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The advent of technologies that can characterize the phenotypes, functions and fates of
individual cells has revealed extensive and often unexpected levels of diversity between
cells that are nominally of the same subset. CD8+ T cells, also known as cytotoxic T
lymphocytes (CTLs), are no exception. Investigations of individual CD8+ T cells both in
vitro and in vivo have highlighted the heterogeneity of cellular responses at the levels of
activation, differentiation and function. This review takes a broad perspective on the topic
of heterogeneity, outlining different forms of variation that arise during a CD8+ T cell
response. Specific attention is paid to the impact of T cell receptor (TCR) stimulation
strength on heterogeneity. In particular, this review endeavors to highlight connections
between variation at different cellular stages, presenting known mechanisms and key
open questions about how variation between cells can arise and propagate.

Keywords: CD8 T cell, heterogeneity, stochasticity, TCR - T cell receptor, T cell differentiation and function,
cytotoxic T lymphocyte (CTL)
INTRODUCTION

The mammalian immune system relies on the generation of diverse immune cell types and subsets by
developmental and differentiation programs. Cells undergoing such transitions pass through an
intermediate zone, exhibiting further diversity on a continuum of changing characteristics. Once
meeting the phenotypic criteria of a specific cell type or subset, cells can still exhibit extensive
heterogeneity among other features. Enabled by advances in single-cell genomics, live imaging, and
fate-mapping technologies, the past decade has seen a surge in research aimed at understanding cellular
heterogeneity itself. Single-cell genomics can measure variability in genome-wide molecular
characteristics in thousands to millions of cells (1–3). Long-term live imaging enables investigators to
monitor temporal changes within individual cells or clonal lineages over increasingly long time-frames
(4). Finally, fate-mapping methods can track the progeny of individual cells, or populations marked by
past expression of a particular gene, to reveal diversification that occurs across many generations (5).
These technologies have revealed that despite extensive variation between individual cells, means and
variances of these heterogeneous populations can be remarkably stable (6, 7). This suggests that cellular
heterogeneity itself is a regulated biological process.
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Richard CD8+ T Cell Heterogeneity
Cells of the adaptive immune system, including CD8+ T cells,
also known as cytotoxic T lymphocytes (CTLs), are unique in
harboring hard-coded variation in the DNA sequences of their
immunoreceptors. Although this can contribute to phenotypic
diversity (8), it is not their only source of heterogeneity. This
review will take a broad perspective to explore inter-cellular
variation among CTLs at the levels of differentiation fate,
response timing, gene expression, proliferation, localization
and function (Figure 1), with a particular focus on how the
strength of antigenic stimulation modulates this heterogeneity.
Examples and connections between different forms of variation
will be presented, highlighting outstanding questions about
drivers and consequences of CTL diversity.
THE BRANCHING TREE OF
DIFFERENTIATION

Upon T cell receptor (TCR) stimulation with a peptide-MHC
(pMHC) ligand on an antigen presenting cell (APC), a naïve T
cell undergoes substantial metabolic and biosynthetic changes
that initiate its proliferation and the differentiation of its progeny
(9–11). The pool of activated, dividing cells that emerges during
the first week of infection is already a heterogeneous mixture of
both short-lived effector cells and memory precursors, which
subsequently develop into various populations including stem-
like, central, effector and tissue-resident memory (12). Chronic
stimulation in the context of viral infection or cancer can then
drive differentiation of additional subsets including exhausted or
inflationary populations, which are themselves heterogeneous in
nature (13, 14). High-dimensional single-cell measurements and
fate-mapping techniques have been instrumental in revealing
low-frequency but functionally important precursor cells that
emerge during the early proliferative period [exemplified by (15–
17)]. Beyond canonical differentiation pathways, single-cell
Frontiers in Immunology | www.frontiersin.org 2
transcriptomic studies of T cells from different anatomical
locations, such as (18, 19), have demonstrated tissue-associated
variation in gene expression within nominal subsets. Thus, T cell
differentiation is a highly complex, diverging process.

Fate-mapping technologies have played a critical role in
elucidating how the progeny of individual naïve CD8+ T cells
populate diverse differentiated subsets (7). In 2007, Stemberger
et al. transferred a single naïve TCR-transgenic T cell of known
antigen specificity into a host and observed the differentiation of
both effector and memory cells (20). Subsequently, another group
used a lineage tracing system with genetic barcodes to track the
progeny of individual naïve T cells and confirmed this model in
which a single naïve cell can give rise to progeny with multiple
differentiation fates (21). Such diversification of progeny has also
been demonstrated in Th1 versus Tfh differentiation of CD4+ T cells
(e.g (22, 23)). These data raised important questions about how such
diversification is regulated. Are the proportions fixed? Are they
consistent from one naïve cell to another? Three studies using
different types of fate-mapping and limiting dilution cellular transfer
systems clearly answered these questions: differentiation patterns
emerging from each naïve T cell are highly diverse, but the
population response to a specific challenge remains robust (24–
26). This holds true even between naïve T cells with the same TCR,
arguing against a deterministic mechanismwhereby the TCR-ligand
interaction programs a fixed pattern of differentiation fates. Instead,
the fate distributions of individual cells were found to follow a
probabilistic model (24).
TCR-LIGAND INTERACTIONS CAN SKEW
DIFFERENTIATION FATES

