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Methamphetamine induces
transcriptional changes in
cultured HIV-infected mature
monocytes that may contribute
to HIV neuropathogenesis
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HIV-associated neurocognitive impairment (HIV-NCI) persists in 15-40% of

people with HIV (PWH) despite effective antiretroviral therapy. HIV-NCI

significantly impacts quality of life, and there is currently no effective

treatment for it. The development of HIV-NCI is complex and is mediated, in

part, by the entry of HIV-infected mature monocytes into the central nervous

system (CNS). Once in the CNS, these cells release inflammatorymediators that

lead to neuroinflammation, and subsequent neuronal damage. Infected

monocytes may infect other CNS cells as well as differentiate into

macrophages, thus contributing to viral reservoirs and chronic

neuroinflammation. Substance use disorders in PWH, including the use of

methamphetamine (meth), can exacerbate HIV neuropathogenesis. We

characterized the effects of meth on the transcriptional profile of HIV-

infected mature monocytes using RNA-sequencing. We found that meth

mediated an upregulation of gene transcripts related to viral infection, cell

adhesion, cytoskeletal arrangement, and extracellular matrix remodeling. We

also identified downregulation of several gene transcripts involved in pathogen

recognition, antigen presentation, and oxidative phosphorylation pathways.

These transcriptomic changes suggest that meth increases the infiltration of

mature monocytes that have a migratory phenotype into the CNS, contributing

to dysregulated inflammatory responses and viral reservoir establishment and

persistence, both of which contribute to neuronal damage. Overall, our results

highlight potential molecules that may be targeted for therapy to limit the

effects of meth on HIV neuropathogenesis.
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Introduction

HIV remains a major public health issue, with

approximately 38 million people worldwide currently living

with the virus (1). Antiretroviral therapy (ART) has

dramatically improved the lifespan of people with HIV

(PWH). However, a significant percentage of PWH develop

comorbidities that significantly impact their quality of life.

One such comorbidity is HIV-associated neurocognitive

impairment (HIV-NCI), which occurs in about 15-40% of

PWH despite suppressed viremia (2–8). HIV-NCI is a

spectrum of disorders that can fluctuate over time and

includes, but is not limited to, impaired executive function,

working memory, and attention (2). People with HIV-NCI

have a premature decline in overall physical and psychological

health, with difficulties maintaining employment and social

relationships and in performing instrumental activities of daily

living (9–13). HIV-NCI is an independent risk factor for

mortality, and currently, there are no effective treatments in

the context of ART (14–16). The development of HIV-NCI is

complex, resulting from both viral seeding and reseeding, and

chronic inflammation and neuronal damage to the central

nervous system (CNS).

Substance use disorder (SUD), another highly significant

public health issue, also contributes to HIV-NCI in PWH. In a

large cohort study, SUD was reported in approximately 48% of

PWH, with 13% of those using methamphetamine (meth) (17).

Meth is a stimulant that readily crosses the blood-brain barrier

(BBB), and can cause neuronal damage directly, and indirectly

by affecting microglia and astrocytes that provide neuronal

support (18). People without HIV who use meth chronically

have been shown to have increased neuronal injury and

neurocognitive impairment compared to those who do not use

meth (19–21). Studies that examined the impact of meth on

neuronal health in PWH showed that those who use meth have

decreased neuronal health compared to people without HIV

who use meth and compared to PWH who do not use meth (22,

23). Other studies have shown that PWH who use meth have

increased neurocognitive impairment compared to the other

groups (24, 25). These data suggest that meth may exacerbate

HIV neuropathogenesis in PWH.

HIV entry into the CNS, which is critical to development of

HIV-NCI, occurs, in part, by the transmigration of HIV-infected

monocytes across the BBB (26–30). These infected monocytes

produce virus that can infect and activate resident CNS cells (31,

32). This results in production of host and viral factors that are

neurotoxic and can also recruit additional monocytes from the

peripheral blood into the CNS. Intermediate monocytes, a

specific subset of monocytes that expresses surface CD14, the

LPS co-receptor, and CD16, the FcgRIII receptor, are key

mediators of this process (27). The CD14+CD16+ intermediate

monocytes are referred to as mature monocytes throughout the

text. These cells are preferentially infected with HIV and
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preferentially transmigrate across a BBB model compared to

other monocyte subsets (28, 33, 34). These monocytes are

increased in the peripheral blood of PWH and they are

increased further in those who use substances, including meth,

demonstrating that meth can affect these monocytes (35–37).

The infected monocytes can differentiate into long-lived

macrophages tha t he lp sus ta in v i ra l pers i s t ence ,

neuroinflammation, and neuronal damage. In vivo studies

showed that meth increased the population of CD14+CD16+

macrophages and the amount of virus in the brains of Simian

Immunodeficiency Virus (SIV) infected macaques (38, 39).

PWH who use meth were shown to have increased plasma

and cerebrospinal fluid (CSF) viral loads despite adherence to

ART (23, 40, 41). These studies suggest that meth may increase

viral replication as well as the entry of HIV-infected mature

monocytes into the CNS, thus contributing to viral seeding/

reseeding and exacerbated neuroinflammation and subsequent

neuronal damage.

The effects of meth on peripheral HIV-infected mature

monocytes that can contribute to HIV neuropathogenesis in

PWH have not been extensively characterized. In this study, we

performed RNA sequencing of HIV-infected mature monocytes

treated with or without meth. We demonstrate that meth

treatment of HIV-infected mature monocytes increases

expression of transcripts related to cytoskeletal rearrangement,

cell movement, and extravasation. We also show that meth

decreases expression of transcripts related to antigen

presentation, pathogen recognition, and inflammatory

responses. Additionally, we found changes in mitochondria

related transcripts that could affect the bioenergetics of these

cells. These changes could result in increased transmigration of

mature monocytes into the CNS, cause dampening of the

immune response, which can impair the ability of these cells

to fight pathogens, and impact proper functioning of monocytes.

