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NanoNet: Rapid and accurate
end-to-end nanobody modeling
by deep learning

Tomer Cohen*, Matan Halfon
and Dina Schneidman-Duhovny*

The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University
of Jerusalem, Jerusalem, Israel
Antibodies are a rapidly growing class of therapeutics. Recently, single domain

camelid VHH antibodies, and their recognition nanobody domain (Nb)

appeared as a cost-effective highly stable alternative to full-length

antibodies. There is a growing need for high-throughput epitope mapping

based on accurate structural modeling of the variable domains that share a

common fold and differ in the Complementarity Determining Regions (CDRs).

We develop a deep learning end-to-end model, NanoNet, that given a

sequence directly produces the 3D coordinates of the backbone and Cb
atoms of the entire VH domain. For the Nb test set, NanoNet achieves 3.16Å

average RMSD for the most variable CDR3 loops and 2.65Å, 1.73Å for the CDR1,

CDR2 loops, respectively. The accuracy for antibody VH domains is even

higher: 2.38Å RMSD for CDR3 and 0.89Å, 0.96Å for the CDR1, CDR2 loops,

respectively. NanoNet run times allow generation of ∼1M nanobody structures

in less than 4 hours on a standard CPU computer enabling high-throughput

structure modeling. NanoNet is available at GitHub: https://github.com/dina-

lab3D/NanoNet

KEYWORDS

nanobody (Nb), machine-learning (ML), protein modeling, antibody, deep learning-

artificial neural network
1 Introduction

The large and diverse repertoire of the immune receptors, including antibodies and T

cell receptors (TCRs) is behind the specific antigen recognition mechanism (1). Next

generation sequencing (NGS) provides a glimpse into the blood circulating repertoires.

However, the antigens and the epitopes remain unidentified. Moreover, antibodies are

the most rapidly growing class of human therapeutics for a range of diseases, including

cancer or viral infections. Despite their successful application, there are challenges in

high-throughput cost-effective manufacturing of monoclonal antibodies (mAbs), as well

as intravenous administration route. Nanobodies (Nbs) are small and highly-stable
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fragments derived from camelid heavy chain only antibodies

(2, 3). They can reach binding affinities comparable to

antibodies. Nbs can be manufactured easily in microbes and

administered by aerosolization (4). Rapid Nb development is

possible by camelid immunization (5, 6) or synthetic design and

screening (7).

Epitope characterization is an important part of therapeutic

antibody (mAb or Nb) discovery. It is critical to select epitope

specific sequences from a large pool of candidates. However,

high-throughput experimental structural characterization of

hundreds or thousands of antibody-antigen complexes remains

challenging. Computational methods for modeling antibody-

antigen structures from individual components frequently suffer

from high false positive rate, rarely resulting in a unique

solution. There are two main bottlenecks: low accuracy of

antibody CDR loop modeling and antibody-antigen

scoring functions.

Antibody modeling most often proceeds in two steps. First,

the conserved framework region is modeled by comparative

modeling. Second, the variable CDR loops are modeled using ab

initio techniques. The CDR3 loop which is highly variable and

long presents a mini folding problem. While there are existing

tools for mAb and TCR modeling, including RosettaAntibody

and Rosetta TCRmodel (8–10), dedicated algorithms for reliable

Nb modeling are unavailable. Compared to mAbs, Nbs generally

have longer CDR3 loops and are devoid of light chains, adding

additional degrees of freedom for accurate loop modeling.

Recently, deep learning has been successful in addressing

challenging and fundamentally important questions in structural

biology, including protein folding (11–16). Moreover, deep

learning was successful in predicting restraints for the mAb

CDR3 heavy chain loop modeling in DeepAb (17–19). Until

recently, deep learning-based algorithms used deep learning

models for restraints generation, requiring an additional

optimization step to generate 3D structures (11–13, 17, 18).

The structure generation step is time consuming. For example,

RosettaAntibody requires about 30 minutes per model, where

more than 50 models are generated per single sequence. Most

recent structure prediction methods, including AlphaFold2 and

RosettaFold, use deep learning models for end-to-end learning,

where the input is a sequence and the output is the 3D structure

(15, 16, 20, 21).

