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Immunotherapy is acquiring a primary role in treating endometrial cancer (EC)

with a relevant benefit for many patients. Regardless, patients progressing

during immunotherapy or those who are resistant represent an unmet need.

The mechanisms of immune resistance and escape need to be better

investigated. Here, we review the major mechanisms of immune escape

activated by the indolamine 2,3-dioxygenase 1 (IDO1) pathway in EC and

focus on potential therapeutic strategies based on IDO1 signaling pathway

control. IDO1 catalyzes the first rate-limiting step of the so-called “kynurenine

(Kyn) pathway”, which converts the essential amino acid L-tryptophan into the

immunosuppressive metabolite L-kynurenine. Functionally, IDO1 has played a

pivotal role in cancer immune escape by catalyzing the initial step of the Kyn

pathway. The overexpression of IDO1 is also associated with poor prognosis in

EC. These findings can lead to advantages in immunotherapy-based

approaches as a rationale for overcoming the immune escape. Indeed,

besides immune checkpoints, other mechanisms, including the IDO

enzymes, contribute to the EC progression due to the immunosuppression

induced by the tumor milieu. On the other hand, the IDO1 enzyme has recently

emerged as both a promising therapeutic target and an unfavorable prognostic

biomarker. This evidence provides the basis for translational strategies of
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immune combination, whereas IDO1 expression would serve as a potential

prognostic biomarker in metastatic EC.
KEYWORDS

endometrial cancer, indolamine 2, 3-dioxygenase (IDO), tryptophan, kynurenine,
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Introduction

Endometrial cancer (EC) is the most common gynecologic

malignancy in Europe, and its prevalence is increasing. EC

makes up 2% of all new cancer cases (1). It is typically

detected in the early stages when the disease is confined to the

uterus for most patients. The 5-year survival rates are high for

patients with early-stage disease, and the 5-year survival rates of

76% have been reported for all patients with EC in Europe (all

disease stages) (2).

In 2013, the Cancer Genome Atlas (TCGA), by evaluating

the genomic and epigenomic landscapes of primary EC,

delineated four distinct molecular subtypes, namely

polymerase ϵ (POLE)-mutant/hypermutated, microsatellite

instability-high (MSI-H), copy number low, and copy number

high. This molecular classification reflects the underlying tumor

biology and potential therapeutic strategies (3).

In this regard, EC cells and the tumor microenvironment

(TME) have been shown to modulate the immune response.

Firstly, EC cells possess the ability to activate programmed cell

death protein 1 (PD-1) signaling, an immune checkpoint

receptor able to downregulate the immune response by

overexpressing programmed death-ligand 1 (PD-L1) and 2

(PD-L2). PD-L1 and PD-L2 bind PD-1 expressed on tumor-

infiltrating CD4 and CD8 T cells, inactivating them in the TME

(4). Immunohistochemical studies have described PD-1 and PD-

L1 expression levels (40%–80% in endometrioid, 10%–68% in

serous, and 23%–69% in clear cell subtypes, respectively) in EC,

representing the highest expression within gynecologic cancers

(3, 5). Secondly, EC subtypes with high tumor mutational

burden (e.g., POLE-mutant/hypermutated and MSI-H) are

highly immunogenic and exhibit more tumor-specific

neoantigens, resulting in increased CD4 and CD8 tumor-

infi ltrating lymphocytes (TILs) and a compensatory

upregulation of immune checkpoints (6). Increased TILs, an

indicator of the anticancer immune response, have been

associated with improved outcomes in EC (7).

This peculiar TME combination of increased mutational

load, TILs, and PD-1/PD-L1 expression makes EC an ideal target

for immunotherapeutic interventions. When considering

therapeutic targets, it is important to note that EC was
02
recently shown to have the highest prevalence of MSI across

30 human cancer types; approximately 30% of primary EC are

MSI-H, and 13%–30% of recurrent ECs are MSI-H or DNA

mismatch repair system defectives (dMMR) (8). This subgroup

is characterized by low copy-number aberrations and a high

mutational burden (8). Because the MSI-H status is a biomarker

of response to immune checkpoint inhibition, in 2017,

pembrolizumab (KEYTRUDA, Merck), an anti–PD-1

monoclonal antibody, was approved for the treatment of MSI-

H or dMMR solid tumors, such as in EC (9). In April 2021, the

FDA approved dostarlimab (Jemperli), an anti–PD-1

monoclonal antibody, to treat recurrent or advanced dMMR

EC that has progressed on or following prior treatment with

platinum chemotherapy (9).