While differentiation fate distributions vary between individual
naïve T cells, the population average from which these are
FIGURE 1 | Schematic of types of heterogeneity among a population of CD8+ T cells responding to antigenic stimulation. Variation in (left) antigenic and/or
microenvironmental signals is associated with (middle) different time delays before activation, gene expression patterns, proliferation profiles, and lymphoid tissue
locations during the activation and expansion phases of the response. Many of these forms of heterogeneity are also associated with (right) subsequent differentiation
fates. Created with Biorender.com.
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Richard CD8+ T Cell Heterogeneity
sampled can be tuned by the nature of the stimulus. One such
tuning factor is the strength of the TCR-ligand interaction. Two
related metrics are frequently used to describe this interaction:
“affinity”, which refers to the ratio between the on-rate and the
off-rate, or in some cases simply the inverse of the off-rate, of
each individual TCR-pMHC molecular interaction; and
“avidity”, which describes the aggregate behavior of all
interacting ligands and receptors and is thereby affected by
additional factors such as ligand and receptor concentration.
Several studies have investigated the impact of TCR-ligand
interaction strength using modified influenza viruses, murine
cytomegaloviruses (CMV) or Listeria monocytogenes (LM)
strains expressing ligands of different affinities for the OT-I
transgenic TCR (27–30). In these studies, naïve CD8+ T cells
that received strong stimulation expanded more than weakly
stimulated cells and preferentially differentiated into short-lived
effector and effector memory populations. Accordingly, weakly
stimulated naïve cells contributed fewer progeny to all
differentiated subsets but were disproportionately found among
memory populations, particularly central and tissue-resident
memory. Similar results were observed in CD4+ T cells, with
TCR-ligand interactions additionally impacting the balance of
Tfh/Th1 or Th1/Th2 differentiation [exemplified by (31–34) and
comprehensively reviewed in (35)]. Of note, one study that used
modified LM infection to vary stimulation strength of OT-I
CD8+ T cells observed no ligand-associated differences in the
percentages of short-lived effector and memory precursor cells in
the blood over a month of infection (36). This discrepancy may
be due to differences in sampling sites and/or populations
examined, but nevertheless it highlights the need for more
work in additional model systems to understand the contexts
in which stimulation strength impacts differentiation outcome.

The predicted consequence of differentiation biases driven by
stimulation strength would be a pool of memory cells with
greater TCR diversity and, on average, lower antigenic affinity
than the pool of effector cells. Evidence of this phenomenon was
observed in murine models of influenza infection (28, 37), while
similar results were reported in CD4+ T cells during murine
lymphocytic choriomeningitis virus (LCMV) infection (38).
Interestingly, this latter study highlighted differences between
TCR-ligand affinity and tetramer avidity measurements, serving
as a reminder that additional factors such as TCR expression
levels must be considered when comparing ligand binding
tendencies between populations (38). Furthermore, exploration
of a broader range of infections in murine and human systems
will be important to understand the generalizability of antigen
affinity differences between T cell subsets. Nevertheless,
observations of greater TCR diversity within memory
populations lead to the intriguing hypothesis that this serves as
a mechanism to protect against reinfection with mutated
pathogens. In support of this hypothesis, reducing clonal
diversity of the memory pool by deleting Cd27 (37) or
interrupting EOMES/BLC2 signaling (28) impaired protection
against mutated pathogen variants while leaving robust recall
responses to the original pathogen. Thus, mechanisms that drive
differences in TCR affinity and heterogeneity between effector and
Frontiers in Immunology | www.frontiersin.org 3
memory cells may have been naturally selected for their efficiency
in fighting both current and future infections. It will be interesting
to see whether future studies support or contradict this theory.

Chronic antigen presence can further drive CD8+ T cell
differentiation. In certain contexts, such as latent CMV
infection, CTLs with an effector memory phenotype and
persistent effector functionality gradually expand in a process
that has been termed memory inflation (14). Interestingly, while
CTL expansion correlates with TCR-ligand affinity in acute
infection (39, 40), this relationship appears to shift with latent
infection. Using a model of murine CMV, a recent study found
that while high affinity CTLs dominated early in the response,
lower affinity cells became most abundant over time (41). These
findings were corroborated by measuring the affinities of human
CD8+ T cells specific for CMV-derived ligands, where inflation
of the memory population was inversely correlated with its
ligand affinity (41). The mechanisms underlying the inflation
of low affinity populations during CMV infection are not
completely resolved, but evidence suggests that they reflect
early differentiation divergence that impacts the long-term self-
renewing potential of each clone. Specifically, fate mapping
experiments tracking the progeny of individual naïve murine
CD8+ T cells showed that potential for long-term memory
inflation was determined within 6 days of infection and
correlated with a central memory precursor phenotype (42).
Transcriptomic profiling of high-affinity CTLs shortly before the
point at which they lost dominance in murine CMV infection
revealed upregulation of co-inhibitory receptors, as well as a
program of gene expression associated with senescence (41).
Thus, the gradual evolution of ligand affinity may be the result of
differentiation tendencies established in the early expansion
phase of the T cell response.