Here we use deep learning for accurate end-to-end

prediction of Nb structures. While our main goal is accurate

Nb modeling, NanoNet can also accurately model VH domains

of the antibodies and Vb domains of TCRs. Our deep learning

model accepts the sequence (Nb, mAb VH domain, or TCR Vb
domain) as an input and produces coordinates of the backbone

and Cb atoms. NanoNet improves upon existing models using

direct end-to-end learning that enables the network to learn the

full 3D structure without dividing the modeling problem into

framework and CDRs modeling.
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2 Results

2.1 Summary of the methods

The input to the NanoNet is the sequence (mAb VH, Nb, or

TCR Vb domains) and the output is the backbone and Cb
coordinates for the input sequence. The network was trained on

a dataset of ∼ 2,000 heavy chains of mAbs and Nb structures.

The framework region of the antibodies is highly conserved with

Ca RMSD under 1Å between aligned structures. Therefore, we

achieved transformational invariance for predicting 3D

coordinates by aligning all the structures of the training set on

a randomly selected reference structure. The VH domain

structures were aligned using MultiProt algorithm with order-

dependence and distance threshold of 1.4Å (22) (Figure S1A).

This structure alignment enables the network to directly learn

the VH domain 3D structure. The network is a convolutional

neural network (CNN) that consists of two 1D Residual Neural

Networks (ResNet) (23) (Figure 1). The loss is defined as an MSE

(Mean Squared Error) on the backbone and Cb coordinates,

which is equivalent to the squared RMSD, and an additional

term that optimizes the distance between consecutive Ca atoms

to 3.8Å. To validate NanoNet performance we used two test sets:

mAb test and Nb test. mAb test consisted of 47 mAb heavy chain

structures (RosettaAntibody test set (24, 25) using 99% sequence

identity cutoff from the training set. The Nb test set consisted of

44 Nb structures released after July 2019 with a resolution higher

than 2.5Å and sequence identity lower than 90% from the

training set sequences.
2.2 NanoNet produces high-accuracy Nb
models

The frame region average RMSD on the Nb test (44 Nbs,

Methods) is 1.02Å and the median is 0.94Å (Figures 2A, S3A and

Tables 1, S1). The CDR1 and CDR2 loops are also accurately

modeled with average RMSDs of 2.65Å and 1.73Å (median

2.46Å and 1.54Å), respectively. For the most challenging CDR3

loop, we obtain an average RMSD of 3.16Å and a median of

2.92Å. Using the faster modeling approach (Methods) we were

able to achieve an average CDR3 RMSD of 3.07Å. NanoNet

obtains highly accurate models also for Nbs with longer CDR3

loops ( > 12 amino acids) (Figure S3B). Due to their longer

length compared to mAbs (Figure S1C), Nb CDR3 loops often

contain short 310 helices. We find that NanoNet accurately

reproduces such secondary structures in long CDR3 loops

(Figure 2C, PDB 6xw6, loop length 19 residues). We also

manually examine cases where NanoNet produces higher

RMSD and find that often the loop conformation is correct

but it’s orientation with respect to the frame is shifted

(Figure 2C, PDB 7n0r). We noticed that we get higher RMSD
frontiersin.org
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values for the CDR1 and CDR2 of the Nb test set (2.65Å, 1.73Å)

compared to the mAb test set (0.88Å, 0.95Å) although they do

not differ much in length. This can be explained by two reasons.

First, Nbs are known to form non-canonical CDR1 and CDR2

loop conformations (26, 27) which makes them harder to

model compared to CDR1 and CDR2 of mAbs. The second

reason is the limited number of Nbs that was used in training

compared to mAbs. That said, NanoNet is still able to produce

accurate CDR1 and CDR2 models (Figure S4). To further

validate our results, we have performed 5-fold cross-validation

and obtained comparable accuracy with mean CDR3 RMSD of

3.48Å with a standard deviation of 0.17Å for Nb structures

(Table S5).

We compare our results to the results of RosettaAntibody

(Figures 2A–D). RosettaAntibody failed to generate models for 7

Nbs from the Nb test due to the lack of suitable templates

(required for CDR1 and CDR2 modeling) or program failures.

