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Background: Glutamine (Gln) metabolism has been reported to play an essential
role in cancer. However, a comprehensive analysis of its role in lung
adenocarcinoma is still unavailable. This study established a novel system of
quantification of Gln metabolism to predict the prognosis and immunotherapy
efficacy in lung cancer. Further, the Gln metabolism in tumor microenvironment
(TME) was characterized and the Gln metabolism-related genes were identified for
targeted therapy.

Methods: We comprehensively evaluated the patterns of Gln metabolism in
513 patients diagnosed with lung adenocarcinoma (LUAD) based on 73 Gln
metabolism-related genes. Based on differentially expressed genes (DEGs), a
risk model was constructed using Cox regression and Lasso regression analysis.
The prognostic efficacy of the model was validated using an individual LUAD
cohort form Shandong Provincial Hospital, an integrated LUAD cohort from
GEO and pan-cancer cohorts from TCGA databases. Five independent
immunotherapy cohorts were used to validate the model performance in
predicting immunotherapy efficacy. Next, a series of single-cell sequencing
analyses were used to characterize Gln metabolism in TME. Finally, single-cell
sequencing analysis, transcriptome sequencing, and a series of in vitro
experiments were used to explore the role of EPHB2 in LUAD.

Results: Patients with LUAD were eventually divided into low- and high-risk
groups. Patients in low-risk group were characterized by low levels of Gln
metabolism, survival advantage, "hot” immune phenotype and benefit from
immunotherapy. Compared with other cells, tumor cells in TME exhibited the
most active Gln metabolism. Among immune cells, tumor-infiltrating T cells
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exhibited the most active levels of Gln metabolism, especially CD8 T cell
exhaustion and Treg suppression. EPHB2, a key gene in the model, was shown
to promote LUAD cell proliferation, invasion and migration, and regulated the
Gln metabolic pathway. Finally, we found that EPHB2 was highly expressed in
macrophages, especially M2 macrophages. It may be involved in the M2
polarization of macrophages and mediate the negative regulation of M2

Conclusion: This study revealed that the Gln metabolism-based model played
a significant role in predicting prognosis and immunotherapy efficacy in lung
cancer. We further characterized the Gln metabolism of TME and investigated
the Gln metabolism-related gene EPHB2 to provide a theoretical framework

for anti-tumor strategy targeting Gln metabolism.

lung adenocarcinoma, glutamine metabolism, prognosis, tumor microenvironment,
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macrophages in NK cells.
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Introduction

Lung cancer remains the leading cause of cancer-related
death worldwide (1). Non-small cell lung cancer (NSCLC)
accounts for 85% of lung cancers, with lung adenocarcinoma
(LUAD) constituting half of all cases of NSCLC (2).
Notwithstanding the advances in treatment strategies, the five-
year survival rate of patients with LUAD remains limited. In
recent years, immunotherapy showed significant efficacy in
LUAD, while drug resistance and recurrence due to tumor
heterogeneity still limit the efficacy of immunotherapy (3, 4).

Abbreviations: Gln, glutamine; LUAD, Lung Adenocarcinoma; TME, Tumor
microenvironment; TCGA, The Cancer Genome Atlas; DEGs, Differentially
expressed genes; GEO, Gene-Expression Omnibus; NK cells, Natural killing
cells; NSCLC, Non-small Cell Lung Cancer; OS, overall survival; TPM,
transcripts per kilobase million; FPKM, Fragments Per Kilobase of exon
model per Million mapped fragments; MSigDB, Molecular Signatures
Database; ROC, receiver operating characteristic; GSVA, Gene Set
Variation Analysis; ssGSEA, Single sample gene set enrichment analysis;
MAF, mutation annotation format; TMB, tumor mutation burden; IPS,
Immunophenoscore; ACT, adoptive T cell therapy; TIDE, Tumor immune
dysfunction and exclusion; INFG, interferon gamma; MDSCs, Myeloid-
derived suppressor cells; MSI, Microsatellite instability; CAF, cancer
associated fibroblast; TAM, Tumor-Associated Macrophages; GEPIA, Gene
Expression Profiling Interactive Analysis; CNV, copy number variations;
DCs, Dendritic cells; TILs, Tumor infiltrated lymphocytes; APC, antigen-
presenting cell; HLA, human leukocyte antigen; PCA, Principal Components
Analysis; AIC, Akaike information criterion; ICI, Immune checkpoint
inhibitor; UMAP, Uniform Manifold Approximation and Projection; GO,
Gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Therefore, it is essential to comprehensively investigate the
mechanisms underlying the differential response to
immunotherapy and develop tools to predict prognosis and
immunotherapy efficacy.