In other contexts, such as chronic LCMV infection, continued
antigen exposure leads to the development of an exhausted
phenotype characterized by reduced effector function,
sustained expression of coinhibitory receptors and altered
cytokine and metabolic pathways (13). Coinhibitory receptors
are rapidly expressed upon TCR stimulation, and studies altering
the affinity or concentration of antigenic ligands found that
strongly stimulated T cells expressed higher levels of co-
inhibitory receptors within hours/days of activation, which
dampened re-activation responses (43, 44). Elevated co-
inhibitory receptor expression was also found to persist in
CD8+ T cells over a month after vaccination with high affinity
antigens (44). Recent work examining heterogeneity among
exhausted CD8+ T cells in a murine model of chronic LCMV
found that high affinity cells preferentially exhibited a terminal
exhaustion phenotype, while lower affinity cells were more likely
to fall into a cluster marked by expression of killer cell lectin-like
receptors and cytotoxic genes (45). Thus, antigen affinity may
also impact proliferative and self-renewal capacity settings of T
cell exhaustion. In CD4+ T cells, divergent effects of TCR affinity
were observed in chronic versus acute murine models of LCMV
infection, such that strong stimulation biased cells toward Th1
differentiation during acute and Tfh differentiation during
chronic infection (46). Interestingly, another study showed that
July 2022 | Volume 13 | Article 949423
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the average affinity of CD4+ T cells responding to murine LCMV
decreased over the transition from effector to memory-
dominated responses, regardless of whether the infection was
acute or chronic (38). Although not directly compared in CD8+

T cells, the results from acute infection, CMV, and LCMV
described in this section suggest that CTL responses may also
follow this pattern whereby shifts in clonal dominance depend, at
least in part, on time rather than persistence of infection.
Together, these data indicate that as T cells diversify through
differentiation in response to an infection, the clonal
heterogeneity of the responding population also undergoes
reproducible, dynamic changes.

How heterogeneity within the context of naïve T cell
activation might bias subsequent differentiation remains a key
open question. The next three sections describe heterogeneity
among early activation responses that might initiate
such divergence.
DIVERSIFICATION BY TEMPORAL
VARIATION

Diversity in a pool of cells can arise through temporal variation
of particular molecular changes. Accumulating evidence from
many types of immune cells suggests that temporal variation can
be governed by tunable probabilistic mechanisms (6). An
exemplar of such a process is well-described in thymic
development, where Bcl11b expression was found to be
activated via an epigenetic switch with a long, stochastic time
delay, which was itself tuned by histone methyltransferase/
demethylase and transcription factor activity (47, 48). This
work showcased the temporal heterogeneity that can emerge
from rare, rate-limiting events (6). Altered biological conditions
can then modify the population response by changing the
probability distributions from which individual cells
are sampled.

In mature T cells, a rate-limiting switch-like mechanism has
been suggested for activation responses after TCR stimulation
(49). Experiments using live imaging of individual TCR-ligand
interactions found that T cells experienced a wide range of
receptor-ligand dwell times, with only very long interactions or
sequential, spatially co-localized interactions leading to T cell
activation (50). As such events were rare, heterogeneity naturally
arose. Moreover, the distribution of effective dwell times a cell
might experience was found to be tuned by parameters such as
the affinity of the TCR-ligand interaction (50). Accordingly,
work in both naïve CD8+ T cells and effector CTLs has shown
that TCR-ligand interaction strength modulates the mean and
variance of time to response. Studies using single-cell RNA
sequencing and mass and flow cytometry to examine naïve
CD8+ T cell activation showed that strong stimuli drove more
uniform, rapid initiation of activation events including signaling,
transcription, cell division, and transcription factor nuclear
localization, while weak stimuli induced responses with greater
temporal variance and occurred, on average, later (51–55). In
effector CTLs, live imaging demonstrated the same strength-
Frontiers in Immunology | www.frontiersin.org 4
dependent effects with respect to polarization of the centrosome
and cytolytic granules toward the immunological synapse (56).
All of these studies used transgenic T cells with ligands of known
binding affinities. Extrapolating to physiological contexts with
polyclonal T cell populations, their results suggest that the
response times of individual cells are sampled from different
distributions. Cells that activate at different times may then
experience differences in repeat TCR engagement, cell-cell
interactions or microenvironment composition during
activation and/or expansion. As described below, all of these
features have the capacity to propagate heterogeneity to
subsequent stages of the T cell response.
HETEROGENEITY OF GENE EXPRESSION

The stimulation strength that a naïve T cell senses through its
TCR, as well as costimulatory and cytokine receptors as
discussed further below, may alter gene expression in the
activating cell or its progeny. Studies in both CD4+ and CD8+

T cells found that, among cells that surpassed an activation
threshold, stimulation strength correlated with expression of
specific transcripts and proteins, often many hours/days after
stimulation (52, 55, 57–64). Such effects may be modulated not
only by transcriptional processes, but also post-transcriptional
and translational mechanisms (9, 65). For example, weak TCR
stimulation was found to be a poor driver of autocrine/paracrine
IL2 production, which resulted in defective ribosome biogenesis
and translation compared with strongly stimulated cells (64).
How TCR-ligand affinity might initiate control over biosynthetic
processes is not clear, but one possibility is that it relates to the
duration of signals the T cell receives. The duration of T cell-APC
interactions has been shown both in vitro and in vivo to correlate
with stimulation strength [exemplified by (29, 44, 66–68)], and
recent studies suggest that signal duration can impact gene
expression. For example, use of a pharmacological intervention
to interrupt TCR signals after different periods of time
demonstrated different signal durations required for expression
of early response transcription factors Nr4a1 and Nr4a3 (69).
Likewise, experiments using an optogenetic construct to finely
control patterns of receptor signaling in the Jurkat T cell line
showed that transcriptional products persisted for a short time
after signal interruption and accumulated with ongoing or
repeated signaling (70). These data indicate that altering signal
duration can lead to gene expression changes, which may
propagate downstream. Accordingly, experiments manipulating
the duration of TCR signaling showed differential effects on
effector and memory populations subsequently differentiated in
vivo (71–73). Thus, heterogeneity in antigen binding properties
may impact differentiation via variation in experienced
signal duration.