For additional 6 Nbs manual CDRs definition was necessary to

produce models. Overall, NanoNet has lower RMSDs for 32 out

of 37 test cases (Figure 2D). The CDR3 RMSD is twice as low

(3.20Å vs. 6.38Å), while there is also improvement in the frame

region RMSD (1.02Å vs. 1.56Å), (Table 1).
2.3 Comparison to AlphaFold2

Publication of the highly accurate structure prediction

model (15) prompted us to explore the accuracy of Nb

structures as predicted by AlphaFold2. We used the Nb test set

because it contained Nb structures published after July 2019,

while AlphaFold2 was trained on structures published before

August 2019. The structures in the Nb test set have less than 90%

sequence identity to the Nbs from the training set published

prior to July 2019. The run time of AlphaFold2 structure

prediction for a single Nb sequence was ∼15 minutes.
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AlphaFold2 achieved slightly lower mean frame region RMSD

(0.93Å) and mean CDR3 RMSD (2.84Å) compared to 1.02Å and

3.16Å for NanoNet (Figure 2A, Table 1). However, NanoNet had

a significantly lower standard deviation (1.4Å vs. 2.0Å). The

higher AlphaFold2 accuracy is most likely due to the use of the

multiple sequence alignment that contained at least 3,000

sequences and training on the entire set of PDB structures.

Indeed, AlphaFold2 accuracy without multiple sequence

alignment, was significantly lower with RMSD values of ∼
10.0Å (Table 1). In most cases NanoNet and AlphaFold2

produce relatively similar CDR3 conformations (Figure 2C),

but we find that in some cases AlphaFold2 generated outlier

CDR3 loops (Figure 2E). In cases where NanoNet achieved

relatively high CDR3 RMSD, AlphaFold2 predictions were

similar to NanoNet, however both were far from the crystal

structure (Figure 2F). We suggest this happens due to the

conformational changes upon antigen binding (28) or due to

the the high conformational variability of nanobody loops. These

results highlight the advantage of Nb specific structure

prediction model in balancing speed and accuracy.
2.4 NanoNet VH models are comparable
to state-of-the-art mAb
modeling approaches

We test the method on VH modeling using the mAb test set

(Methods). Overall, due to shorter average loop length and a

larger number of mAbs in the training set, we obtain highly

accurate models with frame region RMSD of 0.64Å overall

RMSD (median 0.58Å). The CDR1, CDR2, CDR3 loops are

also highly accurate with mean RMSDs of 0.88Å, 0.95Å, 2.38Å

(medians 0.66Å, 0.78Å and 2.15Å), respectively (Figures 3A, B

and Tables 1, S2). Again, we obtained from the 5-fold cross-

validation comparable accuracy with mean CDR3 RMSD of
FIGURE 1

NanoNet architecture: The input of the network is the one-hot encoding of the sequence that goes into two 1D ResNets. The output is the 3D
coordinates.
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2.70Å with a standard deviation of 0.20Å for mAb structures

(Table S5).

Similarly to Nb modeling, NanoNet VH models have

significantly higher accuracy compared to RosettaAntibody

(Figures 3A–D). NanoNet results are comparable to the

accuracy reported for DeepH3 and DeepAb (17, 18)
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(Figures 3A–C and Table 1). Although NanoNet produced

only one model per antibody vs. 50 for DeepAb, it had slightly

lower number of outliers with high CDR3 RMSD (Figure 3E).

We find that NanoNet can reproduce short secondary structure

motifs in the CDR3 loops. For example, we can reconstruct the b
turn in the CDR3 loop consisting of 14 residues (PDB 1jfq,
B

C D

E

F

A

FIGURE 2

Nb modeling results. (A) Boxplots of RMSDs of the whole VHH region, framework, CDR1-3 loops for the Nb test set (37 Nbs), (B) Average RMSD
of CDR3 loop as a function of loop length on the Nb test set (37 Nbs), (C) Test set examples of modeled structures by NanoNet (blue),
RosettaAntibody (purple), AlphaFold2 (red) vs. experimental (green): PDB 6xw6 (top) - CDR3 RMSD 1.77Å, 4.06Å for NanoNet and AlphaFold2,
respectively and 7n0r (bottom) - CDR3 RMSD 6.82Å,6.39A for NanoNet and RosettaAntibody, respectively, (D) CDR3 loop RMSD for NanoNet vs.
RosettaAntibody, each dot represents a structure from the test set. The dotted line corresponds to 0.25Å RMSD, (E) Same as D for NanoNet vs.
AlphaFold2, (F) Nb (PDB 6xzu) docked to its antigen, native structure –green, AlphaFold2 - red, NanoNet - blue.
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Figure 3C). The main advantage of NanoNet compared to other

deep learning models, such as DeepH3 or DeepAb, is that it

directly produces the structure in millisecond to seconds (if side

chains are added) time frame and therefore is applicable to high-

throughput modeling of large databases. For comparison, loop

optimization with RosettaAntibody takes at least several minutes

and up to one hour per loop and normally between 500-1000

loops are generated per antibody. DeepAb takes about 10

minutes per loop and 5-10 loop conformations are usually

generated per antibody.
2.5 Effect of sequence identity cut-off
used for train and test set separation