Unfortunately, women with advanced and recurrent EC still

have limited therapeutic options following standard therapy

based on a platinum-based regimen (9). Given the critical role

of the immune dysregulation process in EC progression, and

considering that EC is more likely to benefit from

immunotherapy than other gynecological malignant tumors,

the use of immune checkpoint inhibitors has been explored as

a therapeutic mechanism, both as monotherapy and in

combination with targeted agents (5, 9). Most advanced EC

patients are expected to receive immunotherapy alone or in

combination, either in the first or the second line, worldwide.

The treatment of patients resistant to immunotherapy is thus a

clear unmet need. Therefore, the mechanisms of resistance to

immunotherapy should be better investigated.

It has been suggested that the immunometabolic

dysregulation mediated by the indolamine 2,3-dioxygenase 1

(IDO1) pathway protects EC cells from the cytotoxicity induced

by T cells, thus actively generating an immunosuppressive

milieu (10–12). The IDO1 enzymatic activity catalyzes the first

rate-limiting step of the so-called “kynurenine (Kyn) pathway”.

It depletes the tissue microenvironment of the essential amino

acid L-tryptophan by converting it into the immunosuppressive

metabolite L-kynurenine. In this review, we discuss the role and

features of the TME in EC by focusing on the involvement of

immunometabolism mechanisms mediated by the IDO1

pathway and its potential prognostic role. Finally, we also

evaluate the potential application of targeting the IDO1
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pathway in the therapeutic strategy of EC for overcoming

immunotherapy resistance.
IDO1 and immune functions

IDO1 is known to exert immune regulatory functions in

several conditions, comprising infection, allergy, pregnancy,

autoimmunity, chronic inflammation, transplantation, and

mechanisms for the immune escape of tumors (13, 14).

Investigation of other functions of IDO1, such as those related

to its effect on vascular biology, nociception, and the central

nervous system, is beyond the scope of this review and, therefore,

will not be addressed.
Mechanisms of the IDO1
immune function

In physiological conditions, IDO1 is expressed primarily in

mucosal tissues, such as in the lung and placenta by endothelial

cells, in the woman’s genital tract by epithelial cells, and also in

lymphoid tissues by mature dendritic cells (DCs) with a

phenotype (CD83+, DC-LAMPþ+, langerin−, CD123−, and

CD163−) different from plasmacytoid DCs (15). The IDO1

activity is regulated by metabolic factors, such as heme

cofactor, substrate supply, redox potential, and nitric oxide

(NO). The inducible NO synthase (iNOS) enzyme is induced

by interferon (IFN)-g with subsequent NO production and

blockage of IDO1 activity. Hence, IFN-g co-induces iNOS and

IDO1, but metabolic cross-regulation may override the IDO1-

mediated one (16). The IDO1 pathway activity can also be

reduced by lowering the IDO1 enzyme levels. In some cells,

IDO1 levels are regulated by SOCS3, which sends IDO1 to

proteasomal degradation (17, 18).

In some settings, the trade-off between tolerance and

immunity seems to depend on factors altering the balance

be tween loca l pro- inflammatory s i gna l s and the

immunosuppressive activity by IDO1 (13). Because immune-

related molecules induce IDO1 gene expression, the IDO1

pathway also occurs during inflammation in many tissues,

especially in case of sustained inflammation. Indeed, IDO1

gene activation manifests together with the production of pro-

inflammatory cytokines locally. IDO1 enzymes are intracellular,

but their effects are not limited to the cells expressing IDO1 as

they can act in a paracrine fashion. There are two main

mechanisms through which IDO1 modulates immune

responses: innate or inflammatory IFN-dominated responses,

which cause a short but intense course of tryptophan

degradation and Kyn metabolites’ production, and a

transforming growth factor b (TGF-b)–driven self-maintaining

form of intracellular signaling activity, which confers

plasmacytoid DCs an immunosuppressive phenotype (14).
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With regard to the IFN-mediated response, the IDO1

enzyme metabolizes the essential amino acid tryptophan

producing soluble factors, such as Kyn and downstream

metabolites, which strengthen an immunosuppressive milieu

(10–12, 18). The production of secreted Kyn metabolites and

the tryptophan-depleted environment can be sensed by

neighboring cells (15). When Kyn pathway metabolites bind to

the ligand-activated transcription factor aryl hydrocarbon

receptor (AhR), it exerts immunosuppressive effects through

the suppression of antitumor immune responses (19, 20), the

promotion of the differentiation of FOXP3+ Tregs (regulatory T

cells) (21, 22), and the decrease in the immunogenicity of DCs

mediated by IDO1 expression (22). Tryptophan depletion is also

a potent regulatory signal, as it activates molecular stress-

response pathways, such as GCN2 kinase and mTOR (13).