These effects on mature monocytes can contribute to the

pathogenesis of HIV-NCI in PWH who use meth.
Materials and methods

Monocyte isolation and culture

Leukopaks from anonymous healthy donors were obtained

from New York Blood Center. Institutional Review Board (IRB)

approval for these studies was obtained from the Einstein

Human Research Protection Program (HRPP) at Albert

Einstein College of Medicine (IRB no. 1994-0003). Isolation

and culture of primary mature monocytes was performed as

previously described (28). Briefly, peripheral blood mononuclear

cells (PBMC) were isolated from leukopaks using Ficoll-Paque

PLUS (GE Healthcare, Uppsala, Sweden) density centrifugation.

Monocytes were positively selected from the PBMC using

Miltenyi Beads CD14 Selection Kit (Miltenyi Biotec, Bergisch
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Gladbach, Germany) according to manufacturer’s instructions.

Isolated CD14+ monocytes were resuspended at a concentration

of 2x106 cells/ml in monocyte media containing RPMI 1640 1X

(Gibco, Grand Island, New York) supplemented with 5% fetal

bovine serum (Sigma-Aldrich, St. Louis, Missouri), 10% human

serum (Sigma-Aldrich, St. Louis, Missouri), 1% HEPES (Sigma-

Aldrich, St. Louis, Missouri), 1%Pen-Strep (Gibco), and 10ng/ml

macrophage colony stimulating factor (M-CSF) (Peprotech,

Rocky Hill, New Jersey). Cells were cultured non-adherently in

Teflon coated flasks at 37°C with 5% CO2 for 2 days to increase

the population of mature monocytes in culture (28, 33, 42).

Using this culturing technique, we previously showed that the

number of mature monocytes is increased from 5-10% to

approximately 70-90% (33).
HIV infection and meth treatment for
RNA sequencing

Mature monocytes were divided into 2 flasks, and cells in

each flask were resuspended at 10x106 cells/ml in fresh

monocyte media and infected for 8 h with 1 ug p24/ml of

HIVADA isolate prepared as described (43). This technique

facilitates virus uptake by the cells in vitro as established

previously in our laboratory (43). Virus was removed from

cells by centrifugation, cells were resuspended at 2x106 cells/ml

in fresh media, and cultured non-adherently for 3 additional

days to facilitate viral infection and replication. Three days post-

infection, 50µM Methamphetamine hydrochloride, resuspended

in sterile ddH20 (Sigma-Aldrich), was added to one of the flasks

for 6 h. This time point is in the range within when meth reaches

peak concentration in plasma of meth users (44). The meth

concentration chosen is within the range of levels found in

plasma of people who use meth (45). After treatment, cells from

both flasks were centrifuged for use in flow cytometry and for

RNA collection. Supernatants were also collected for HIV p24

quantification using a sensitive HIV p24 alphaLISA kit (Perkin

Elmer, Waltham, Massachusetts) as per manufacturer’s protocol

to confirm infection of the mature monocytes.
Mature monocyte quantification by
flow cytometry

A portion of both meth treated and untreated HIV-infected

cells were analyzed for CD14 and CD16 surface expression by

flow cytometry. Cells were labeled on ice in the dark for 30

minutes using anti-human CD14 (0.05 ug per 2x105 cells)

conjugated with allophycocyanin (APC) (BD Biosciences, San

Jose, California; clone M5E2), and anti-human CD16 (0.05 ug

per 2x105 cells) conjugated to phycoerythrin/Cy7 (PE-Cy7) (BD

Biosciences; clone 3G8). Corresponding isotype matched

antibodies and fluorescence minus one (FMO) were used as
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negative controls. Labeled cells were fixed with 2%

paraformaldehyde in 1%BSA/PBS and acquired with the

Attune NxT flow cytometer (ThermoFisher Scientific). A

minimum of 10,000 events was acquired for each condition.

Data analyses were performed using FlowJo software version

10.6.1 (Treestar, Ashland, Oregon).
RNA extraction and quality control

RNA extraction was performed using Qiagen RNeasy Micro

Kit (Qiagen, Hilden, Germany) as per manufacturer’s protocol.

To ensure minimal organic contamination, 260/230 ratios were

quantified with Nanodrop (ThermoFisher Scientific). RNA

quality and concentration were confirmed by Genewiz (South

Plainfield, New Jersey). RNA degradation was measured using

TapeStation electrophoresis system (Agilent, Santa Clara,

California) and RNA was quantified by Qubit fluorimeter

(ThermoFisher Scientific). Good quality RNA was determined

by an RNA Integrity Number (RIN) of greater than 6. All

samples had RIN > 9 (data not shown).
Library preparation and RNA sequencing

Library preparation, RNA sequencing, and sequence

alignment was performed at Genewiz. Briefly, an RNA-

sequencing library was prepared using ribosomal RNA

depletion followed by fragmentation and random priming,

cDNA synthesis, end repair, 5’ phosphorylation, dA-tailing,

adapter ligation, PCR enrichment and sequencing. Sequencing

was performed using Illumina HiSeq (Illumina, San Diego,

California) with a configuration 2 X 150bp. The sequenced

reads were trimmed using Trimmomatic version 0.36. The

trimmed reads were mapped onto the Homo sapiens GRCh38

reference genome available on ENSEMBL using the STAR

aligner version 2.5.2b. The BAM files were generated, and gene

hit counts were calculated by using featureCounts from the

Subread package version 1.5.2.
Analyses of differentially expressed genes

Analysis was conducted using R version 4.0.2. We used

ComBat_seq function for batch correction to account for the

variability inherent in primary cells. Data were then normalized

using the calcNormFactors function to account for library size

differences among samples. EdgeR function was used to obtain

differentially expressed genes (DEG) between meth treated HIV-

infected mature monocytes and untreated HIV-infected cells.