Due to high baseline sequence identity between the

antibodies (minimum 75% sequence identity, average 88% for

mAbs and 84% for Nbs), splitting the input structures into train

and test sets needs to be done carefully to prevent overfitting. To

obtain the most optimal split cut-off, we compare the

performance of NanoNet for each test set case as a function of

maximal sequence identity (MSI) in the training set. We find

that for the mAb test there is a significant negative correlation of

RMSD with the training set MSI (Figures 4C, D). This can be
Frontiers in Immunology 05
explained by the high split cut-off of 99% for the

RosettaAntibody dataset that was also used for training of

DeepH3 and DeepAb models. In contrast, for the Nb test that

was generated using the 90% cut-off, there is no correlation

between RMSD and MSI (Figures 4A, B). Similar results were

obtained for TCRs (Figures S2C, D).
2.6 Retraining for TCR Vb modeling

The PDB contains only 200 non-redundant TCR structures

(using 99% sequence identity cut-off), a number that is too low

for training a deep network. Because the TCRs are structurally

similar to the antibodies (Figure S6E), we tested if transfer

learning is applicable by re-training the NanoNet on the TCR

structures dataset. Our test set contains 15 structures of variable

CDR3 length (Figure S2A). Despite the small number of

available structures, accurate TCR models can be predicted for

the frame and CDR loops. For the 15 structures we obtained a

mean and median frame region RMSD values of 1.04Å, 0.88Å

and mean RMSD values of 0.91Å, 1.27Å, 2.18Å for CDR1, CDR2

and CDR3 (medians 0.73Å, 0.87Å and 1.83Å), respectively

(Figure S6C, Table S3). We compared our results to those of

Rosetta TCRmodel (10), that relies on homology modeling
TABLE 1 Summary of mean RMSDs (Å) for the different test sets.

Nanobody test set

Method VHH Fr CDR1 CDR2 CDR3

RosettaAntibody 2.68±1.12 1.56±0.94 3.41±1.61 2.40±1.39 6.38±2.59

AlphaFold2 1.51±0.64 0.93±0.42 2.35±1.16 1.51±0.95 2.88±2.04

AlphaFold2-No MSA 10.37±4.78 10.06±5.01 11.30±7.71 8.02±5.15 11.06±4.51

NanoNet+Modeller 1.65±0.53 1.02±0.43 2.72±1.22 1.72±0.95 3.20±1.44

NanoNet+SCWRL 1.60±0.52 0.99±0.44 2.66±1.15 1.68±0.95 3.09±1.39

mAb test set

Method Fr CDR1 CDR2 CDR3

RosettaAntibody 1.25±0.62 1.42±0.98 1.66±1.83 6.56±3.29

DeepAb 0.43±0.18 0.72±0.66 0.85±0.81 2.33±1.32

NanoNet+Modeller 0.64±0.18 0.88±0.67 0.95±0.82 2.38±1.17

NanoNet+SCWRL 0.60±0.19 0.83±0.65 0.89±0.85 2.29±1.09

TCR test set

Method Vb Fr CDR1 CDR2 CDR3

Rosetta TCRmodel 1.49±0.68 1.07±0.60 0.93±0.33 1.24±1.29 2.79±1.28

NanoNet+Modeller 1.31±0.52 1.04±0.43 0.91±0.49 1.27±1.23 2.18±0.81

NanoNet+SCWRL 1.28±0.48 1.01±0.39 0.93±0.49 1.27±1.19 2.12±0.76

AlphaFold2* 1.48±0.58 0.89±0.19 0.99±0.61 1.19±0.63 3.07±1.45

AlphaFold2-No MSA* 15.22±5.91 15.54±6.15 18.71±9.73 12.57±4.67 11.10±5.97

NanoNet+Modeller* 1.72±0.58 1.24±0.43 1.15±0.74 2.12±1.94 2.78±0.83

NanoNet+SCWRL* 1.68±0.53 1.20±0.38 1.19±0.74 2.11±1.86 2.71±0.81
fron
Nb test set (37 Nbs), mAb test set (47 mAbs), and TCR test set (15 TCRs). For Rosetta TCRmodel only 14 TCRs could be modeled. For AlphaFold2 only 5 TCRs were not used for training.
The results for these 5 TCRs are indicated with*.
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FIGURE 3