Although direct effects of IDO1 on the mTOR pathway have

not been found yet, it is plausible that mTOR is a downstream

pathway affected by IDO1 because amino acid withdrawal can

affect this nutrient-sensing pathway (15, 23). Indeed, mTOR

activity is inhibited during inflammatory responses where amino

acids are catabolized by IDO1 and other enzymes (23–25).

Regarding GCN2, it appears that the latter inhibits T effector

cells while enhancing Treg activity (15). GCN2 activation by

IDO1 leads to cell-cycle arrest and functional anergy in CD8+ T

cells (26). In contrast, in CD4+ T cells, it blocks TH17

differentiation (27, 28) and promotes de novo Treg

differentiation and activation of functional suppressor activity

in mature Tregs (29, 30).

IFNs are the most important regulators of IDO1 expression.

They activate the JAK/STAT complexes to induce transcription

of many IFN-stimulated genes, such as the IDO genes.

Mammalian IDO1 gene promoters possess IFN-stimulated

response elements and IFN-activated sites (16). Other factors

capable of triggering IDO1 transcription comprise regulatory

cytokines, such as IL-10 and TGF-ß, and AhR ligands such as

Kyn (16). Although these inflammatory insults can induce IDO1

expression, multiple factors restrict its expression and regulate

its activity (e.g., the IFN-induced IDO1 expression is regulated

by the transcriptional factor DAP12) (17, 18).

In professional antigen-presenting cells (APCs), such as

DCs, IDO1 can confer tolerogenic phenotypes by acting as a

direct intracellular signaling molecule (13, 14). In the presence of

IDO1 activity, APCs start producing inhibitory cytokines, such

as TGF-b, instead of inflammatory cytokines (31–33). Whereas

acute responses are best controlled by the IFN-g–IDO axis, TGF-

b is critical in establishing a regulatory, long-lasting phenotype

in DCs (14). In vitro experiments showed that, in response to

TGF-b, the IDO1 promoter began to be transcriptionally active

and maintained considerable activity later and for longer

compared with that of IFN-g. These effects remained sustained

after TGF-b wash-up (14). Moreover, TGF-b–conditioned DCs

and CD4+ T cells cultured with or without anti–TGF-b showed

that the emergence, but not maintenance, of CD4+Foxp3+ T cells
frontiersin.org
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depended on TGF-b, suggesting that once induced, the

regulatory population was not contingent on TGF-b. These
elements suggest that TGF-b–dependent signaling in DCs

induces IDO1 expression and a regulatory phenotype, which

does not need TGF-b to be sustained (14).

These two mechanisms (IFN-induced and TGF-b–induced
IDO1 expression) underline the importance of IDO1

upregulation in altering the whole local milieu from

immunogenic to tolerogenic and changing the nature of the

APC itself (14, 16). As stated before, IDO1 expression does not

act exclusively on the cell expressing it but also in close-by cells,

such as T cells interacting with APCs (15). This enables APCs to

generate and sustain the function of Tregs through the combined

effects of tryptophan starvation and Kyn acting via the AhR of T

cells (14).
Immunosuppression by IDO1 in the
tumor microenvironment

More than 60% of human tumors possess cells that express

IDO1. These include tumor cells and stromal and endothelial

cells in varying proportions according to tumor types. The gene

expression data obtained from the TCGA database and

immunolabeled samples show that the carcinomas of the

cervix, followed by the endometrium, bladder, kidney, and

lung, are the highest IDO1-expressing carcinomas. In

particular, about 80% of EC expresses IDO1 (15). The
Frontiers in Immunology 04
expression of functional IDO1 in these tumors is constitutive,

indicating that the IDO1 gene is active regardless of

environmental factors (15, 34). This constitutive IDO1

expression represents a critical mechanism of intrinsic/primary

immune resistance, limiting both accumulation and

proliferation of TILs and making these tumors “cold” (i.e., not

triggering a strong immune response), as shown in Figure 1.