DEG were considered significant if Benjamini-Hochberg

adjusted p-value was less than 0.05 and absolute log 2-fold

change was greater than 0.25. To visualize the expression of
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transcripts between treated and untreated cells, we used ggplot,

and heatmap.2 functions.
Pathway and functional analysis

We performed downstream pathway and functional analyses

of the significant DEG using Ingenuity Pathway Analysis (IPA)

software version 01-20-04 (Qiagen). We used a p-value of < 0.05

and z-score of either >2 or <-2 to determine significantly

predicted affected pathways and functions. GraphPad Prism

Software version 9.3.1 (GraphPad Software, San Diego,

California) was used to plot the pathway and functional

analyses data.
Western blotting

Monocytes were isolated, cultured, infected, and treated as

described. Some HIV-infected mature monocytes were also

treated with meth for 24 h for protein analyses to capture

proteins translated after the 6 h time point used for RNA

analyses. Cells were lysed with RIPA buffer containing 1X Halt

Protease Inhibitor and Phosphatase Inhibitor cocktail (Thermo

Fisher Scientific). Lysate protein concentrations were quantified

by Bradford Assay using Protein Assay Reagent Concentrate

(Bio-Rad, Hercules, California). Equal amounts of protein from

each condition for each donor were electrophoresed by SDS-

PAGE under reducing conditions, with subsequent transfer to

polyvinylidene difluoride (PVDF) membranes overnight at 4°C.

Li-Cor Revert Total Protein Stain (Li-Cor, Lincoln, Nebraska)

was used to quantify total protein optical density (O.D.), using

the Li-Cor Odyssey Fc System for visualization, and Image

Studio software (Li-Cor) version 5.2 for O.D. quantification.

Membranes were blocked in SuperBlock Blocking Buffer

(ThermoFisher) followed by overnight incubation at 4°C with

mouse anti-MMP9 (1:500, ThermoFisher, #MA5-15886) or

rabbit anti-Gelsolin (1:1000, Cell Signaling Technology,

Danvers, Massachusetts, #12953) in 5% BSA-TBST. HRP-

conjugated anti-mouse IgG (Cell Signaling Technology, #7076)

was used as secondary antibody for MMP9, and HRP-

conjugated anti-rabbit IgG (Cell Signaling Technology, #7074)

was used for gelsolin, each at 1:1000 dilution in 5% milk-TBST.

Blots were developed using Super Signal West Femto

Chemiluminescent Substrate (ThermoFisher) for MMP9, or

Western Lightning Plus ECL Oxidizing Reagent Plus (Perkin

Elmer) for gelsolin, and visualized and analyzed the same as for

total protein. The O.D. of target proteins were normalized to

total protein O.D. Data were analyzed as the fold change of

normalized O.D. of target proteins in HIV-infected meth treated

cells over the normalized O.D. of target protein in untreated

cells. Figures were prepared in GraphPad Prism Software

version 9.3.1.
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MMP-9 ELISA

Cells infected and treated with meth as described were

centrifuged at 1000rpm for 5 minutes at room temperature.

The supernatants were collected and assayed using the MMP-9

DuoSet ELISA kit as per manufacturer’s instructions (R&D

Systems, Minneapolis, Minnesota). The limit of detection for

this kit is 31.25pg/ml. GraphPad Prism Software version 9.3.1

was used to prepare the figures and statistical analyses. The

MMP-9 concentrations were normalized to 10 million cells to

adjust for the different cell numbers in culture per experiment.

Data were analyzed as the fold change of HIV-infected meth

treated cells over untreated HIV-infected cells.
Statistical analyses

For MMP-9 ELISA and HIV p24 alphalisa experiments,

D’Agostino-Pearson omnibus normality test was performed to

test for gaussian distribution of the data. One sample t-test or

paired t-test was used for the normally distributed data, with

p < 0.05 considered statistically significant.
Results

Meth induces differential gene
expression in HIV-infected
mature monocytes

The mechanisms by which meth contributes to HIV-NCI in

PWH are not incompletely characterized. We examined the

effects of meth on the transcriptome of HIV-infected mature

monocytes by RNA-sequencing to identify potential

mechanisms by which meth contributes to neuropathogenesis

in PWH. Primary monocytes from three independent healthy

donors were positively isolated from leukopaks, cultured and

infected with HIV, and treated with meth as described. RNA

fromHIV-infected and HIV-infected meth treated cells was then

sequenced, mapped onto the genome, counted, and then we

performed principal component analysis (PCA) to determine

similarities in gene expression patterns among samples. Separate

samples from the same donors clustered together (Figure 1A).

To reduce the bias in downstream differential gene expression

analyses that could be introduced by this similar clustering, we

performed batch correction that accounts for the donor

variation commonly seen in primary cells from different

people (Figure 1B). We identified 121 upregulated transcripts

and 137 downregulated transcripts in HIV-infected mature

monocytes treated with meth relative to untreated infected

cells (Figure 1C and Table S1). Some of the top upregulated

transcripts are involved in cell movement signaling pathways

including NCS1, a regulator of G-protein coupled receptor
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phosphorylation, and RASALI, a GTPase-activating molecule

(Figure 1D). Meth also upregulated cytoskeletal binding

molecules including PLEC (Figure 1D). Meth downregulated

transcripts including ND6, a mitochondria molecule involved in

oxidative phosphorylation, and TLR7, a toll like receptor (TLR)

involved in antiviral immune response (Figure 1D). Meth also

downregulated transcripts including HLA-DPA1 and HLA-

DPB1 that are important in antigen presentation. This

differential gene expression profile induced by meth could lead

to changes in functions of HIV-infected mature monocytes

contributing to increased cell migration, dysregulated immune
Frontiers in Immunology 05
response, and consequently neuropathogenesis in PWH who

use meth.