mAb VH modeling. (A) Boxplots of RMSDs of the framework, CDR1-3 loops for the mAbs test set (47 mAbs), (B) Average RMSD of CDR3 loop as
a function of loop length on the mAbs test set (47 mAbs), (C) Test set examples of modeled structures by NanoNet (blue), RosettaAntibody
(purple) vs. experimental (green): PDB 3t65 (top) and 1jfq (bottom), CDR3 RMSD 1.14Å and 1.02Å, for NanoNet, and 7.24Å and 7.42Å for
RosettaAntibody, respectively, (D) CDR3 loop RMSD for NanoNet vs. RosettaAntibody, each dot represents a structure from the test set. The
dotted line corresponds to 0.25Å RMSD, (E) same as D for NanoNet vs. DeepAb.
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(Table 1). Rosetta failed to produce a structure for one TCR due

to lack of templates (PDB 6lir). While the frame, CDR1, and

CDR2 RMSDs were similar, CDR3 accuracy was lower with

mean RMSD of 2.79Å (Figures S6A, C, D). We compared to

AlphaFold2 using only 5 out of 15 structures, as the remaining

10 were in AlphaFold training set (Table 1). AlphaFold2

produced TCR models with slightly higher accuracy of the
Frontiers in Immunology 06
frame and CDR1, significantly higher accuracy of CDR2

(1.19Å for AlphaFold2 vs. 2.12Å for NanoNet), and lower

accuracy of CDR3 (3.07Å for AlphaFold2 vs. 2.78Å for

NanoNet) (Figures S6B, D). We suggest that AlphaFold2

performs better in frame, CDR1, and CDR2 because of the

additional information from MSA (Table 1). However this test

set is too small for significant assessment. The accuracy of
frontiersin.org
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NanoNet will improve upon availability of additional

TCR structures.
2.7 Antigen-Nb docking with
NanoNet models

To further test the performance of NanoNet in the context of

epitope prediction, we docked the modeled Nbs from the test set

to the antigens with known antigen-Nb structures using

PatchDock antibody-antigen protocol (29, 30). Antigen-Nb

docking is highly challenging because docking algorithms have

difficulties in sampling docked configurations with inaccurate

CDR loops conformations. Additional difficulty is ranking the

correct models among top-scoring ones. Here we tested whether

the accuracy of NanoNet Nb models is sufficient to enable

sampling of the correct orientation. Docking was applied for

17 Nbs (7 Nbs that interact with SARS-CoV-2 spike RBD (31–

35), 2 Nbs that bind SARS-CoV-2 N protein (36), 1 Nb binding

to SARS-CoV-1 spike RBD, 1 Nb binding to the Ebola RNA

methyltransferase (37), and 4 MNV capsid protein P-domain

Nbs (38). In addition, we docked two high affinity SARS-CoV-2

RBD Nbs (Nb21, Nb105) that bind to different epitopes (39).
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PatchDock was able to generate an acceptable quality model

according to the CAPRI evaluation criteria (ligand RMSD < 10Å

or interface RMSD < 4Å) for all the structures predicted by

NanoNet. Overall, we achieved a mean minimal ligand RMSD of

5.42Å and a mean minimal interface RMSD of 3.58Å (Table S4).

Medium quality models (ligand RMSD < 5Å or interface

RMSD < 2Å) were sampled for 9 out of the 17 Nb structures.

We have also attempted the docking of AlphaFold2 generated

Nb models. Similarly, acceptable accuracy models was generated

for all complexes, while medium accuracy were found for 11 out

of 17 complexes. The mean minimal ligand and interface

RMSDs were slightly better (4.80Å and 3.23Å). These results

suggests that NanoNet and AlphaFold2 generated models can be

used in docking for epitope mapping. NanoNet modeling speed

allows docking of large sequence libraries.
2.8 Correlating sequence and structure
similarity using NanoNet