Moreover, like PD-L1, IDO expression seems more common

in mismatch repair–deficient ECs than mismatch repair–intact

tumors (not specified if only IDO1 or IDO2 as well) (35).

Interestingly, in a study by Liu et al. (12), the percentage of

primary (38%) and metastatic (43%) EC samples expressing

IDO (not specified if only IDO1 or IDO2 as well) was

significantly lower when compared with normal endometrium

samples (57%). On the other hand, recurrent EC specimens

showed a higher percentage than normal endometrial samples.

Despite this, blocking the IDO1 pathway might be a useful

treatment option in some settings, given that IDO is highly

expressed in 21% of primary EC (12). In the same study, IDO

was found to be expressed not only in the cytoplasm but also

apically, and cells expressing IDO were in close proximity to the

tumor vessels (12). Thus, tumoral IDO expression, as well as that

of PD-L1, tends to be directed to the infiltrating edge of

endometrial carcinomas suggesting an ongoing adaptive

immune response (12, 35).

Stromal expression of IDO1 is usually observed in tumors

rich in immune infiltrates, such as TILs. Because IDO1

transcription is strongly induced by IFN-g, the IDO1
FIGURE 1

The tumor microenvironment in endometrial cancer. Two different mechanisms of immune resistance mediated by the IDO1 enzyme activity
and expression in the TME in endometrial cancer. (Left) IDO1 is constitutively expressed in cancer cells (intrinsic or primary resistance) typically
in non-inflamed tumors, such as endometrial and ovarian cancers. This expression prevents the accumulation of the activated antitumor CD8+

T cells, thus inducing an immunosuppressive TME. (Right) IDO1 is induced in endometrial cells (IDO + EC cells) and other cell types (stromal and
endothelial cells) by IFN-g released by neighboring activated T or NK cells in the context of a negative feedback loop (adaptive or acquired
resistance). EC, endometrial cancer; IDO1, indolamine 2,3-dioxygenase 1; PD-L1, programmed death-ligand 1; TCR, T-cell receptor; TME, tumor
microenvironment.
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expression in inflamed TME likely results from IFN-g produced
by TILs. Consistently, the transcriptomic analysis reported a

strong correlation between CD8+ T-cell infiltration and IDO1

expression in tumor models, such as melanoma. This is similar

to CD274 (the gene encoding PD-L1), which is also inducible by

IFN-g, whose expression is also correlated with TILs. This

represents a typical mechanism of adaptive resistance, where

the immune system recognizes cancer, but protects itself by

adapting to the immune attack mediated by infiltrating T cells

through the production of immunosuppressive factors, such as

PD-L1, TGF-ß, and IDO1 (13). Other mechanisms activated by

tumor cells to escape the immune surveillance include the

paracrine production of negative mediators, such as adenosine,

VEGF, and overexpression of inhibitory immune checkpoints.

The intrinsic or adaptive resistance mechanism mediated by

IDO1 expression in the TME is shown in Figure 1.

Patients with EC have increased tryptophan degradation

resulting in higher serum Kyn concentrations and a higher Kyn/

tryptophan ratio compared with healthy woman controls (36).

Tryptophan depletion through IDO1 overexpression favors cell-

cycle arrest and apoptosis in T lymphocyte or NK cells (10, 11).

Moreover, in NK cells, Kyn downregulates the specific triggering

receptors NKp46 and NKG2D, suppressing the killer functions

(11). Given that the TME is depleted of tryptophan, it can be

expected that immune cells and cancer cells will suffer from

tryptophan shortage as they are found close to each other.

Cancer cells may be less sensitive to this condition than T or

NK cells, resulting in localized tolerance within the TME and the

contribution to the tumor escape from host immune surveillance

(11). In fact, IDO1 induces a novel tryptophan transporter

expression in mouse and human cancer cells (37). Such

alternative means of tryptophan intake are probably involved

in maintaining an adequate cellular tryptophan status when the

microenvironment becomes depleted (38).