To ensure that meth did not affect cell survival or mature

monocyte surface markers, a portion of infected monocytes was

analyzed by flow cytometry for CD14 and CD16. Meth

treatment did not change the survival, nor the percentage of

mature monocytes (Supplementary Figures 1A, B). We

confirmed HIV infection by quantifying HIV p24 protein in

cell supernatant with AlphaLISA. Meth increased the amount of

HIV released from cells from each independent donor

(Supplementary Figure 2). This is consistent with other studies
A B

DC

FIGURE 1

RNA sequencing analyses demonstrate differential gene expression in HIV-infected mature monocytes treated with meth compared to
untreated HIV-infected cells. (A, B) Principal component analysis (PCA) plot of sample clustering based on gene expression patterns before (A)
and after (B) batch correction. Each data point represents an individual sample, and the data shapes represent the individual donors. The y-axis
and x-axis represent the first and second principal components, respectively. HIV-infected mature monocytes treated with meth are shown in
blue and untreated HIV-infected mature monocytes are shown in green. (C) A volcano plot showing overall DEG between the HIV-infected
mature monocytes treated with or without meth. Each dot represents a gene that was either statistically significantly different(green) or
unchanged (black). The y-axis represents -log false discovery rate (FDR), and the x-axis represents log 2-fold change. (D) A heat map
representing normalized gene expression levels of the top 20 DEG between HIV-infected mature monocytes treated with meth or untreated.
Each column represents an individual sample, and each row represents a gene. The color scale represents lower (blue) to higher (red) gene
expression levels.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.952183
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chilunda et al. 10.3389/fimmu.2022.952183
that reported increased HIV infection in other cell types

including macrophages (46, 47).
HIV-infected meth-treated mature
monocytes are predicted to have
differential gene expression related to
cell activation, infection by viruses,
adhesion and extravasation, and
cytoskeletal rearrangement

We performed IPA of DEG to identify predicted functions of

mature monocytes that are impacted by meth. We found that

meth downregulated pathogen recognition and binding

molecules TLR5 , TLR7, TLR8, and SIGLEC1 , antigen

presenting MHC transcripts HLA-DMA, HLA-DMB, and

HLA-DPA1, and TNFSF9, NOD2, and CCL22, molecules

involved in inflammatory responses (Table S2 and Figure 2A,

B). Downregulation of these transcripts by meth could lead to

dysregulated immune responses by impairing the ability of

monocytes to respond to pathogens and other inflammatory

related stimuli. Infection by virus was predicted to be activated in

meth treated HIV-infected mature monocytes compared to

untreated infected cells (Table S2 and Figure 2A). Some of the

transcripts related to infection by virus that were decreased

include TRIM22,NOD2, IFITM3, and SPHK1 (Figure 2C). These

changes could lead to a decreased immune response to fight

viruses, leading to increased viral infection in the meth treated

HIV-infected mature monocytes that can contribute to viral

reservoir persistence.

Our data showed meth increased transcripts involved in cell

adhesion and matrix degradation, including MMP-9, MRC2,

ADAM8, ITGB7, CD151 and ICAM3 (Table S1 and Figure 2D).

We also found that meth increased expression of molecules

involved in cytoskeletal arrangement including MYH7, MYH8,

CTTN, GSN, FLNA, FLNB, DOCK4, and CAPG (Table S2 and

Figure 2E). The proteins encoded by these transcripts are

important in cytoskeletal rearrangement that is needed for cell

motility and invasion. These changes may result in increased

HIV-infected mature monocyte migration into the CNS. The

entry of these cells into the CNS can lead to infection and

activation of other CNS cells, and production of inflammatory

mediators including host and viral proteins, that can contribute

to neuronal damage and HIV-NCI.
HIV-infected meth-treated mature
monocytes have dysregulated transcripts
involved in inflammatory signaling and
cellular metabolic pathways

We determined potential biological pathways that may be

changed in HIV-infected mature monocytes treated with meth
Frontiers in Immunology 06
using IPA of the DEG. We found that pathways including

neuroinflammation signaling, T-cell receptor signaling, and

oxidative phosphorylation were predicted to be downregulated,

whereas RHOGDI and MSP-RON signaling pathways were

predicted to be upregulated (Figure 3A, Table S3). We further

examined transcripts involved in neuroinflammation signaling

pathways and signaling with T-cell receptor. We found that

molecules such as Major Histocompatibility Complex (MHC)

class II molecules including HLA-DMA, HLA-DMB, HLA-

DPA1, HLA-DQB1, HLA-DRA, and HLA-DRB, and toll like

receptor transcripts, TLR5 , TLR7 , and TLR8 , were

downregulated by meth (Figures 3B, C), which is consistent

with predicted pathway changes. We also found meth

downregulated CISD2 and VMP1 which are involved in the

endosomal-lysosome pathway as part of antigen processing

(Table S1). These suggest that meth may impair the ability of

HIV-infected mature monocytes to recognize, process, and

present antigens to T-cells. This could lead to viral immune

evasion and persistence in the CNS. We also found that

mitochondrial transcripts COX2, ND4, ND5, and ND6 were

downregulated contributing to the predicted decrease in

oxidative phosphorylation (Figure 3D). Additionally, we found

downregulation of the ATP synthase transcript, ATP8, and

upregulation of transcripts involved in glycolysis, such as

ENO2 and PFKP (Table S1). These could lead to bioenergetic

changes in the monocytes, and potentially affect monocyte

functions such as fighting pathogens and immune surveillance.

Molecules involved in RHOGDI signaling including CFL1,

ITGB7, MYH7, MYH9, and RHOU, and MSP-RON pathways

such as ST14 were upregulated by meth (Figure 3E and Table

S2). The increased expression of these molecules could lead to

downstream activation of signaling molecules that may

contribute to changes in the biology of these monocytes.
Meth increases MMP-9 protein in HIV-
infected mature monocytes

IPA identified cytoskeletal rearrangement as a function

predicted to be increased by meth in mature monocytes. One

specific DEG that was increased by meth in this pathway is Matrix

metalloproteinase-9 (MMP-9) (Table S1). We validated protein

expression of MMP-9 because metalloproteinases have been shown

to be important in neuropathogenesis (48). Animal studies showed

that blocking MMP-9 reduced neuroinflammation in multiple

sclerosis animal model (49). MMP-9 degrades extracellular

matrices and may contribute to neuroinflammation by increasing

monocyte migration into the CNS (50), and/or by activating

chemokines such as CXCL8 that can contribute to leukocyte

infiltration (49). To validate this RNA-seq finding, we determined

protein expression of MMP-9 in HIV-infected mature monocytes

treated with or without meth, by Western blotting and by ELISA.

