure exerted by CAR-T cells or BiTEs on their target

(98, 100).

As said, NK cells exert their anti-tumor activity in a way mostly

independent of the presentation of specific neoantigens, being still

able to discriminate between healthy and transformed cells. Due to

this ability, there is a rapidly emergent interest in developing

engineered CAR-NK cells as a strategy of cancer cellular-therapy.

The short life, the safety profile particularly with regards to the

absence of major cytokine release, and the innate cytolytic activity

against a great variety of cancers render CAR-NK-based platforms

particularly attractive for implementation in different clinical

settings of onco-hematology (101–103).

Clonal evolution can theoretically occur in all types of cancer

where the immune system exerts an initial control on the neoplastic

cells. One could speculate that similar mechanisms of immune

escape may be present at a certain level also in some autoimmune

disorders. A prototypic example in this direction is represented by

idiopathic aplastic anemia (IAA), an immune mediated bone

marrow failure disease characterized by T cell mediated

destruction of hematopoietic stem cells, translating in failure of

hematopoiesis (12, 77, 80, 81, 89, 104, 105). Here, genomic loss of

HLA molecules has been shown as a frequent mode of immune

escape of target cells from autoimmune attack, theoretically

lowering the presentation of immunogenic peptides below the

activation threshold of T-cell effectors. Autoimmunity is not

generally associated with high mutational rates in targeted tissues

and the development of neoantigens, and besides IAA, the

possibility of immune evasion due to immune pressure has not

been raised in other autoimmune diseases. However, certain aspects

of the same immunoediting scenario seen in tumor biology could

also play a role in HLA-mediated autoimmunity, which is triggered

by erroneous immune activation of adaptive responses against self-
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peptides, a process quite similar to the HLA-mediated targeting of

neoantigens on tumor cells. While the HLA loss observed in IAA is

an exemplificative epiphenomenon of such processes, one could

speculate that this mechanism can be operative in other

autoimmune contexts within the tissues selectively attacked by

the immune system via HLA-restricted pathways, as a

mechanism of “adaptive” rescue. Such clonal selection obviously

requires some level of cell division, and can thus only operate in

tissues with regenerative activity, but it might be worthwhile to

explore this in appropriate autoimmune settings beyond IAA.
9 Conclusive remarks

Molecular dysfunction of individual HLA heterogeneity

constitutes a common mechanism at the basis of a number of

pathological processes encompassing infectious, neoplastic and

possibly autoimmune pathophysiology. On one hand, the

assessment of germline HLA genomic and structural diversity

may have important prognostic implications as in the case of risk

profiles associated with response to immunotherapy, or the

propensity to develop certain autoimmune disorders. On the

other hand, somatic loss of heterozygosity or reduced

presentation of immunogenic peptides may configure patterns of

immune escape in a variety of disorders of both neoplastic and non-

malignant nature. Given the importance in human diseases, the

analysis of HLA genotypic configurations and the relative somatic

dysfunction should be integrated in clinical practice, especially in

the immunology and onco-hematology fields, where their

assessment may help in refining patients’ prognosis and the

suitability for immunomodulatory agents’ interventions.
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