Recent investigations revealed that oncogenic
transformation induces a well-characterized metabolic
phenotype in tumor cells, which in turn affects the tumor
environment (TME) (5). TME is composed of distinct cell
populations in a complex matrix, which is characterized by
inefficiencies of oxygen and nutrition delivery due to limited
or poorly differentiated vasculature. In order to meet the energy
demands, rapidly proliferating cancer cells compete with
immune cells for nutrients required to manifest anti-tumor
effects, thus creating an immune suppressive environment. In
this harsh TME, infiltrating immune cells are forced to undergo
relevant metabolic adaptations, which in turn disrupt the anti-
tumor effects of immune cells (6, 7). Therefore, therapeutic
strategies that target tumor metabolism and thus modulate or
improve immune cell metabolism to enhance inflammation are
extremely promising. However, tumor cells share a large number
of metabolic pathways with inflammatory immune cells, which
makes metabolic blocking strategies often counterproductive (8).
Therefore, targeting the appropriate metabolic pathway to block
tumor metabolism and activate inflammatory immunity is
essential to improve immunotherapy. Targeting Gln
metabolism is one of the optimal choices available.

As the most abundant amino acid in circulation, glutamine
(Gln) is rapidly consumed by cultured tumor cells (9). Gln is
commonly used to maintain TCA flux in cellular aerobic
glycolysis, or as a source of citrate for lipid synthesis in
reductive carboxylation. Besides, glutaminolysis also promotes
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survival of proliferating cells by suppressing oxidative stress and
maintaining the integrity of mitochondrial membrane (10). Gln
is an energy source required by both tumor and immune cells.
However, inflammatory antitumor immune cells do not appear
to rely on or even reject Gln metabolism, which is particularly
evident in macrophages (11, 12). Compared with naive
macrophages, M2 macrophages exhibit strong dependence on
Gln, while pro-inflammatory M1 macrophages can be induced
by suppressed Gln metabolism. Therefore, Gln metabolism
represents a potential target to convert tumor-associated
macrophages (TAMs) from M2 to M1 phenotype, thereby
enhancing the anti-tumor inflammatory immune response
(13). In addition, Gln metabolism is also involved in the
differentiation of Thl cells and the activation of effector T cells
(13, 14). These findings suggest that targeting Gln metabolism
can potentially remodel TME and improve immunotherapy
efficacy. In fact, recent studies reported that extensive blockade
of Gln metabolism significantly improves the anti-tumor effect
of anti-PD-1, accompanied by enhanced cytotoxic function of
effector T cells due to metabolic reprogramming (15). In LUAD,
although targeting Gln metabolism in combination with
immunotherapy is extremely promising, the landscape of Gln
metabolism in TME is still not fully known. Therefore, we
performed this study for a systematic analysis of Gln
metabolism and immunotherapy in LUAD.

Our study comprehensively evaluated the expression of Gln
metabolism-related genes. Based on these genes, 514 patients
with LUAD from The Cancer Genome Atlas (TCGA) were
clustered using a consensus clustering algorithm and
eventually a scoring system was constructed for predicting
overall survival (OS) and immunotherapy efficacy. An
integrated Gene-Expression Omnibus (GEO) cohort including
719 patients with LUAD and 32 cohorts of pan-cancer from
TCGA were used to validate the predictive performance of the
risk model. Five independent immunotherapy cohorts were
identified to validate the predictive performance for
immunotherapy efficacy. Multiple single-cell sequencing data
were used to describe the Gln metabolism landscape of various
cell types in TME. Finally, using in vitro experiments based on
second-generation sequencing and public single-cell sequencing
analysis, we investigated the regulation of biological behavior
and signaling pathways of LUAD cells by EPHB2, a key gene
related to Gln metabolism, which is also significantly enriched
and plays an essential role in M2 macrophages.