MMP-9 can exist as pro- and active forms. We found that
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intracellular levels of both pro- and active MMP-9 in HIV-infected

mature monocytes treated with meth for 6 h appeared to be

increased (Figures 4A, B). There was no difference in MMP-9

after 24 h of meth treatment (Figure 4B). While the increase in

intracellular MMP-9 at 6 hours of meth was not reflected by an
Frontiers in Immunology 07
increase in extracellular MMP-9 by ELISA (Figure 4C), we found

that extracellular MMP-9 was statistically increased after 24 h meth

treatment relative to untreated infected cells (Figure 4C). It could be

that after 24 h of meth treatment, HIV-infected mature monocytes

are secreting more MMP-9 into the extracellular environment than
A

B

D E

C

FIGURE 2

HIV-infected mature monocytes treated with meth compared to untreated HIV-infected cells have a predicted increase in viral infection and
cytoskeletal rearrangement and decrease in cell activation. (A) Top functions predicted to be increased (red) or decreased (blue) in the meth
treated compared to untreated HIV-infected cells. The y-axis represents the list of functions, and the numbers in the parenthesis represent the
quantity of molecules that were differentially expressed after meth treatment. The x-axis represents activation z-score. (B–E) Heat maps
representing normalized expression levels of some genes involved in (B) activation of leukocytes, (C) viral infection, (D) cell adhesion and matrix
degradation, and (E) organization of cytoskeleton in HIV-infected mature monocytes treated with and without meth. Each column represents an
individual sample, and each row represents a gene. The color scale represents lower (blue) to higher (red) gene expression levels. The
dendrograms show unsupervised clustering of samples.
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what is being maintained intracellularly, such that increased protein

level cannot be detected intracellularly at that time point. Increased

MMP-9 could contribute to increased transmigration of mature

monocytes across the BBB into the CNS by degrading the basement

membrane, and by increasing recruitment of mature monocytes by

increasing chemokine activation.
Frontiers in Immunology 08
Meth appears to increase gelsolin in HIV-
infected mature monocytes as
determined by western blot analyses

IPA analyses of DEG also showed that organization of actin

cytoskeleton and cell movement of mature monocytes treated with
A

B

D E

C

FIGURE 3

HIV-infected mature monocytes treated with meth have decreased expression of genes related to antigen presentation, pathogen recognition,
and oxidative phosphorylation, and upregulation of genes related to cellular RHO-GD1 signaling pathways. (A) Top cellular pathways predicted
to be increased (red) or decreased (blue) in meth treated compared to untreated HIV-infected cells. The y-axis represents the list of pathways,
and the x-axis represents activation z-score. (B–E) Heat maps representing normalized expression levels of some genes involved in (B)
neuroinflammation signaling pathways, (C) T-cell receptor signaling, (D) oxidative phosphorylation, and (E) RHO-GDI signaling in HIV-infected
mature monocytes treated, or not, with meth. Each column represents an individual sample, and each row represents a gene. The color scale
represents lower (blue) to higher (red) gene expression levels. The dendrograms show unsupervised clustering of samples.
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meth was predicted to be increased. One transcript in this pathway

that was increased by meth is GSN (Table S1), which encodes for

Gelsolin, an actin binding protein involved in severing and capping

actin filaments, an important step in cytoskeletal rearrangement

needed for cell movement (51). We validated RNA-seq data by

performing western blotting of gelsolin, in HIV-infected cells

treated with or without meth. We validated gelsolin expression

because it is one of the most abundant actin binding proteins that

regulate cytoskeletal arrangement, a necessary process in monocyte

migration (52). We found that 6 h of meth treatment increased

intracellular gelsolin in 7 out of 9 donors (Figures 5A, B). While

there is donor variability in gelsolin after 24 hmeth treatment, there

is a trend towards increased gelsolin (Figures 5A, B).

In summary, our results show that meth may contribute to

increased monocyte recruitment, through increased expression of
Frontiers in Immunology 09
molecules related to matrix degradation, cell adhesion and

cytoskeletal rearrangement (Figure 6). We also identified

downregulation of transcripts involved in antigen presentation

and pathogen recognition, and predicted increase in viral

infection (Figure 6). These changes can result in immune

dysregulation and increased viral reservoirs once these cells enter

the CNS. Meth also induced changes in signaling molecules, and

downregulated molecules involved in oxidative phosphorylation

(Figure 6). These changes could impact the functions of these cells,

contributing to ongoing neuropathogenesis in PWHwho use meth.

Discussion

Despite the great success of ART, comorbidities including

HIV-NCI persist in PWH who use meth (53). However, the
A B

C

FIGURE 4

MMP-9 protein is increased in HIV-infected mature monocytes treated with meth. (A) A representative western blot with corresponding total
protein stain of HIV-infected mature monocytes either untreated or treated for 6 h with meth. (B) Fold change of normalized MMP-9 protein
from HIV-infected mature monocytes treated with meth over untreated HIV-infected mature monocytes. Each colored dot represents an
individual donor. The columns and error bars depict mean and standard deviation (SD), respectively. n=7–14. (C) Fold change of normalized
MMP-9 protein in supernatants of HIV-infected mature monocytes treated with meth over untreated HIV-infected cells. Each colored dot
represents an individual donor. The columns and error bars depict mean and standard error of the mean (SEM), respectively; n=7-10;
**, p<0.005 by the one sample t-test.
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mechanisms by which meth contributes to HIV-NCI have not

been fully described. We characterized the impact of meth on

HIV-infected mature monocytes using RNA sequencing

analyses to identify molecules that are potentially involved in

the development HIV-NCI in PWH who use meth. We

identified differential gene expression in HIV-infected mature

monocytes treated with meth compared to untreated HIV-

infected cells. Some DEG include those related to increased
Frontiers in Immunology 10
cell adhesion, extravasation, cytoskeletal rearrangement, and

viral infection of mature monocytes. We also found

downregulation of DEG involved in antigen presentation,

pathogen recognit ion, inflammatory response, and

oxidative phosphorylation.