Because IDO1 expression is found in tumor cells of different

types of cancers, many studies report that a high IDO1

expression is associated with a negative effect on prognosis

(11, 13, 16, 39–45). Tumors in this category include EC, colon

cancer, melanoma, ovarian cancer, brain tumors, acute

myelogenous leukemia, and others (16). The prognostic

significance of intra-tumoral IDO expression has been

investigated in large cohorts of EC patients. Indeed, the IDO

expression in EC correlates with the frequency of nodal

metastases and lower numbers of intra-tumoral CD8+ T

lymphocytes (not specified if IDO1 or IDO2 as well) (38, 43,

46). The intra-tumoral high IDO expression has a negative

impact on survival in advanced EC. Finally, the IDO

expression in EC could be an independent prognostic factor

for impaired progression-free survival (35) and independently

associated with poor disease-specific survival in a general cohort

of EC patients and among patients with early-stage EC, but not

in subgroups with advanced stage and an endometrioid tumor

type (38).
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Immune checkpoint inhibitors in
endometrial cancer

Treatments based on immune checkpoint blockade (ICB),

especially PD-1 or PD-L1 inhibitors, have been explored as a

therapeutic strategy in advanced EC, both as monotherapy and

in combination with cytotoxic chemotherapy, other

immunotherapy, or targeted agents. In microsatellite stable

(MSS) or PD-L1–positive advanced EC, response rates ranging

from 3% to 23% have been observed with PD-1 inhibitors, such

as nivolumab and dostarlimab, and with PD-L1 inhibitors, such

as atezolizumab, avelumab, and durvalumab (5). In MSI-H or

dMMR-advanced ECs, PD-L1 inhibitors, such as durvalumab

and avelumab, have shown response rates of 43% and 27%,

respectively. Conversely, the PD-1 inhibitors, such as

dostarlimab and pembrolizumab, appear more effective,

showing response rates of 49% and 57%, respectively (5).

However, the tumoral expression of PD-1 and PD-L1 is just

one of the many potential mechanisms of immune evasion

in EC.

Lenvatinib is a selective inhibitor of VEGF-a, KIT, and RET

and is a potent angiogenesis inhibitor. It has also been shown to

be an effective immunomodulator. Lenvatinib decreases tumor-

associated macrophages, increases T-cell population,

upregulates the type I IFN signaling pathway, and leads to the

activation of CD8+ T cells. In 2019, the FDA granted accelerated

approval for the combination therapy of lenvatinib and

pembrolizumab for the treatment of advanced non–MSI-H

and non-dMMR EC that has progressed following prior

therapy, according to substantial activity in phase Ib/II

KEYNOTE-146/Study 111 (5). Later, in a randomized phase

III trial (KEYNOTE-775/Study 309), lenvatinib plus

pembrolizumab led to significantly longer progression-free

survival and overall survival than chemotherapy among

patients with advanced EC who had received one or two

previous platinum-based chemotherapy regimens (47). To

verify whether pembrolizumab plus lenvatinib is superior to

chemotherapy in terms of progression-free survival and overall

survival in patients with mismatch repair-proficient tumors and

all patients even in the first line, the ENGOT-en9/LEAP-001 trial

is currently ongoing (48). This trial has the potential to define

the new standard of first-line treatment in advanced EC.
Targeting IDO1 pathway in cancer

Efficacy of IDO1 blockade

IDO1 inhibition has already been shown to be effective in

preclinical settings. Over the past decade, intense efforts have

been made to develop IDO1 inhibitors, and several small-

molecule IDO1 inhibitors have been reported.
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Among the several investigations with murine models