Materials and methods
Data source and preprocessing
Public gene expression data (fragments per kilobase million,

FPKM) and full clinical annotations were respectively retrieved
from TCGA (https://cancergenome.nih.gov/) and GEO (https://

Frontiers in Immunology

10.3389/fimmu.2022.960738

www.ncbi.nlm.nih.gov/geo/) databases. The FPKM values of
LUAD were transformed into transcripts per kilobase million
(TPM). The training cohort included 513 patients with LUAD
from TCGA while 6 eligible LUAD cohorts (GSE13213,
GSE37745, GSE31210, GSE3141, GSE30219, GSE50081) from
GEO dataset represented the validating cohort of our study,
which consisted of 719 patients with LUAD. Pan-cancer gene
expression data were extracted from TCGA for further validation.

An individual cohort with 33 LUAD specimens from
Shandong Provincial Hospital was set as a validating cohort.
Besides, 22 tumor specimens and 11 normal specimens from
Shandong Provincial Hospital were used to perform differential
expression analysis and survival analysis of EPHB2.

Consensus molecular clustering based
on Gln metabolism-related genes

73 Gln metabolism-related genes were extracted from
Molecular Signatures Database (MSigDB, http://www.gsea-
msigdb.org/gsea/msigdb/index.jsp). These genes are listed in
Supplementary Materials. A consensus clustering algorithm
was used to classify LUAD cohorts into distinct GlnClusters
and test the corresponding stability based on survival-related
Gln genes. ConsensuClusterPlus package was used to perform
the above steps and 1000 repetitions were conducted to
guarantee the corresponding stability.

Identification of DEGs and construction
of geneClusters

Differentially expressed genes (DEGs) among 3 GlnClusters
were identified using “limma” package in R with an adjusted P
value< 0.001 and a |logFC|>1. Survival-related DEGs were
identified via univariate cox regression analysis, and patients
with LUAD were classified into distinct geneClusters based on
selected DEGs using R package “ConsensuClusterPlus”.

Construction and validation of a
prognostic risk model

Survival-related DEGs were sequentially subjected to Lasso
Cox regression analysis and multivariate Cox regression
analysis. Ten genes were finally identified and involved in the
construction of the prognostic risk model, including EPHB2,
CAV2, RTN2, SCPEP1, UNC5D, FURIN, PITPNCI1, CH25H,
RGS20 and TSPAN11. The risk score was calculated following
the formula:

Risk  score = (ExpixCoefi)
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Coefi and Expi denote the risk coefficient and gene
expression, respectively. Based on the median risk score of
training cohort, patients from training and validating cohorts
were divided into low-risk and high-risk groups, respectively.
Kaplan-Meier survival analysis was followed by the generation
of receiver operating characteristic (ROC) curves involving low-
and high-risk groups.

Enrichment analysis and
functional annotation

Gene Set Variation Analysis (GSVA) enrichment was
performed to explore the heterogeneity of various biological
processes using “GSVA” package. Hallmark gene sets
“h.all.v7.4.symbols.gmt” extracted from MSigDB database were
used for GSVA. R package “ClusterProfiler” was applied to
perform functional annotation. Single sample gene set
enrichment analysis (ssGSEA) was performed to calculate the
score of Gln metabolism based on 73 previously extracted Gln
metabolism-related genes.

Mutation and drug
susceptibility analysis

The mutation annotation format (MAF) from the TCGA
database was generated using R package “maftools” and the
somatic mutations of LUAD in low- and high-risk groups were
plotted. The tumor mutation burden (TMB) of each patient with
LUAD in the TCGA cohort was also calculated. Drug sensitivity
analysis was performed with R package “pRRophetic”. A
parliament plot was developed to demonstrate drug sensitivity
of low- and high-risk groups using the website HIPLOT (https://
hiplot.com.cn/).