Differential gene expression can also be achieved by cellular
division. Imaging of activating T cells at the point of mitosis
demonstrated that sustained interactions with antigen-presenting
cells could lead to asymmetric T cell division, wherein protein
contents unequally segregated between daughter cells (74). In this
July 2022 | Volume 13 | Article 949423
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and several subsequent studies, a bifurcation of gene expression
was observed after the first cell division such that some daughter
cells expressed genes associated with effector and others with
memory cells, leading to the hypothesis that fate decisions are
made at this first division stage (74–77). Accordingly, cells sorted
by CD25 (IL2RA) and CD62L expression after the first division
showed different memory recall phenotypes and capacity in
adoptive transfer experiments (76). Altering stimulation
strength was found to change the proportion of T cells
asymmetrically dividing, thereby suggesting a means for
affecting differentiation tendencies (29). However, it is unclear
how the plethora of possible differentiation fates might be
populated from a bifurcation at the first division, and other
studies provide evidence for a contrasting model of
differentiation fate segregation at a later time point. For
example, fate-mapping experiments showed that cells expressing
the short-lived effector cell marker KLRG1 during the early
proliferative period were capable of differentiating into all types
of memory cells (78). Likewise, experiments transferring CD8+ T
cel ls to new hosts short ly after act ivat ion showed
environmentally-controlled plasticity of fate distributions (79).
Moreover, reports of fate-associated divergences in cellular
division speed manifesting only after several rounds of
replication (80–82) support a model of later segregation. In
sum, additional lineage tracing work will be required to
understand what role asymmetric division plays in directing
CD8+ T cell differentiation programs.
PROLIFERATIVE VARIABILITY

Activating and differentiating T cells can exhibit highly
heterogeneous proliferation behaviors. In vitro lineage tracing
experiments found that the progeny of individual activated naïve
CD8+ T cells divided a similar number of times but that variation
existed between clones (83). Among a group of identically
stimulated cells, the average expansion potential reflected TCR,
costimulatory and cytokine signals (83, 84). These data suggest a
mechanism to generate numerical heterogeneity among
responding CTLs according to the signals each receives.

In a more complex in vivo environment, fate-mapping
experiments found that the speed of division varied between
expanding subsets, such that central memory precursors
underwent a longer cell cycle than effector and effector
memory precursor subsets (80). This work further
demonstrated that the stimuli controlling cell cycle duration
differed by subset, with effector cells responding to IL2 signaling
and central memory precursors dependent on TCR stimulation.
Subsequent in vitro long-term live imaging experiments, using
anti-CD3 stimulation and culture with IL2 to promote sustained
expansion, found rapid progression of all cells from division 2
through divisions 3 or 4, followed by a heritable split of division
speeds (81). Faster divisions were associated with expression of
the high affinity IL2 receptor component CD25, while slower
divisions were associated with expression of CD62L (81),
suggesting a relationship to the effector and memory precursor
Frontiers in Immunology | www.frontiersin.org 5
populations observed in vivo (80). A similar rapid initial
proliferation, followed by a split in division times associated
with differentiation marker genes, was also observed in a murine
model of influenza infection using cell-cycle-phase reporter mice
(82). The question thus arises whether differences in division
time are causally related or consequential to divergent
differentiation pathways. Experiments transferring slowly
versus rapidly dividing T cells into new hosts two days after
activation showed no difference in their intrinsic ability to
generate memory cells (85). However, this time point is before
the reported bifurcation of division times and thus may not have
captured the fate-associated divergence if it exists.

Most recently, Bresser et al. developed a method for tracking
division number in a population of cells by using a reporter
construct with a synthetic short tandem repeat that has a fixed
probability for slippage mutations at each division (86). In this
system, the number of cell divisions corresponded to the fraction
of cells in the population that expressed a fluorescent protein
from the reporter construct. This work found that cells with a
central memory phenotype generally underwent more divisions
than those with an effector memory phenotype, but central
memory cells also exhibited extensive heterogeneity of division
history. Interestingly, central memory cells that had undergone
fewer divisions proliferated more upon re-challenge. Thus,
alongside division speed, it will be interesting for future work
to test whether differences in generation number reinforce
diverging differentiation pathways.
INTERPLAY OF ENVIRONMENT WITH
RESPONSE HETEROGENEITY

Variation in the experience of individual T cells can come not
only from interaction with antigenic ligands but also each cell’s
immunological context. This encompasses the physiological state
of the host, the organ environment where the cell is located, and
the microenvironment immediately surrounding the cell.
Moreover, the relationship between a T cell’s environment and
its response is bidirectional, with the nature of the response
influencing the cell’s location and local milieu.