When analyzing large antibody repertoires the main

challenge is to group the sequences into clusters based on the

antigen and the specific epitope the antibody binds to. While
B

C D

A

FIGURE 4

Effect of splitting the train and test sets using different sequence identity cutoffs. (A) NanoNet test set performance (measured as VH/VHH
RMSD) as a function of maximal sequence identity to the train set, each dot represents a structure from the Nb test set (44 structures), (B) Test
set performance with boxplots for sequence identity ranges for the Nb test set (44 structures), (C) same as (A) but for the mAb test set (47
structures), (D) same as (B) but for the mAb test set (47 structures).
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sequence similarity indicates structural similarity and similarity

in the epitope, structural similarity is an additional indicator of

functional similarity (40). In the case of antibodies, the sequence

identity is a-priori high ( ∼ 85%). A single mutation in the CDR

regions can affect loop conformations significantly and vice

versa: some mutations may not affect the structure at all. Here,

we used a large dataset of high affinity Glutathione S-transferase

(GST) binding Nbs (6) to explore the sequence-structure

similarity relationship. The dataset contains 6,222 sequences

with 1,476 distinct CDR3s and 2,566 distinct CDR1-3

combinations. Because the Nbs were obtained from a single

llama using a novel proteomic platform (6), it contains diverse

clusters of Nbs with high sequence similarity within the cluster.

We used NanoNet to model the backbone of all the 6,222 Nbs in

a matter of seconds. We applied 2D dimensionality reduction of

the Nbs sequences using t-SNE (41). We also clustered the 3D

Nb models by their structural similarity (Methods). To analyze

sequence-structure relationship between the Nbs, we colored

each sequence in the t-SNE sequence embedding by the

structural cluster number (Figure 5A) as well as the CDR3

length (Figure 5B). We find that the structural clusters map

well onto the sequence clusters. The clusters contain tens to

hundreds Nb sequences and most likely represent a combination

of Nb sequences from different germlines and the affinity
Frontiers in Immunology 08
maturation process where residue substitutions are made to

improve stability and antigen binding affinity while the Nb

structure is maintained (Figures 5C, D). We also find several

outlier Nbs that are far from their structural cluster in the

sequence space, indicating that the specific mutations may

change the Nb conformation. The correlation between

structure and sequence clustering is independent of CDR3

length (Figure 5B).
3 Discussion

We have developed a high-throughput accurate end-to-end

deep learning-based method for 3D Nb modeling. Compared to

prev ious ant ibody mode l ing approaches , such as

RosettaAntibody or DeepAb, the method directly predicts the

3D coordinates of the backbone and Cb atoms for the whole Nb

sequence without separate modeling of frame and CDR regions.

Because NanoNet was trained on antibody VH domain

structures (as well as Nbs), it has high accuracy in VH

modeling. The accuracy of the method is significantly higher

than standard loop modeling methods and comparable to deep

learning based approaches, including AlphaFold2 (Figure 2,

Figure 3). Moreover, the run times are significantly lower,
B

C

A

D

FIGURE 5

Correlating sequence and structure similarity. (A) The t-SNE sequence embedding colored by the structural cluster number (12 clusters), (B) The
t-SNE sequence embedding colored by the CDR3 length, (C, D) Examples of structural clusters and their multiple sequence alignment, CDR3 is
colored by the cluster color in the t-SNE sequence embedding.
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enabling high-throughput applications. Availability of several

tools for antibody structure prediction, enables to generate

several CDR loops conformations for downstream

applications, such as docking, increasing its accuracy. We have

also compared NanoNet to the recently proposed IgFold model

(42). IgFold has slightly higher accuracy (mean CDR3 RMSD is

lower by 0.3Å). This can be explained by a larger training set as

well as the use of antibody-specific language models. In the

future work, we will test whether the use of a multiple sequence

alignment, or a language model pre-trained on antibody

sequences, can further improve NanoNet accuracy. It is

important to understand that there is a upper bound on the

accuracy of antibody modeling tools, due to the limited number

of solved structures, the noisy data and off course the fact that

the CDR loops are flexible and can change conformation upon

binding to an antigen. Structural alignment of the VH domains

enabled us to use a relatively simple model and data

representation. Because there are only ∼ 2,000 antibody

structures available, more complex models with larger

numbers of parameters might lead to data overfitting. We find

that despite longer CDR3 loops of the Nbs, NanoNet can model

them with high accuracy, reproducing the short secondary

structures, such as 310 helix or beta-turn (Figures 2, 3). We

extend the approach to accurate TCR Vb modeling by transfer

learning and train a model using order of magnitude less

structures (less than 200 TCRs vs. more than 2,000 mAbs

and Nbs).