TME landscape analyses

Single sample gene set enrichment analysis (ssGSEA) was
performed to calculate and compare the enrichment scores of
infiltrating immune cells and immune function (16, 17).
Immune score, ESTIMATE score and stromal score were
calculated using the ESTIMATE algorithm (18). Data of T cell
dysfunction, T cell exclusion and TIDE scores were obtained
from TIDE website (http://tide.dfci.harvard.edu/). A correlation
heatmap of 10 genes in the risk model and 4 panels of immune
function were also downloaded from the TIDE website (19).
Immunophenoscore (IPS) of patients in TCGA was obtained
from The Cancer Immunome Atlas (https://tcia.at/).
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Immunotherapy datasets

Five immunotherapeutic cohorts were used to validate the
prediction of immunotherapy efficacy using the risk model:
melanoma treated with adoptive T cell therapy (ACT)
(GSE100797) (20); melanoma treated with pembrolizumab, an
anti-PD-1 antibody (GSE78220) (21); melanoma treated with
anti-CTLA4 and anti-PD1 therapy (GSE91061) (22); NSCLC
treated with nivolumab or pembrolizumab, an anti-PD-1
antibody (GSE126044) (23); and advanced urothelial cancer
treated with atezolizumab, an anti-PD-L1 antibody
(IMvigor210 cohort) (24). The response and benefit of TCGA
cohort were calculated based on the TIDE website (http://tide.
dfci.harvard.edu/) by integrating TIDE score, INFG, MSI score,
CD274, Merck18, CD8, MDSC, CAF and TAM M2.

Establishment and validation of a
nomogram scoring system

A predictive nomogram was constructed using R package
“rms”, which consisted of risk, age and stage. The total score of
each patient was calculated based on each variable matched
score. The calibration plot was used to assess the predictive value
between the predicted 1-, 3-, and 5-year OS rates and the actual
results observed. Time-dependent ROC curves were plotted to
assess the prediction of 1-, 3-, and 5-year OS by the nomogram.

Single-cell RNA-seq analysis and online
website analysis

GSE111907 was used to evaluate the degree of Gln
metabolism in malignant, pan-immune cells, endothelial and
fibroblast cells. GSE117570, GSE131907, GSE99254 and
GSE127465 were analyzed in the website scTIME Portal
(http://sctime.sklehabc.com/unicellular/home) (25). The degree
of Gln metabolism was calculated using ssGSEA based on 73
identified Gln metabolism-related genes.

The differential expression analysis of 10 pan-cancer genes
was performed online at Gene Expression Profiling Interactive
Analysis (GEPIA, http://gepia.cancer-pku.cn/).

Transcriptome sequencing

Transcriptome sequencing was performed in EPHB2-siRNA
treated PC-9 cells using the Illumina NovaSeq platform with
Annoroad Gene Technology. The differentially expressed genes
were identified with FC > 2 and P< 0.05.
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RNA extracting and real-time PCR

Following manufacturer’s protocol, the total RNA of LUAD
specimens or cells was extracted using the AG RNAex Pro
Reagent (Accurate Biotechnology (Hunan) Co., Ltd China). The
cDNA was synthesized after reverse transcription using Evo M-
MLVRT Master Mix kit (Accurate Biotechnology (Hunan) Co.,
Ltd China). The relative gene expression was detected using the
SYBR Premix Ex Tap kit (Accurate Biotechnology (Hunan)Co.,
Ltd China) and normalized to the expression using 18S. The
primers are listed in Supplementary Table 1.

Cell culture and reagents

Human PC-9, A549 and THP-1 cell lines were purchased
from Procell Life Science & Technology Co., Ltd. PC-9 and
THP-1 cells were maintained in RPMI 1640 (Gibco)
supplemented with 10% FBS, and A549 cells were
maintained in F12K (Gibco) supplemented with 10% FBS.
The cell lines were cultured at 37°C in a humidified
incubator containing 5% CO,.