The inflammatory environment in which a naïve T cell is
activated can impact its differentiation, skewing the distribution
of precursor or differentiated subsets. Early work suggested that
inflammation driven by live bacteria or chemical stimuli
enhanced short-lived effector CTL responses while having
relatively less influence on the generation of functional
memory cells (87–89). This effect was found to be dependent,
at least in part, on the cytokine IL12, which drove TBX21 (T-bet)
expression in responding CTLs (88–90). Subsequent work
demonstrated that IL2 could cooperate with inflammatory
signals to promote short-lived effector differentiation (91, 92).
This cooperation likely occurred not only at the level of signal
integration but also as a feedback loop, with expression of CD25
dependent on inflammatory stimuli (80, 91). Beyond these two
cytokines, comparisons of CD8+ T cell differentiation fates and
their cytokine dependencies during different viral and bacterial
July 2022 | Volume 13 | Article 949423
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infections demonstrated that the precise composition of the
inflammatory environment a l tered the ba lance of
differentiating effector and memory subsets (26, 93). One study
tested the endurance and plasticity of environmental influences
using TCR-transgenic CD8+ T cells capable of recognizing a
shared antigen genetically added to vesicular stomatitis virus
(VSV) and LM strains (79). Five days after infection, the authors
transferred early effector cells that had yet to express KLRG1 or
CD127 (characteristic of short-lived effector or memory
precursor cells, respectively) into uninfected hosts and found
differentiation patterns that recapitulated the cell subsets
characteristic of the original infections, suggesting that the
early inflammatory environment had lasting effects on
differentiation programs. In contrast, when the authors
transferred these early effector cells from VSV-infected into
LM-infected hosts (and vice versa), differentiation patterns
shifted to resemble those characteristic of the new host
infection, indicating environmentally driven plasticity. Further
work is needed to understand if this diversion was due to
differential expansion or pathway plasticity at the individual
cell level. Nevertheless, these data indicate that the inflammatory
environment regulates the distributions of differentiating T cells
during both the initial activation and expansion phases.

Within a given host environment, localization is also
assoc ia ted with ce l lu lar phenotype . For example ,
transcriptional divergence has been observed between CD8+ T
cells of the same clonotype and nominal subset when extracted
from different tissues (18). As T cells move between or within
tissues, their cellular interactions and/or cytokine exposures
change (94). Indeed, recent work found that cytokine
availability was tightly regulated by proximity to producers and
density of consumers, suggesting that subtle positional variation
can change the signals received (95). Of course, the tendency to
migrate to particular locations varies among a population of cells
according to traits such as expression of chemokine receptors, as
detailed below. Thus, microenvironmental interactions can be
both a cause and consequence of divergent phenotypes.

Elegant studies manipulating chemotactic signals in CD8+ T
cells have revealed the importance of CXCR3 signaling in directing
activating cells to specific lymphoid tissue structures and promoting
short-lived effector over memory differentiation (96, 97).
Specifically, experiments using vaccinia virus infection found that
CXCR3-deficient T cells were depleted from the marginal zone of
the spleen, where the majority of inflammatory cytokines were
expressed, and exhibited enhanced differentiation of memory
precursors (97). Similarly, in LCMV infection, CXCR3-deficient
T cells preferentially stayed in the lymph node paracortex instead of
moving to the interfollicular regions (IFR) and showed
differentiation divergence toward precursors of stem-like memory
cells (96). Interestingly, TCR stimulation strength was found to be
positively correlated with CXCR3 expression (67), as well as
retention of T cells in the spleen (39) and IFR localization in the
lymph node (67). It is therefore tempting to hypothesize a causal
sequence whereby strong stimulation upregulates CXCR3, which
directs cells to the lymph node IFR and provides an environment
that drives effector differentiation (Figure 2). Future studies will be
Frontiers in Immunology | www.frontiersin.org 6
required to test this. Together, this work highlights how
heterogeneity of T cell responses can propagate from variation in
expression of a single chemokine receptor or subtle cell positioning
all the way to differentiation fate.

Cellular interactions are governed by localization and form a
critical part of the microenvironment that influences
differentiation fate decisions. Early intravital imaging
experiments immunizing with antigen-loaded dendritic cells
(DCs) demonstrated that a single naïve TCR transgenic T cell
makes multiple sequential APC contacts and that the duration of
these interactions varies according to the activation stage of the T
cell (98). As recently reviewed (94, 99), a large body of work over
the past two decades has mapped the architecture of the lymph
node and locations of innate and adaptive immune cells during an
immune response. The majority of antigen presentation for naïve
T cell activation is performed by conventional dendritic cells
(cDCs). Type 1 cDCs reside primarily in the paracortex, express
XCR1 and are specialized in antigen cross-presentation to engage
CD8+ T cells (99). Intravital imaging studies demonstrated that
cDC1s serve as a communication link between CD4+ and CD8+ T
cells on the second day after infection, simultaneously engaging
cells from both lineages and facilitating CD4+ T cell help to the
CD8+ T cell response (100, 101). Inducible depletion of cDC1s
disrupted clusters of antigen-specific CD4+ and CD8+ T cells, and
skewed CD8+ T cell differentiation from memory toward effector
pathways (100). Type 2 cDCs are often characterized by
expression of CD11b (ITGAM) and tend to reside in the IFR
and T cell-B cell border regions of the lymph node (99). While
these DCs have been best described for their contribution to
CD4+ T cell responses, it is speculated that they and nearby
monocyte-derived dendritic cells contribute to the inflammatory
signals that drive effector CD8+ T cell differentiation in the IFR
(94, 96). In addition to DCs, studies of themesenteric lymph node
found that type 2 and type 3 innate lymphoid cells specifically
reside in the IFR (102, 103), suggesting that they may also provide
soluble and/or direct signals to activating T cells in this region.
Moreover, recent studies have revealed an important role for
stromal cell signals in directing the localization of immune cells
(104), including CD8+ T cells (96). Additional evidence suggests
that stromal cell interactions can directly impact T cell activation,
metabolism and differentiation [e.g. (105, 106)], but these studies
generally used in vitro activation and have revealed differences
between mouse and human systems. Thus, more work is needed
to understand the role of stromal interactions in vivo. Moving
forward, the use of inducible model systems that can perturb gene
expression within specific cellular populations at precise times
during the lymph node response may shed additional light on
how ce l lu lar in terac t ions cont r ibute to divergent
differentiation pathways.