The high modeling speed of NanoNet (a few milliseconds

per Nb), enables accurate modeling of entire antibody

repertoires from NGS experiments. This modeling can further

enable analysis of the serum repertoire according to antigen

specificity (6). We applied the method for modeling a large

dataset of GST Nb sequences obtained from a single animal (6)

and found that sequence similarity often correlates with

structural similarity (Figure 5). In addition, we found that the

NanoNet loop accuracy enables accurate antigen-Nb docking for

epitope mapping.

The current NanoNet implementation is trained to predict

only backbone and Cb coordinates. Representation of side

chains (for example using center of mass) in the NanoNet, as

well as refinement using GNN-based deep-learning approaches

can further improve prediction accuracy (43). Our approach can

be extended for modeling the whole mAb structure (light and

heavy chains) by training a similar network for the light chain

prediction and combining the light and heavy chains using most

similar template structure (44, 45). We expect that NanoNet will

be applicable in therapeutic applications that require epitope

mapping, as well as studies that perform serum repertoire

studies. In the future, the network can be extended towards

design of novel sequences with high stability and specificity for

antigens of interest (46).
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4 Methods

4.1 Network architecture

The sequences are represented by an input tensor of 140x22,

where 140 represents the maximal length of the heavy chain and

the 22 channels are used for one-hot encoding of the 20 amino

acids (one channel for unknown amino acid and one for

insertion). The tensor is padded with insertion values for all

sequences shorter than 140. The network consists of two 1D

ResNets (23) (Figure 1). The first ResNet has a relatively big

kernel size of 25 to enable the network to learn the frame and

CDR loops. Next, we convert the tensors to 140x140 dimension

using a 1D convolution with 140 kernels. This second ResNet

captures the inter-residue interactions and consists of kernels of

size 5 with dilated convolutions (47). We use five different

dilation values (1, 2, 4, 8, and 16). Finally, we convert the

tensors to 140x70 and then to 140x15. This last tensor

represents the coordinates of the N, Ca , C, O, and Cb atoms

and is compared directly to the actual coordinates to calculate

loss. The whole network consists of ∼ 2,000,000 parameters. We

add a dropout layer of 25% after the second ResNet to prevent

overfitting. The network was implemented using the TensorFlow

library with keras (48).
4.2 Training

The training was performed using ADAM optimizer (49)

with a learning rate of 0.001, batch size of 16 and ∼ 130 epochs

using a model checkpoint on the validation loss (Figure S1B).

The training took less than 10 minutes on a GeForce RTX 2080

Ti. The 5-fold cross validation was performed by splitting all the

data to training and validation sets such that the validation set

contained 100 mAb structures and 50 Nb structures. After

training we calculated the RMSD of each structure in the

validation set and reported the mean RMSD for each of the

5 repetitions.
4.3 Loss function

We used a loss function comprised of two terms: the first

term is a MSE loss between the predicted backbone and Cb
coordinates and the experimental coordinates after alignment to

a reference structure, this is equivalent to the RMSD. The second

term is a loss that optimizes the distance between consecutive

Ca atoms to 3.8Å and defined as (for a sequence of length N):

LCa ŷð Þ = o
N−1

i=1
½  d Cai,Cai+1ð Þ − 3:8  �2 (1)
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Where Cai are the 3D coordinates of the Ca atom in the i

amino acid of the predicted structure, and d is Euclidean

distance. The total loss was defined as the sum of two terms:

L y, ŷð Þ = MSE y, ŷð Þ + LCa ŷð Þ (2)
4.4 Structure prediction

The prediction of the backbone and Cb coordinates based on
the trained network is straightforward and takes about 6

milliseconds on a GPU or about 20 milliseconds on a CPU.