HIV-infected monocyte migration into the CNS contributes

to viral entry and inflammation which contributes to HIV-NCI.

Our study demonstrates that meth treatment of HIV-infected
A B

FIGURE 5

Gelsolin protein is increased in HIV-infected mature monocytes treated with meth. (A) A representative gelsolin western blot with
corresponding total protein stain of HIV-infected mature monocytes either untreated or treated for 6 h or 24 with meth. (B) Fold change of
gelsolin of HIV-infected mature monocytes treated with meth over untreated HIV-infected cells. Each colored dot represents an individual
donor. The column and error bars depict mean and standard deviation (SD), respectively. n = 5-9.
FIGURE 6

Meth-mediated effects on HIV-infected mature monocytes as identified by RNA sequencing and western blot analyses. Figure created with
BioRender.com.
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mature monocytes led to the upregulation of transcripts

involved in matrix degradation and cell adhesion. MMP-9 is

an extracellular protease that breaks down extracellular matrices

and BBB basement membranes. This has been shown to lead to

BBB disruption and immune cell recruitment into the CNS (50).

We found increased MMP-9 RNA and protein in HIV-infected

mature monocytes treated with meth compared to untreated

HIV-infected cells alone. We also show that meth increases the

amount of MMP-9 released into the extracellular environment

by HIV-infected cells. Our data are in agreement with findings

from other studies that showed that meth increased expression

of MMP9 in mice, and of MMP-9 protein in brain microvascular

endothelial cells (54, 55). In addition to our western blotting and

ELISA data, the increased expression of MMP9 is also supported

by our in vitro data showing that meth increases transmigration

of HIV-infected mature monocytes across a human BBB model

in response to CCL2, a chemokine elevated in the CNS of PWH

(data not shown). We found increased levels of MRC2 and

ADAM8 in meth treated HIV-infected cells. MRC2, a member of

mannose receptor family, binds and internalizes collagen

contributing to matrix degradation and turnover (56).

ADAM8, a member of a disintegrin and metalloproteinase

family, is involved in integrin activation, cell adhesion,

migration, and break down of extracellular matrix components

to promote cell movement (57). ADAM8 has also been shown to

increase cell migration through upregulation of MMP-9 (58).

The increased levels of MMP-9, MRC2 and ADAM8 after meth

treatment may contribute to increased degradation of

extracellular matrix and basement membrane components,

and consequently migration of HIV-infected mature

monocytes into the CNS. This may lead to accumulation of

infected cells contributing to viral reservoirs and CNS damage.

Monocyte adhesion to brain microvascular endothelial cells

is important during monocyte transmigration into the CNS. We

show that meth increases expression of the cell adhesion-related

transcripts ITGB7, ICAM3, CD151, and ICAM3. ITGB7 encodes

a protein that heterodimerizes with either CD49d or CD103 to

form a4b7 and aEb7 integrins, respectively. These integrins bind
with their ligands MADCAM-1 and E-cadherin, respectively,

promoting cell adhesion (59). ITGB7 downregulation was

reported to decrease adhesion and migration of multiple

myeloma cells (60). In addition, ITGB7 is important in T-cell

homing in the gut and is involved in the pathogenesis of

inflammatory bowel disease (61). ICAM-3 is an adhesion

molecule that can interact with LFA-1 extracellularly or ezrin/

radixin/moesin intracellularly, contributing to tumor metastasis

(62). CD151, a tetraspanin, interacts with integrins promoting

cell matrix adhesion (63). In T-cells, CD151 interacts with

integrins LFA-1 and VLA-4, and upon external stimuli, it can

lead to actin rearrangement and cell migration (64). In mature

monocytes, CD151 is involved in formation of multinucleated

giant cells that can occur during inflammatory processes (65).

CD151 also forms homotypic interactions that lead to increased
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cell movement and MMP-9 production (66). CD151 can interact

with JAM-A, a molecule increased on the surface of HIV-

infected mature monocytes, contributing to increased cell

migration (33, 67). Changes in these molecules may contribute

to cell adhesion, downstream signaling activation, and their

consequent migration from the periphery into the CNS.

Actin cytoskeleton rearrangement is key for monocyte

transmigration into the CNS across the BBB. Myosin II, a

motor protein that binds F-actin, contributes to cell

attachment, spreading and migration (68). We found that

meth upregulates myosin II heavy chain molecule, MYH9, and

there is a predicted increase in cytoskeletal rearrangement. We

also show there is an increase in CFL1, which encodes cofilin.

Cofilin is an actin binding protein that cleaves F-actin providing

ends for polymerization and depolymerization and is important

in chemotaxis and directional cell movement (69, 70). This could

lead to increased actin rearrangement that contributes to cell

movement. Our findings are in agreement with another study

that showed increased expression of cofilin with activation of

RhoA/ROCK signaling pathway leading to cytoskeletal

rearrangement in rat brain microvascular endothelial cells

treated with meth (55).

Meth treatment of HIV-infected mature monocytes also

upregulated FLNA and GSN, which encode filamin A and

gelsolin, respectively. Filamins are actin binding and cross-

linking proteins that facilitate cell spreading and migration

(71, 72). In neutrophils, a decrease in Filamin A resulted in

decreased cell migration and reduced myosin-II activation (73).

Gelsolin is an actin binding protein implicated in migration and

invasion of cancer cells (74, 75). This protein severs and caps F-

actin, which is needed for actin polymerization during cell

movement (51). We found increased gelsolin RNA and

demonstrated a trend towards increased gelsolin protein in

HIV-infected mature monocytes treated with meth compared

to untreated cells. One study showed that mouse macrophages

that do not express gelsolin have decreased chemotaxis and

migration, suggesting this molecule is important for myeloid cell

migration (76). In mouse osteoclasts, gelsolin promotes

podosome formation and cell motility (77). Meth-induced

changes in the expression of actin binding proteins could

contribute to changes in cytoskeletal arrangement mediating

cell movement and entry into the CNS.