While we often think of CD8+ T cell responses being
modulated by professional APCs, other innate immune
components and CD4+ T cell help as described above, a series
of studies has also demonstrated the importance of CD8+ T-cell-
T-cell interactions and feedback in the course of activation. Direct
interaction between activating T cells was observed 24 hours after
in vivo stimulation in the form of ICAM1/LFA1-dependent T-
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cell-T-cell synapses (107). Subsequent work showed that these
interactions costimulated paracrine IFNG (IFN-g) signaling,
which was associated with downregulation of CD25 and
skewing away from effector toward memory cell differentiation
(108). Feedback among activating T cells has also been found to
occur via IL2 secretion. Multiple groups have identified instances
of quorum sensing behavior and feedback loops for IL2
production within effector populations or mixed effector and
regulatory T cell settings, particularly highlighting the
emergence of robust population responses from highly
heterogeneous expression and consumption among individual
cells (109–112). Recent in vitro andmathematical modelling work
built upon these findings to propose that T cells modulate IL2
according to cellular density via a series of nested feedback
mechanisms involving CD28 and CTLA4 competing for CD80
and CD86 signaling (113). As cytokine signaling can impact
differentiation outcomes, these data suggest that quorum
sensing behavior might serve as a T-cell-intrinsic means of
regulating differentiation. Accordingly, in vitro experiments in
CD4+ T cells showed that higher cellular density led to an
increased frequency of activated T cells expressing markers of
memory precursors (114). The impact of T cell density on
differentiation outcome in an in vivo setting is difficult to study
as it has not yet been possible to alter local density without
changing the frequency or baseline gene expression profiles of
antigen-specific T cells. New experimental systems will be
important for addressing this question.
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Finally, as alluded to in multiple sections above, cytokine and
costimulatory signals can feed into and amplify signaling
networks initiated by the TCR, effectively enhancing the
strength of stimulation a T cell experiences. Indeed, naïve cells
are programmed to rely on these additional signals, as recently
demonstrated by a study in which deletion of the RNA binding
proteins ZFP36 and ZFP36L1 reduced dependence on CD28
signaling during early activation and enhanced effector
differentiation (115). Investigations of signaling nodes
responsible for conveying cytokine and costimulatory signals
into the TCR activation network have identified elements of
metabolic programming pathways, including PI3K/AKT and
MYC (57, 60, 64, 116–119), consistent with extensive work
showing that CD28 costimulation and IL2 signaling promote
glycolytic metabolism (120). For example, in vitro co-culture
experiments showed that IL2 produced by strongly stimulated T
cells could push nearby, weakly stimulated cells over an
activation threshold to initiate proliferation (116). This was
blocked by treatment with LY294002 (116), which inhibits PI3
kinases, mTOR, and PIM kinases (119). Several other studies
identified the transcription factor MYC, a key controller of
metabolic reprogramming in activated T cells (121), as a
biological node integrating TCR with costimulatory and IL2
signals (57, 60, 64, 117). Finally, THEMIS1, a signaling
regulator that modulates SHP1 phosphatase activity, was found
to be required for AKT/MYC pathway activation and
proliferation induced by the addition of cytokines to weak
B

A

FIGURE 2 | Possible route by which heterogeneity of TCR-ligand interactions could propagate through variations in stimulus duration, gene expression, and
localization to diversify the T cell response. In this hypothetical situation, antigen affinity affects the frequency and duration of TCR-ligand interactions, the time at
which the T cell activates, and expression of genes, including CXCR3. The level of CXCR3 expression then determines whether a cell traffics to the IFR or the middle
of the lymph node, where it encounters niche-specific environmental cues that further promote specific differentiation programs. While cartoons in (A) depict a
hypothetical “average” cell for each stimulus, those in (B) show putative cellular distributions for (left) experienced stimulation duration and (right) differentiation fate.
This is only one of many possible routes that may connect ligand binding to differentiation outcomes. TSLE, short-lived effector; TSCM, stem-like memory; TCM, central
memory. Created with Biorender.com.
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TCR signals (118). In addition to direct effects on metabolic
pathways, proteomics experiments revealed that IL2 also affected
the metabolism of in vitro-derived effector CTLs by controlling
expression of nutrient transporters and other environmental
sensors (122). Given that metabolic shifts during T cell
activation are strongly associated with differentiation outcomes
(123), these data suggest a mechanism by which differences in the
local cytokine and costimulatory environment during activation
might propagate through divergent differentiation fates.

Taken together, the examples of environmental heterogeneity
in this section reveal a complex interplay of antigenic and
microenvironmental signals. These interactions may both
reinforce (as in CXCR3-dependent migration) or restrain (as
in IL2 quorum sensing) heterogeneity among responding CTLs
to generate a diverse but robust response.
FUNCTIONAL DIVERSITY BEYOND
DIFFERENTIATION

CTLs can perform a range of functions upon antigenic challenge,
including secretion of cytolytic granules and cytokines such as
IFNG, TNF (TNF-a) and IL2. Early work using a murine model
of influenza infection demonstrated a hierarchy among cytokines
secreted by CD8+ T cells, such that IL2-producing cells were a
subset of those making TNF, which were themselves a subset of
IFNG-producers (124, 125). In humans, examination of CD8+ T
cells from HIV-infected patients revealed a set of frequently
observed individual and combinatorial functions across single
antigen-specific CD8+ T cells (126, 127). These studies found that
the frequency of cells secreting multiple effector molecules (termed
polyfunctional CTLs) correlated with reduced viral load.
Association of CTL polyfunctionality with immune protection
was subsequently observed in other contexts [e.g. vaccinia virus
immunization (128), anti-CTLA4 cancer immunotherapy (129),
and COVID-19, where polyfunctionality was highest in moderate
compared with mild or severe cases (130)]. Much functional
diversity is likely attributable to differentiation state (131, 132).
However, a recent study that profiled the transcriptome and
proteome of CTLs sorted according to IFNG and IL2 expression
found molecular correlates of functional properties that were shared
across multiple effector and memory subsets (133). These results
suggest further functional tuning beyond differentiation outcomes
that is regulated by specific molecular programs.