EPHB2 knockdown

PC-9 cells were plated at a density of 3*10> per 60 mm dish.
After 24 h culture, the medium was changed to fresh medium.
The PC-9 cells were transfected with EPHB2-short interfering
RNAs (siRNAs) or control-siRNA purchased from
TransheepBio (Shanghai, China), accompanied by jetPRIME®
transfection reagent (PolyPlus transfection, Illkirch, France).
The transfected cells were cultured for at least 24 h in 10%
FBS RPMI 1640 medium. The sequences of the EPHB2 siRNA
were as follows: 5GGGAAAUACAAGGAAUAUU3 (sil),
5’CGCUUUCUAGAGGACGAUAZ3 (si2), 5GGAGUUU
GCCAAGGAAAUU3 (si3) and ’GAUGAUGAUGGAGGA
CAUU3’ (si4).

Proliferation assay

Cells were seeded in 96-well plates at a density of 1500 cells
per well. After at least 6 hours, the first dish was fixed with 10%
cold trichloroacetic acid for at least 24 hours, and the other
plates were fixed every 24 hours. After washing and drying, the
plates were stained with Sulforhodamine B sodium salt (SRB)
(Sigma, USA) for 20 minutes and washed with 1% (vol/vol)
acetic acid. After drying, 150 pL of 10 mmol/L Tris was added
and the absorbance was measured using the microplate reader
(Thermo Fisher, USA) at 562 nm. The results were analyzed with
GraphPad Prism 8.0.2.
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Colony formation assay

Cells were seeded in 6-well plates at a density of 500 cells per
well and cultured at 37°C for two weeks. Subsequently, the plates
were washed with phosphate-buffered saline (PBS) and fixed with
4% paraformaldehyde for 30 minutes. Finally, 0.1% crystal violet
was used to stain the plates. The colonies were counted with Image]
software (Wayne Rasband, National Institutes of Health, USA).

Wound healing assay

Cells were seeded in 12-well plates and monolayers were
scratched with a pipette tip until 95% confluence. The cells were
subsequently photographed every 12 hours and the migrated
areas were calculated using Image]J software.

Transwell assay

Cells (4x10*) were seeded in the upper chamber in RPMI
1640 without FBS. The lower chamber was filled with 600 pL of
RPMI 1640 medium containing 20% FBS. After 24 hours of
incubation, the cells were fixed and stained with crystal violet.
The cells in the upper chamber were removed, the migrated cells
were photographed and counted with Image] software.

THP-1 polarization

THP-1 cells were seed into 6-well plates and treat with PMA
(Sigma-Aldrich, St. Louis, MO, USA) for 48 h. Then cells were
treated with IL-4 (20 ng/ml; PeproTech) for 24h to induce M2-
phenotype polarization.

Immunofluorescence (IF)

IF assay was implemented according to the methods
described previously (26). The primary antibodies included
EPHB2 (1:100, 2D12C6, Santa Cruz Biotechnology) and
CD206 (1:100,24595, Cell Signaling Technology).

Western blot analysis

Protein samples were dissolved in lithium dodecyl sulfate
(LDS) sample buffer (Invitrogen). Equivalent amounts of total
protein extract were separated on 10% SDS-PAGE gels (90 V for
30 min and 120 V for 60 min) and transferred to polyvinylidene
fluoride membranes. The transfer was carried out at 100 V for 2 h
using a Bio-Rad transfer apparatus. Membranes were then blocked
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for 1 h at room temperature in 5% BSA solution. Appropriate
primary antibody was incubated overnight at 4°C. The primary
antibodies were listed as followed: Akt, p-Akt (Ser473), ERK1/2 and
p-ERK1/2 (Thr202/Tyr204) (Cell Signaling Technology, USA:
1:1000); GAPDH and EPHB2 (Santa Cruz, USA: 1:1000).

Statistical analysis

The statistical analysis of this study was performed using R-
4.1.2 software. For quantitative data, the statistical significance of
normally distributed variables was estimated by the Student’s t-
test, and non-normally distributed variables were analyzed using
the Wilcoxon rank sum test. Comparisons between more than
two groups were made using the Kruskal-Wallis test and one-
way analysis of variance as non-parametric and parametric
methods, respectively. Kaplan-Meier survival analysis was
performed with the R package “Survminer”. Statistical
significance was set as P< 0.05.