Several signaling pathways regulate monocyte functions

such as movement and differentiation that may contribute to

HIV neuropathogenesis. Our analyses showed changes in

expression of transcripts related to signaling pathways and

predicted an increase in RHOGDI signaling. We found

increased expression of DOCK4, a guanine exchange factor, in

meth treated HIV-infected cells. DOCK4 activates Rac1 and

promotes actin reorganization and formation of lamellipodia at

the leading edge of breast cancer cells (78). Our results also

showed an increased expression of NCS1, a molecule that

encodes a calcium binding molecule that regulates G protein
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coupled receptor phosphorylation and promotes cell movement

(79). We found a predicted activation of the MSP-RON pathway

in meth treated HIV-infected mature monocytes. Macrophage

stimulating protein (MSP) is activated by matriptase, encoded by

ST14, a transcript upregulated by meth. This activated form

binds to Recepteur d’origine Nantais (RON), resulting in

increased cell migration and matrix invasion (80). Matriptase

mediated downstream protein kinase C (PKC) signaling that led

to increased MMP-9 and metastasis of a breast cancer cell line

(81). Dysregulation of these molecules can change signaling

pathways in mature monocytes that facilitate their entry into

the CNS.

Mature monocytes are involved in immune responses

through their ability to process and present antigens, activate

T-cells, and release inflammatory mediators in the CNS. Once in

the CNS, monocytes can also differentiate into perivascular

macrophages that contribute to antigen presentation and

inflammatory responses (82). Our analyses showed that meth

treatment of HIV-infected mature monocytes decreases

expression of many antigen presenting MHC class II

molecules (HLA-DMA, HLA-DMB, HLA-DPA1, HLA-DPB1,

HLA-DQA1, HLA-DQB1, HLA-DRA). These are important for

processing and presenting antigens derived from extracellular

pathogens (83). Downregulation of MHC class II molecules can

reduce the ability of the mature monocytes to present antigens to

CD4+ T-cells, compromising immune response to pathogens.

We also show decreased CISD2 and VMP transcripts, involved

in endosomal-lysosomal pathways important for antigen

presentation by MHC molecules (84–86). Our findings are

consistent with a study that showed that meth decreases MHC

Class II antigen processing and presentation by inhibiting the

endosomal-lysosomal pathway in dendritic cells (87). Although

a separate report showed that the ability of MHC Class II antigen

processing and presentation is not impaired in total monocytes

from PWH, our data indicate that in the presence of meth, this

may be dysregulated in HIV-infected mature monocytes (88).

This could inhibit clearance of pathogens in the CNS.

Toll like receptors (TLR) are pattern recognition receptors

(PRR) present on immune cells including monocytes. TLR are

important for inflammation and immune responses to

pathogens. They are activated upon binding of pathogen-

associated molecular patterns, resulting in downstream

signaling that leads to interferon production. This can mediate

recruitment of additional immune cells and activation of

antiviral immune responses (89). Our data show that meth

downregulates expression of TLR7, an endosomal receptor for

single stranded RNA (89, 90). TLR7 was shown to trigger a Type

I interferon response upon HIV RNA binding in dendritic cells

(91, 92). Meth also decreases TLR8, another endosomal receptor

for single stranded RNA (89, 90). TLR8 in monocytes recognize

HIV, leading to inflammasome activation (91, 92). Meth-

mediated downregulation of TLR7 and TLR8 in HIV-infected

mature monocytes could be impaired, resulting in reduced
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ability to clear HIV after entering the CNS. In addition,

activating TLR signaling pathways is a potential mechanism

for reactivation of latent virus within viral reservoirs in

eradication approaches (93–95). A TLR8 receptor agonist was

shown to re-activate latent HIV in CD4 T-cells (95).

Downregulation of TLR8 by meth in HIV-infected mature

monocytes could reduce efficacy of this strategy in PWH who

use meth.

Our functional analyses predicted an increase in viral

infection of meth treated HIV-infected mature monocytes

compared to untreated HIV-infected cells. We found increased

levels of HIV release from cells after 6h of meth treatment,

although we did not quantify intracellular HIV levels. The early

changes in transcripts expression related to infection by viruses

could contribute to increased HIV infection of meth treated

mature monocytes at later timepoints. This is consistent with

studies that reported increased HIV infection in meth treated

macrophages, monocytes, microglia, and dendritic cells treated

with meth for various amounts of time (46, 96–99). The

prediction of increased viral infection may be due, in part, to

downregulation of the antiviral related molecules IFITM3, and

TRIM22. Interferon-induced transmembrane proteins (IFITM)

can inhibit HIV entry and viral protein synthesis, and IFITM3

was reported to be involved in antiviral responses by trafficking

vesicles containing viruses into the lysosome for degradation

(100–102). Downregulation of IFITM3 by meth could result in

increased viral infection of mature monocytes due to impaired

ability to reduce viral entry and/or degradation of the virus.

TRIM22, a member of tripartite motif proteins family, also

inhibits HIV replication (103–106). Thus, downregulation of

TRIM22 in mature monocytes can promote increased

viral production.

Under homeostatic conditions, cells depend upon

mitochondrial oxidative phosphorylation as the main source of

energy. We found decreased expression of mitochondria

Complex I gene transcripts, ND4, ND5, and ND6, and the

ATP synthase transcript, ATP8, in meth treated HIV-infected

mature monocytes, and a predicted decrease in the oxidative

phosphorylation pathway. Downregulation of complex I and

ATP synthase molecules could lead to decreased energy

production through the oxidative phosphorylation pathway

(107). Our results are consistent with a study that found that

meth causes mitochondria dysfunction through loss of

mitochondrial membrane potential, mitochondria permeability

transition pore opening, or dysregulation of mitochondria

complexes (108). Another study reported that short meth

exposure decreases the oxygen consumption rate and ATP

levels in astrocytes (109). Our data show upregulation of

transcripts encoding enzymes involved in glycolysis, including

ENO2 and PFKP in the meth treated cells. These results are

similar to those from another study that showed increased

protein levels of ENO2 in immature dendritic cells treated

with meth (110). Meth-mediated changes in glycolysis related
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molecules could shift the metabolic profile of the cells to rely on

energy produced by glycolysis. A switch to glycolysis results in

release of metabolites that cause downstream signaling that can

promote inflammation and cell migration (111, 112). This may

contribute to influx of cells into the CNS leading to

inflammation and consequent neuronal damage.