The regulation of functional diversity is not well-understood.
Early studies of viral infection in mice and humans found an
association between polyfunctionality and antigen avidity such
that cells capable of multiple effector functions were more likely
to strongly bind antigen (124, 127). Likewise, in in vivo
rechallenge, memory cells derived from high affinity initial
stimuli were more likely to express effector molecules than
those initially stimulated with low affinity ligands (30).
However, the differentiation trajectories of CTLs sampled in
these studies were unclear. Experiments specifically altering
ligand binding affinity during in vivo differentiation revealed
little impact on the expression of key effector molecules among
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differentiated effector (39) and tissue resident memory cells (27),
However, genome-wide transcriptional measurements in the
latter study found considerable affinity-associated differential
expression, leaving the door open to more subtle functional
regulation (27). The context in which antigenic challenge occurs
may also impact functional diversity, as exemplified by a recent
study that found substantial gene expression differences in
tissue-resident memory cells engaged by hematopoietic versus
non-hematopoietic APCs during secondary infection (134).
Thus, further work is needed to understand the drivers of
functional heterogeneity within differentiated CTL populations.
ORIGINS OF HETEROGENEITY AMONG
NAÏVE T CELLS

Observed differences in activation time and differentiation fate
among naïve T cells with the same TCR [e.g. (24, 25, 52)] raise
the question of what, if any, molecular mechanism allows one
cell to initiate a particular molecular program when another does
not (Figure 3). One explanation is that this is governed by
underlying stochastic variability in gene expression or activity
profiles, such that one cell is randomly more poised than another
to respond at that instant. Within a homogenous population,
such variability can be generated by transcriptional “bursting”,
whereby a gene switches between states of active transcription
and inactivity in a manner that is not synchronized within a
population (135). In a homogenous population whose only
source of variation is stochastic bursting, the time-averaged
gene expression of individual cells would be uniform. Finding
bursting genes responsible for heterogeneous responses can be
experimentally challenging due to the transience of expression
changes. Use of single-cell genomic and live imaging
technologies has recently accelerated our ability to define and
describe gene expression variability and may provide a means to
determine how stochastic variation contributes to differential
responses within a pool of naïve cells (1).

In addition to variation in the expression of individual genes,
coordinated gene expression modules may be associated with the
speed and quality of responses. One of the earliest studies of
naïve CD8+ T cell response heterogeneity found that increased
expression of the coreceptor CD8 allowed cells to respond to
reduced concentrations of antigen, while increased expression of
the phosphatase SHP1 reduced the maximal percentage of cells
responding (136). Interestingly, these two molecules were also
co-regulated, such that T cell activation responses were allowed
to vary but only within biologically defined limits. Later
investigations in naïve T cells expressing high versus low levels
of surface CD8 corroborated these findings and demonstrated
additional differences in gene expression including cell cycle and
pro-apoptotic genes (137). Other experiments sorting naïve cells
by glucose uptake capacity or markers of protein synthesis also
revealed association with responsiveness to TCR stimulation
(53). Together, these results highlight that not only single
pro te ins but ra ther who le ce l lu l a r programs are
heterogeneously expressed among naïve T cells.
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One of the most extensively studied factors associated with
naïve T cell response propensity is tonic signaling from weak
interactions with self-pMHC ligands. While a full discussion of
this topic has recently been published elsewhere (138), a few key
studies, particularly in CD8+ T cells, will be highlighted. Tonic
signaling can diversify the antigen-inexperienced T cell
population both by driving differentiation of virtual memory
cells (139) and by affecting the true naïve population. Some of the
first self-pMHC interactions that a T cell makes occur during
thymic positive selection. The strength of this interaction was
found to be associated with expression of the negative TCR
signaling regulator CD5 on mature single-positive thymocytes
and peripheral T cells (140). Comparisons of CD5high versus
CD5low naïve CD8+ T cells found differences in common gamma
chain cytokine sensitivity (141) and transcription factor
expression (142), and also revealed subsets of CD5high cells
that expressed effector-associated molecules such as CXCR3,
XCL1, and TBX21 (142). In antigenic challenge, CD5high naïve
CD8+ T cells, and in particular CXCR3+CD5high populations,
expanded more than CD5low cells (142). Investigations into the
mechanism behind this enhanced proliferation revealed greater
responsiveness to inflammatory cues but not enhanced antigenic
pMHC binding (142). Further associations of tonic signaling and
CD5 expression have been found with other features involved in
T cell responsiveness, including expression of the phosphatases
CD45 and PTPN2 (143, 144) and metabolic state (145).
Moreover, a study in naïve CD4+ T cells demonstrated CD5-
associated differences in chromatin accessibility (146), suggesting
that self-pMHC signaling can cause long-lived reprogramming
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in naïve T cells. Intriguingly, heterogeneity of CD5 expression
and associated variation in responsiveness has even been
observed among T cells with the same TCR [e.g. (147)],
suggesting that inherent self-pMHC binding affinity is not the
sole driver of this type of heterogeneity. While most of this work
was done in murine systems, examination of CXCR3 expression
on human naïve T cells revealed similar results such that CXCR3
was associated with effector-like transcriptional characteristics
and greater response to non-specific activation (148). Together
these data indicate that the naïve T cell pool is deterministically
poised for diverse responses upon antigenic challenge.