attempting the clinical application of the IDO1 inhibitor

therapy, the synthetic analog of tryptophan, 1-methyltryptophan

(1-MT), best known as indoximod, is by far the most employed

IDO1 inhibitor in the preclinical literature (49). 1-MT was first

described as a competitive inhibitor of the IDO1 enzyme in the

early 1990s. However, unlike its L-isomer, which has shown weak

inhibitory activity, the D-1-MT isomer neither binds nor inhibits

the purified IDO1 enzyme. In contrast to direct enzymatic

inhibition of IDO1, indoximod acts downstream of IDO1 to

stimulate mTORC1, which is a central regulator for cell growth

(49). 1-MT, while not cytotoxic itself, may heighten the cytotoxic

effects of chemotherapeutic agents in IDO1-expressing tumors

(11). In murine P815 mastocytoma, tumor growth was

significantly reduced by 1-MT in immunized mice, whereas, in

mice depleted of T cells, the 1-MT effect was abolished (11). IDO1

inhibition has shown to increase the therapeutic efficacy of

checkpoint inhibitors, cancer vaccines, or even chemotherapy

(34, 50–52) in mice and human tumors grafted into

immunodeficient mice reconstituted with human lymphocytes

(53). This background indicates that murine and human

lymphocytes are sensitive to IDO1-mediated immune

suppression. Clinical trials with 1-MT have been conducted in

different clinical settings, albeit none in EC. Results indicated that

when used inmonotherapy, indoximod exerted limited anticancer

efficacy. In contrast, the combination of indoximod with other

therapies including cancer vaccines, immune checkpoint

inhibitors, and chemotherapy showed an antitumor efficacy (49).

Of the various IDO1 inhibitors that entered clinical trials

targeting different advanced solid tumors, those in combination

with the anti–PD-1 antibody have displayed better cooperativity,

which would help overcome the drug resistance and maximize

the survival benefits of patients (54). In the development of

IDO1 inhibition targeting, the most advanced is epacadostat,

which has already been tested in several clinical trials.

Epacadostat is an orally available, highly specific, reversible
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competitive IDO1 inhibitor with over 1,000-fold selectivity to

IDO1 over IDO2 or tryptophan dioxygenase. In vitro and in vivo

studies showed that epacadostat reduced the tumor growth and

promoted the proliferation of both T and NK cells. Preclinical

studies showed that epacadostat and immune checkpoint

inhibitors had a synergy effect, and several clinical trials were

initiated to evaluate the combination of epacadostat with

immune checkpoint inhibitors.

Based on encouraging clinical results in early-phase trials in

other tumors such as melanoma, a crucial randomized phase III

study (ECHO-301/KN-252; NCT02752074) was launched to test

the benefit of adding epacadostat to pembrolizumab therapy in

the first line. This study investigated the efficacy, safety, and

tolerability by combining pembrolizumab with epacadostat or

placebo in patients with unresectable or metastatic melanoma.

Unfortunately, the negative results hampered the development

of IDO1 inhibitors (55). Therefore, several phase III trials were

terminated and withdrawn. Among these clinical trials, the study

NCT03310567, designed for patients with recurrent or

metastatic EC, was terminated due to these reasons and low

enrollment (Table 1).

The failure of the phase III trial with epacadostat in first-line

metastatic melanoma is a key turning point in developing IDO1-

targeting drugs (54). The mechanism of IDO1 inhibition and

rational trial design should be a priority for discovering and

developing an IDO1-targeting molecule. Interestingly, Van den

Eynde et al. proposed several potential reasons for the negative

outcome of using epacadostat plus immunotherapy in metastatic

melanoma (56), such as insufficient IDO1 inhibition by

epacadostat in the tumor; no selection of patients for tumoral

IDO1 expression; no selection for patients refractory to

immunotherapy; the adaptivity of the IDO1 expression

mechanism in melanoma; compensatory expression of

tryptophan dioxygenase or IDO2; the activation of the AhR by

epacadostat, which drives immune suppression; and the

insufficient blockade of the tryptophan–Kyn–AhR pathway by
TABLE 1 Current development status of IDO1 inhibitor strategies in advanced endometrial cancer.

Clinical
trial

Drug Mechanism
of action

Pharmaceutical
company

Phase of
development

Condition or disease Drugs
combination

Status

NCT03310567 Epacadostat IDO1 inhibitor Incyte Corporation,
Merck Sharp &
Dohme

II Recurrent/metastatic endometrial
carcinoma

Epacadostat;
pembrolizumab

Withdrawn
(sponsors pulled
out of the study)

NCT02178722 Epacadostat IDO1 inhibitor Incyte Corporation,
Merck Sharp &
Dohme

I/II Advanced selected cancers Epacadostat;
pembrolizumab

Completed

NCT04106414 BMS-
986205

IDO1 inhibitor Bristol-Myers Squibb II Endometrial cancer or endometrial
carcinosarcoma

BMS-986205;
nivolumab

Active, not
recruiting

NCT04463771
(POD1UM-
204)

Epacadostat IDO1 inhibitor Incyte Corporation II Metastatic endometrial cancer that
has progressed on or after platinum-
based chemotherapy