The full atommodel is obtained using Modeller (50, 51) that also

optimizes bond lengths and angles. NanoNet produces a single

structural model for each input sequence. The faster modeling

protocol uses SCWRL (52) to reconstruct the side chains without

the optimization step and does not modify the coordinates of the

backbone atoms. The running times for 1,000 structures on a

standard CPU were as follows: only backbone + Cb - less than 15

seconds, backbone + SCWRL - about 20 minutes, backbone +

Modeller - about 80 minutes.
4.5 Retraining for TCRs structure
prediction

The NanoNet network for TCRs was trained starting from

the pretrained antibody network using the TCR training set

structures with the same parameters, loss function, and learning

rate. It was trained for 50 epochs using model check-point on the

validation loss (Figure S2B).
4.6 Dataset

Due to a relatively small number of Nb structures in the PDB,

we trained our model using the heavy chains of both mAbs and

Nbs. The antibody structures were obtained from abYbank/AbDb

(53) and SAbDab (54, 55); a total of 2,085 non-redundant structures

of Nbs (319) and mAb heavy chains (1,766) were used. We selected

non-redundant structures with resolution of 4Å or better. Missing

residues ( < 6 consecutive residues) were added by MODELLER

v9.18 automodel protocol (50, 51). The data was split into training,

testing, and validation sets. In total 1,843 structures (1590 mAb, 253

Nb) were used for training and 150 structures (129 mAb, 21 Nb)

were used for validation (7.5%). In addition, we used two test sets:

mAb test and Nb test. The mAb test consisted of 47 mAb heavy

chain structures (RosettaAntibody test set (24, 25). The Nb test

consisted of 44 Nb structures that were deposited into PDB after

July 2019 with resolution higher than 2.5Å. The average CDR3 loop

length was 12.0, 12.2, 10.9, and 13.3 amino acids for train,

validation, mAb test, and Nb test, respectively (Figure S1C). We

used DeepAb data separation to enable direct comparison of mAb
Frontiers in Immunology 10
modeling which was divided into train and test using 99% sequence

identity cutoff (17, 18). Specifically, for assessment of Nb modeling

we separated the available Nb structures such that there are no

sequences with sequence identity higher than 90% between the train

and test sets. The TCR structure dataset with 196 structures was

obtained from the STCRDab (56). The data was split into train,

validation, and test sets similarly to Nb dataset, this time using a

92% sequence identity cutoff which resulted in 15 structures in the

test set. For TCRs, the average CDR3 loop length was 14.0 and 14.5

amino acids for train and test, respectively (Figure S2A).
4.7 Evaluation

We evaluate the accuracy of the predicted models using the

backbone RMSD (N, Ca , C, O atoms) calculated on the whole

VH structure, as well as the RMSD of the frame and the three

CDR loops. The RMSD of the loops was calculated based on the

superposition of the frame regions that minimizes the backbone

RMSD (57). The CDRs were defined using the Chothia

numbering scheme and definition (58).
4.8 Comparison to other methods

We used the recommended RosettaAntibody protocol for mAb

heavy chains and for Nbs (8, 25). Identical structures were excluded

from RosettaAntibody template search. In total, 100 loops were

generated and the best-scoring was selected for comparison. We

used 100 loops instead of the recommended 1,000 due to the limits

of our computing resources. For Rosetta TCRmodel we used a

sequence identity cutoff of 95% (Supplementary data). For DeepAb

we used the same test set and compared to the reported RMSD

values of the top 1 model out of 50 (18). To generate AlphaFold2

models for both the Nb and the TCR test sets we have used the

ColabFold implementation without structural templates (59).
4.9 Docking and modeling of SARS-CoV-
2 RBD nanobodies

The docking was done using PatchDock antibody-antigen

protocol (29, 30) that focuses the search on the CDR loops. The

results were clustered using RMSD of 4.0Å. Docking results were

assessed using a standard CAPRI measures of interface RMSD

and ligand RMSD (60).
4.10 Sequence embedding

The sequences were first aligned using ANARCI antibody

numbering tool (61) that numbers the sequence based on 126

canonical positions. After the alignment, the sequences were
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converted into a one-hot encoding vector representation, resulting

in a representation with a vector of length 2,646 for each sequence.
4.11 Structural distance between the Nbs

Structural similarity between a pair of Nb structures was

defined by counting the number of pairs of Ca atoms (one from

each Nb structure) within a short distance ( < 1Å). Note that

NanoNet predicts aligned Nb structures, therefore the number

of aligned Ca atoms is a measure of structural similarity. We

define a structural distance as follows:

Structural   distance V ,Wð Þ = 1 −
# aligned  Ca   atomsð Þ
min   ( Vk k, Wk k) (3)

We quantify the structural similarity for all pairs of Nbs and

produce a distance matrix. We used the pairwise distance matrix

to cluster the structures by K-Medoids algorithm (62) with k=12.
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