Results

Landscape of genetic variation of Gln
metabolism-related genes in LUAD

The overall design of our study is shown in the flow chart
(Figure 1). Seventy-three Gln metabolism genes were identified
from MSigDB and published articles. Based on univariate Cox
regression analysis, 21 survival-related Gln metabolism genes
were selected for further analyses (Figure 2A). A waterfall chart
was plotted to show the somatic mutations of the 21 genes and
the highest rate of somatic mutations in CPS1 (Figure 2B). The
location of copy number variations (CNV) on chromosomes is
shown in Figure 2C. The frequency of CNV amplification and
deletion is displayed in Figure 2D. Differential expression
analysis revealed that 13 genes were significantly upregulated
in tumor, while 4 genes were downregulated (Figure 2E). The
correlation network showed expression correlation between the
21 survival-related genes (Figure 2F).

Construction of distinct GlnClusters

Based on survival-related GIn metabolism genes, 513
patients with LUAD from TCGA were stratified into 4 distinct
patterns, which were defined as GInClusters (Figure 3A). PCA
revealed significant differences in Gln metabolism genes between
the 4 clusters (Figure 3B). Survival analysis revealed improved
prognosis of patients in cluster C4 and poor overall survival in
cluster C1 (Figure 3C). Most of the Gln metabolism genes were
significantly upregulated in clusters C1 and C2, followed by
cluster C3, which implied relatively active Gln metabolism.
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Alternatively, cluster C4 showed reduced GIn metabolism with
widespread low expression of Gln metabolism-related
genes (Figure 3D).

We also analyzed the infiltrating immune cells and immune-
related functions in different clusters. Interestingly, the
abundance of most infiltrating immune cells gradually
increased from clusters Cl1 to C4, which was inversely
proportional to the Gln metabolic activity, including various
DCs (aDCs, DCs, iDCs and pDCs), mast cells, neutrophils, T
helper cells and TILs (Figure 3E). Simultaneously, APC co-
stimulation, HLA, T cell co-stimulation and type IT IFN response
showed trends suggesting highly active antigen presentation and
antitumor immunity (Figure 3F).

Construction of geneClusters based
on DEGs

The 237 DEGs among 4 GlnClusters were screened out (P
value< 0.001, |logFC|>1) and intersected with GEO validating
cohort. Univariate Cox regression analysis of these DEGs was
performed and 35 survival-related DEGs were identified for
further analysis (Figure 4A). Based on the 35 DEGs, 513
patients were divided into 3 geneClusters. Compared with
geneClusters B and C, the geneCluster A exhibited significant
survival disadvantage (Figure 4B). PCA analysis revealed
obvious differences in dimensions between distinct
geneClusters (Figure 4C). A heatmap illustrated that the DEGs
were significantly different between distinct geneClusters, and
most DEGs were upregulated in geneCluster A (Figure 4D).
Corresponding to the survival disadvantage, geneCluster A also
exhibited a lower abundance of most infiltrating immune cells
and immune functions (Figures 4E, F). In summary, geneCluster
A can be defined as immune “cold” phenotype.

Development and validation of a
risk model

To construct a more convenient scoring model for clinical
prediction, we performed Lasso regression analysis of the identified
35 survival-related DEGs and 18 GIn metabolism-related genes
remained based on the minimum partial likelihood deviance
(Figure 5A). Subsequently, we performed multivariate Cox
regression analysis of the 18 genes based on Akaike information
criterion (AIC) value and 10 GIn metabolism-related genes were
finally obtained, including EPHB2, CAV2, RTN2, SCPEPI1,
UNC5D, FURIN, PITPNCI, CH25H, RGS20 and TSPANI1
(Figure 5B). Based on the results of multivariate Cox regression
analysis, a risk model was constructed based on the formula:

Risk  score = > (Expixcoefi)
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Key regulator : EPHB2
FIGURE 1

Analysis workflow of this study.

Coefi and Expi denote the risk coefficient and gene
expression, respectively.