Mitochondria complexes I and III are major sources of reactive

oxygen species (ROS) which are involved in the regulation of

hypoxia, inflammation, and cell death (113). We observed a

decrease of complex I transcripts expression after meth treatment.

Our data also showed that meth caused a downregulation of the

antioxidant transcript SELENOP, and upregulation of an oxidative

stress marker, GGT1 (114, 115). These changes can lead to

dysregulated ROS production, increased oxidative stress, and

contribute to CNS inflammation. One study found decreased levels

of Complex I proteins in PBMC fromPWHand this correlated with

inflammation (116). Additionally, increased ROS has been shown in

HIVneuropathogenesis (117). Themeth-induced changes indicate a

potential ROS imbalance, that can contribute to cellular stress and

homeostatic imbalance in the CNS.

Meth can induce the differential gene expression patterns in

HIV-infected mature monocytes through activation of various

downstream signaling pathways. Identifying these pathways will

provide potential upstream targets to limit the impact of meth on

specific monocyte functions. Meth is a lipophilic molecule that

enters cells either by diffusing across the plasma membrane or by

binding dopamine transporters, which are expressedonmonocytes

(118). Inside the cell, meth can bind to trace amine-associated

receptor 1 (TAAR1), an intracellular G-protein coupled receptor

(119–121). This can lead to downstream activation of RhoA, PKA

or CREB signaling pathways (119–121). CREB is a transcriptional

factor that regulates transcription of various genes including those

ofMHCclass IImolecules (122). CREB also regulates transcription

of cofilin, CFL1, a molecule whose expression was upregulated in

our HIV-infected monocytes treated with meth (123). Meth-

mediated modulation of all these pathways may contribute to the

differential gene expression patterns identified in our study, which

may contribute to changes in cellular functions. Thus, targeting

these pathwayswith inhibitorsmay limit themeth-mediated effects

in HIV-infected monocytes.

To determine whether HIV alone affects expression of some of

the DEG identified, we examined our previously published single

cell RNA sequencing data to compare expression of the transcripts

between HIV-infected and uninfected mature monocytes cultured

in vitro (42). We showed that HIV alone did not increase

expression of many of the cell movement related molecules

including MMP9, ADAM8, GSN, and CFL1. However, we found

that HIV downregulated expression of some MHC class II

molecules including HLA-DMA, HLA-DMB, and HLA-DPA1

(42). This suggests that both HIV and meth downregulate these

molecules that could impair the ability of the cells to present

antigens, including viral proteins to protect them from being killed

by cytotoxic T cells. This can contribute to persistence of viral
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reservoirs. Although we did not determine the effects of meth on

expression of these molecules on uninfected mature monocytes,

our data suggest that in the context of HIV, meth could worsen

disease pathogenesis by further impairing some of their functions.

Our study did not determine the percentage of cells

expressing the identified DEG. To address this, we used our

published single cell RNA sequencing data, and found that there

was heterogeneous expression of some molecules (42). For

example, MMP9, GSN, ND4, and HLA-DMA were present in

more than 70% of HIV-infected mature monocytes, whereas

molecules such as ITGB7, FLNB, and TLR8 were present in fewer

than 50% of the cells (42). Future studies can perform flow

cytometry and microscopy studies to evaluate protein expression

of these molecules in mature monocytes.

Our data identify potential mechanisms by which meth may

exacerbate HIV-NCI in PWH. Some of the limitations of this study

include the short period of time for which the cells were treated with

meth. The gene expression changes found may not represent those

thatoccurduringchronicmethuse.HIV-infectedmaturemonocytes

are a heterogeneous population comprised of HIV harboring and

HIV-exposedcells.This studyusedbulkRNAsequencing.Therefore,

we cannot distinguish the effects of meth on cells that are harboring

HIV from the effects on cells exposed to HIV but not harboring the

virus. It is also possible that some of the specific gene expression

changes might not reflect protein or functional changes. Additional

studies are needed to determine the effects of chronic meth exposure

on HIV-infected mature monocytes. More assays need to be

performed to confirm the RNA sequencing data and to determine

the specific effect of meth onHIV harboring andHIV-exposed cells.

We also did not perform comparisons among untreated uninfected

cells, meth treated uninfected cells, untreatedHIV-infected cells, and

meth treated HIV-infected cells. Thus, we could not determine the

effects ofmethwith andwithoutHIV.Our future studieswill address

this. Another limitation of this study is we could not sort for

specifically CD14+CD16+ monocytes due to the limited number of

cells. However, we showed that the majority of cells were mature

monocytes. Future studieswill also confirm the identifiedDEGusing

flow cytometry and microscopy assays to specifically identify

expressionof themoleculesoncells expressingbothCD14andCD16.

To our knowledge, this is the first study to characterize the

impact of meth on HIV-infected mature monocytes, a key cell type

in the neuropathogenesis of HIV-NCI. We found that meth may

increase monocyte recruitment, viral seeding and reseeding, and

immune dysregulation through changes in transcripts involved in

matrix degradation, cell adhesion, cytoskeletal arrangement,

signaling pathways, antigen presentation, pathogen recognition,

viral infection, and oxidative phosphorylation. These data identify

potential biological changes that occur in meth treated HIV-

infected mature monocytes that can contribute to HIV-NCI in

PWH who use meth. These changes could potentially be used for

therapeutic targets to reduce infected monocyte entry into the

CNS, viral seeding and reseeding, immune response dysregulation,

and neuronal damage in PWH who use meth.
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