Epacadostat;
INCMGA00012;
pemigatinib

Recruiting
BMS-986205, linrodostat; INCMGA00012, retifanlimab; pemigatinib, FGFR 1,2,3 inhibitor.
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IDO1 inhibitors (56). Thus, it is urgent to address now the

reasons for the clinical failure of epacadostat and whether IDO1

remains a critical immuno-oncology target. This can help

determine the path forward in the clinical development of

IDO1 inhibitors for cancer therapy.
Rationale for the IDO1 blockade in
endometrial cancer

To date, there are few data on how the concurrent presence

of other anti-immune defenses may interfere with the

effectiveness of anti–PD-1/PD-L1 therapies in solid cancers,

including EC (12, 57). If the goal of immunotherapy is to

activate T cel ls within the TME, the activation of

immunosuppressive pathways, such as that of IDO1 by the

same activated cells, must be avoided in order to not reduce nor

inhibit the expected antitumor effect (Figure 2). Preclinical

studies demonstrated this concern with IL-12 therapy (58) and

adoptive cell therapy using CAR-T cells (59), whereas

confirmation in the clinical setting is still lacking. IDO1

expression can reduce the effectiveness of immunotherapy

regimens by turning tumor-associated cytotoxic T cells

dysfunctional. Thus, immunotherapies inducing extensive

inflammation at the tumor site might benefit from a
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combination with an IDO1 inhibitor medication, as exposing

a tumor to immune recognition is of little utility if the immune

system cannot effectively eliminate it (12, 16, 57). The IDO1

expression in EC spans the four molecular subtypes, with

higher levels in dMMR tumors, particularly Lynch

syndrome–associated EC, and the POLE subtype (35, 60–63).

However, it remains common in mismatch repair–intact

tumors, a group for which immunotherapy is not currently

considered a viable option. Therefore, IDO1 targeting can be

also effective in tumors without abnormalities in the mismatch

repair system, although further research is warranted (35).

In light of these considerations, the blockage of the IDO1

pathway in ECs appears as an attractive treatment option, as

IDO1 provides a direct mechanism of tumor protection against

attack by closely located or contacting T lymphocytes (14). The

high expression frequency of both IDO1 and PD-L1 in EC

suggests that therapies targeting only the PD-1/PD-L1 axis may

be turned down in this tumor type due to IDO1 interference

with immune cell function (Figure 2). Moreover, almost all

tumors expressing PD-L1 coexpress IDO (not specified

if IDO1 or IDO2 as well), but more than half of tumor-

expressing IDO lacks PD-L1 expression, suggesting that

IDO-expressing tumors are significantly more common

than PD-L1–expressing ones (35). Thus, combination therapy

might be of clinical utility in this scenario.
A B

FIGURE 2

Targeting the IDO pathway. (A) The schematic representation of the effect of IDO1 on immune system cells of TME. IDO1 inhibits immune
responses through several mechanisms, including the depletion of the essential amino acid tryptophan and the overproduction of kynurenine.
The tryptophan depletion can inhibit T-cell proliferation arresting the cell progression cycle. In addition to the depletion of tryptophan, the
accumulation of kynurenine exerts also immunosuppressive effects through the promotion of the differentiation of FOXP3+ Tregs, the decrease
in the immunogenicity of DCs, and the inhibition of T effector cell. Thus, IDO1 represents a driver of tumor-mediated suppression. (B) The IDO1
pathway inhibition directly acts on the modulation of both innate and adaptive immune system in TME. Thus, the IDO1 inhibition can potentially
turn these “cold” tumors into “hot” tumors. Abbreviations: IDO1, indolamine 2,3-dioxygenase 1; MHC, major histocompatibility complex; MDSC,
myeloid-derived suppressor cells; TCR, T-cell receptor; Tregs, regulatory T cells.
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Clinical trials in endometrial cancer

Table 1 gives an overview of the clinical investigations

targeting the IDO1 pathway in advanced EC treatment. Of the

four trials in EC, three investigated the use of epacadostat and

one investigated the use of BMS-986205.

The first positive preliminary data from a phase I/II study

(NCT02178722) of the combination of epacadostat with

pembrolizumab in patients with selected advanced cancers

such as endometrial adenocarcinoma showed that epacadostat

with pembrolizumab was generally well tolerated, and efficacy

data suggest promising clinical activity (64). In this study, seven

patients (11%) had endometrial adenocarcinoma. Of these

patients, one achieved complete response and one partial

response (65).