Based on the median of risk score in training cohort, patients
with LUAD from training (TCGA) and validating (integrated
GEO) cohorts were divided into low- and high-risk groups,
respectively. A heatmap demonstrated a high abundance of Gln
metabolism-related genes in the low-risk group, suggesting the
activation of Gln metabolism (Figure 5C). The Kaplan-Meier
survival curves demonstrated a significant survival advantage of
patients in the low-risk group compared with patients in the
high-risk group in training (Figure 5D) and validating cohorts
(Figure 5F), respectively. The area under the ROC curves
(AUCs) were 0.714, 0.705 and 0.685 in TCGA training cohort
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and 0.701, 0.674 and 0.662 in GEO validating cohort for
predicting 1-, 3-, 5-year survival times, respectively, which
revealed the excellent performance of the model in predicting
overall survival of patients with LUAD (Figures 5E,G). Besides,
an individual validating cohort with 33 LUAD patients from
Shandong Province Hospital was used to validate the risk model.
Consistently, patients in the low-risk group revealed a significant
survival advantage, compared with high-risk group (Figure 5H).
The ROC curves indicate the excellent performance of the risk
score in predicting prognosis (Figure 5I). Figure 5] illustrates the
distribution of patients diagnosed with LUAD in four
GlnClusters, three geneClusters and two risk groups.
Compared with GlnClusters C1, C2 and C3, patients in
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FIGURE 2

Genetic and transcriptional alterations of Gln metabolism regulators in LUAD. (A) Prognosis-related Gln metabolism regulators after uniCox
regression analysis. (B) 119 of the 561 LUAD patients showed genetic alterations of prognosis-related Gln metabolism regulators. (C) The
location of CNV alterations of prognosis-related Gln metabolism regulators on chromosomes. (D) CNV mutation was widespread in 21
prognosis-related Gln metabolism regulators. The column represented the alteration frequency. Deletion, green dot; Amplification, pink dot. (E)
Differential mRNA expression of prognosis-related Gln metabolism regulators between normal and tumor samples (*P < 0.05; **P < 0.01; ***P <
0.001). (F) Correlation network between prognosis-related Gln metabolism regulators.

GInCluster C4 exhibited significantly lower risk scores
(Figure 5K). Patients in geneCluster A exhibited the highest
risk scores, while patients in geneCluster B showed the lowest
risk score (Figure 5L).

The distribution of risk scores (Supplementary Figures 1A,
B), survival status (Supplementary Figures 1C, D) and gene
expression (Supplementary Figures 1E, F) in training and
validating cohorts are presented. PCA revealed discernible
dimensions between high- and low-risk groups in training and
validating cohorts, respectively (Supplementary Figures 1G, H).

TMB and drug susceptibility analysis

To investigate the correlation between risk score and TMB,
Spearman correlation analysis was performed and significant
positive correlation was found between risk score and TMB (R =
0.22, P< 0.001, Figure 6A). Patients in high-risk group had higher
levels of TMB than in low-risk group (Figure 6B). After integrating
TMB scores, patients with LUAD from TCGA were divided into
four groups. Survival analysis revealed that patients with high TMB
and low risk exhibited significant survival advantage, followed by
the group with high TMB + low risk and low TMB + high risk,
sequentially. The group with low TMB and high risk showed
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significant survival disadvantage (Figure 6C). The variation in the
distribution of somatic mutations between low- and high-risk
groups was investigated in the TCGA-LUAD cohort. Patients in
high-risk group displayed significantly higher frequencies of
somatic mutations compared with patients with low risk scores,
especially in TP53 (53% vs 34%), TTN (49% vs 32%), MUCI16 (43%
vs 35%), RYR2 (40% vs 27%), CSMD3 (41% vs 26%) and LRP1B
(36% vs 21%) (Figures 6D, E). We further performed drug
sensitivity analysis to predict ICsy of 136 chemotherapy drugs
(Figure 6F). Our results revealed that 84 drugs had lower ICs,
values in the high-risk group, indicating sensitivity. Alternatively,
patients in low-risk group were sensitive to 18 drugs. Together,
these results provide a standard of reference for treatment
stratification of patients with LUAD.