Changes in thymic selection over the life course can also
generate diversity among naïve T cells. A comparison of the TCR
repertoire of T cells passing positive selection in neonatal versus
adult mice found that strongly interacting cells were
preferentially selected in the young thymus, generating a pool
of peripheral T cells that was more self-reactive and more likely
to express high levels of CD5 (149). This difference in thymic
selection was concordant with previously observed differences in
neonatal versus adult T cell responses (150, 151). Recently, an
elegant study used an in vivo time-stamping method to mark
naïve CD8+ T cells that developed at different points in life (152).
This study demonstrated that fetal-derived naïve cells were
molecularly distinct from adult-derived cells. Moreover, they
were more likely to become virtual memory cells, respond
rapidly to cytokine and infectious stimuli, and differentiate into
terminally differentiated effector cells upon infection in the adult.
Importantly, this effect of animal age was independent of post-
thymic time or lymphopenic state at the time of thymic egress.
B

C D E

A

FIGURE 3 | Schematic of stochastic and deterministic sources of naïve T cell heterogeneity. (A) Stochastic gene expression bursting within a population over time,
where dark red cells indicate those cells randomly expressing the gene of interest at each time point. (B) Varied self-pMHC binding of naïve T cells affects gene
expression and response characteristics. (C) Likewise, organism age at thymic egress (particularly adult versus fetus) and the strength of self-pMHC interaction
during positive selection affect gene expression and response characteristics of peripheral naïve T cells; cTEC, cortical thymic epithelial cell; DP, double-positive. (D)
Cytokines and other environmental components tune naïve cell reactivity. (E) Cartoon histograms depict the probability of a cell exhibiting a certain phenotype (e.g.
expression of CD8 or a particular metabolic state). Stochastic variation as in (A) creates a distribution (black) which might then be tuned in variance (green) and/or
mean (magenta) by additional factors such as (B–D). All cells represent naïve T cells unless otherwise specified. Created with Biorender.com.
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Thus, thymically-driven variation in naïve T cells appears to
persist at the cellular level as the animal ages.

Another potential contributor to variability among naïve T cells
is subtle differences in cellular experience that accumulate over time.
Such a mechanism is indirectly supported by observations of greater
gene expression heterogeneity upon stimulation of naïve CD4+ T
cells from aged compared with young mice (153). Differences in the
T cell microenvironment, including some of those described above,
may play a role in such processes. For example, recent work found
that the combination of self-pMHC reactivity and exposure to type I
interferon signaling drove a subset of CD5hi naïve CD8+ T cells to
express LY6C1 (also known as Ly6C) and preferentially expand and
differentiate into short-lived effector cells upon antigen challenge
(147). Thus, variation in the individual environmental experience of
each naïve cell, perhaps accumulated over a lifetime, can also drive
response heterogeneity.

Finally, there is intriguing evidence of genetic control of gene
expression variation, including among CD8+ T cell populations
(154, 155). These human genetic studies found polymorphisms
associated with the distribution of gene expression across cells
within each individual. Such findings indicate that regulation of
inter-cellular heterogeneity generated by stochastic or
deterministic mechanisms may, in part, be encoded within an
organism’s DNA. Analyses of expression variability in the innate
immune system suggested that evolutionary pressures have
constrained expression variability of intracellular machinery
such as transcription factors and kinases/phosphatases, while
allowing highly variable expression of secreted signaling
mediators and their receptors (156). It will be interesting to see
whether similar features are found in T cell responses, or whether
variability in the adaptive immune system is governed by
different selective pressures.
DISCUSSION

This review has taken a broad perspective on heterogeneity in
order to bring together different forms of variability reported
among CTLs. As suggested by many of the studies described
above, it is highly likely that these forms of heterogeneity are
related and propagate from one to another. For example, one
can envisage scenarios whereby heterogeneous gene
Frontiers in Immunology | www.frontiersin.org 10
expression within naïve T cells and variable interactions
with TCR ligands on antigen-presenting cells result in
diverse activation times, experienced signal duration and
gene expression profiles, which in turn lead to different cell-
intrinsic feedback loops, cell-cell interactions and/or cytokine
exposures during proliferation and differentiation, thereby
skewing the differentiation fates and functional properties of
the progeny of each naïve cell (e.g. Figure 2). Many of the
findings discussed here suggest that while gene expression and
cellular interactions be governed by stochastic processes
forming the backdrop for these events is heavily impacted
by the natural history of the cell. Thus, although not
deterministic, cellular experience likely controls the
probabilities that underly divergent T cell responses.

Many connections between distant steps in the sequence from T
cell selection through effector and memory responses remain to be
investigated. The development of technologies to track the natural
histories of individual cells and their progeny, such as inducible
CRISPR scarring, should allow testing of such relationships in future
work. By better understanding the drivers and propagators of T cell
response heterogeneity, we may begin to anticipate and take
advantage of this variation to achieve desired T cell responses
through therapeutic manipulation.
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