NCT04106414 is a Memorial Sloan–Kettering Cancer

Center investigator-initiated, single-center, randomized, open-

label, phase II study to evaluate the activity of the PD-1 inhibitor

nivolumab with and without the IDO inhibitor BMS-986205

(linrodostat) in patients with recurrent or persistent EC or

endometrial carcinosarcoma and is currently in the

recruiting phase.

Finally, POD1UM-204 (NCT04463771) is the most

attractive ongoing trial. This is an umbrella study of PD-1

inhibitors (retifanlimab, INCMGA00012) alone or in

combination with other therapies in patients with

advanced EC who have progressed on or after platinum-

based chemotherapy. Previously, the POD1UM-101 study

provided encouraging efficacy data (cohorts A and B).

Ret i fanl imab was well tolerated and demonstrated

antitumor activity in patients with pretreated recurrent

MSI-H or dMMR EC, consistent with other PD-1 therapies

(66). In POD1UM-204, patients with advanced EC with

disease progression on or after >1 platinum-based regimen

are enrolled in four treatment groups based on prior

immunotherapy exposure and tumor characteristics, such

as MSH-I, dMMR, ultra-mutated POLE, and FGFRmutation.

Indeed, approximately 16%–20% of advanced EC patients

have FGFR mutation associated with more aggressive disease

and significantly shorter progression-free survival and

overall survival. Therefore, an additional clinical benefit

could be expected from the PD-1 inhibitor in addition to

the FGFR inhibitor (pemigatinib). Interestingly, group C

provides the use of retifanlimab plus epacadostat in select

participants who are allowed on prior checkpoint inhibitors.

Conversely, group E provides the same combination therapy

as retifanlimab plus epacadostat in patients naïve to

checkpoint inhibitors.

Despite the relevant progress made so far, there are still

some issues. It is unknown if the prolonged activation of AhR

affects cancer progression, considering that its activation by
Frontiers in Immunology 08
IDO1 inhibitors may induce pro-carcinogenic effects and can

be associated with poor prognosis. The reduced mTOR activity

due to tryptophan depletion can be reactivated by tryptophan-

mimicking IDO1 inhibitors that can act as fake nutritional

signals, in turn causing artificial antitumor efficacy of these

inhibitors. Indeed, mTOR can reactivate the T-cell function,

thus overcoming the tumor immune escape (54). IDO1 is

also known for participating in different aspects of vascular

biology. In this regard, Kyn contributes to vasodilatation,

acting as a vascular relaxing factor. Thus, the vascular-related

side effects of drug IDO1 inhibition are possible (67). Finally,

a more accurate clinical trial design, possibly through

the stratification according to the IDO expression level, can

also help overcome the risk of failure in EC model

clinical studies.
Conclusion

Advanced EC remains the most aggressive and life-

threatening gynecologic malignancy, albeit remarkable

therapeutic advances have been achieved. In several tumor

types, including ECs and ovarian cancers, IDO1 expression can

be observed in non-inflamed tumors and is confined to tumor

cells themselves. Interestingly, this constitutive expression

represents a mechanism of intrinsic immune resistance,

which can prevent the accumulation of TILs in the TME,

thus making these tumors “cold”. Given the presence of

immune dysregulation in EC, the ICB has been explored as a

therapeutic mechanism, both as monotherapy and in

combinat ion wi th cy to tox ic chemotherapy , o ther

immunotherapy, or targeted agents. IDO1-related ICB could

potentially turn these “cold” tumors into “hot” tumors. A

better understanding of the biological and molecular

mechanisms involved in endometrial tumor progression and

immune evasion is required. Overexpression of IDO1 by

human EC cells is known to enhance tumor progression in

vivo, and IDO1 inhibitors improve tumor rejection in mice

models when combined with checkpoint inhibitors. Based on

encouraging multiple preclinical models and results in early-

phase trials, some randomized studies are ongoing also in

advanced EC to test the benefit of adding IDO1 inhibitors to

conventional immunotherapy. Immunotherapy combinations

are relevant strategies aimed at restoring anticancer immunity

and restraining primary and acquired resistance to immune

checkpoint inhibitors.

In conclusion, based on these findings, clinical studies

aiming at translating IDO1 inhibition strategies into EC

treatment are required to evaluate the targeted blockade of

IDO1 signaling as an additional, alternative, and effective

future approach.
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