Distribution of Gln metabolism and
risk scores

To determine the correlation between risk score and clinical
characteristics, we evaluated the differences in risk score among
different subgroups based on survival status, stage and TNM
stage. Patients in alive, stage I, stage T1 and stage NO exhibited
lower risk scores compared with other groups, while there was
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FIGURE 3

Distinct Gln metabolism-related patterns. (A) Consensus clustering matrix

for k = 4. (B) Principal component analysis (PCA) for the

transcriptome profiles of four clusters. (C) Survival analyses for four different clusters based on 513 LUAD patients from TCGA. (D) Heatmap of
prognosis-related Gln metabolism regulators in four clusters. (E) The abundance of tumor infiltrating immune cells in four clusters. (F) The
difference of immune functions between four clusters. ™" means that p < 0.05; "**" means that p < 0.01; "***" means that p < 0.001; ns, no

significance.

no difference in risk score across M stages (Figures 7A-E). To
further investigate the distribution of Gln metabolism, we
performed ssGSEA to calculate the value of Gln metabolism
based on 73 Gln-related genes identified. Similar to the risk
score, dead patients had higher levels of Gln metabolism
(Figure 7F). In addition, the level of Gln metabolism was
significantly and positively correlated with stages T, N and M,
with higher stage implying higher Gln metabolism (Figures 7G-
]). We next analyzed the differences in Gln metabolism between
low- and high-risk groups. The heatmap revealed significant
upregulation of prognostic Gln metabolism-related genes in the
high-risk group (Figure 7K). Consistently, patients with higher
risk scores revealed higher levels of Gln metabolism (Figure 7L).
In conclusion, Gln metabolism and risk scores were significantly
correlated, and both were positively associated with malignant
progression of LUAD.
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Evaluation of TME and prediction of
immunotherapy efficacy in high- and
low-risk groups

To further investigate the functional characteristics, we
performed GSVA enrichment analysis of the two groups
(Figure 8A). The results showed that bile acid metabolism was
significantly upregulated in the low-risk group. Alternatively, the
KRAS signaling pathway was inhibited in the low-risk group. In
addition, various carcinogenic pathways were activated in the
high-risk group, suggesting a possible positive correlation with
Gln metabolism, such as TGF-f signaling, hypoxia, glycolysis,
EMT, PI3K-AKT-MTOR signaling, DNA repair, MYC signaling
and E2F targets.

To further explore the correlation between risk score and
TME, we analyzed the differential abundance of immune-
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FIGURE 4

Construction of gene clusters based on DEGs. (A) Univariate cox regression analysis of DEGs. (B) Survival analyses for the three gene clusters
based on the prognosis-related DEGs. (C) PCA for the transcriptome profiles of three gene clusters. (D) Expression of prognosis-related DEGs in
three gene clusters. (E) The abundance of tumor infiltrating immune cells in three gene clusters. (F) The difference of immune functions

between three gene clusters. “**" means that p < 0.01; ™

infiltrating cells and immune function to characterize the
landscape of TME. Various immune cells involved in antigen
presentation, processing and tumor killing were present at
higher levels of abundance in the low-risk group, such as
aDCs, B cells, DCs, iDCs, NK cells, T helper cells, Th1 cells
and TIL (Figure 8B). Correspondingly, the low-risk group
also showed active signaling of antigen recognition,
processing and presentation, and antitumor effects,
including APC co-stimulation, HLA, T cell co-stimulation
and type II IFN response (Figure 8C). Besides, the low-risk
group showed a higher expression of immune checkpoints,
revealing possible benefit from immune checkpoint inhibitor
(ICI) therapy. The risk score was also positively correlated
with other carcinogenic pathways, such as nucleotide excision
repair, DNA damage repair, mismatch repair and DNA
replication (Figure 8D). A low risk score was also
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***" means that p < 0.001; ns, no significance.

significantly correlated with a high immune score and
ESTIMATE score, indicating increased abundance of
infiltrating immune cells (Figure 8E). In summary, the low-
risk group can be defined as a “hot” immune phenotype,
associated with highly infiltrated antitumor immune cells and
upregulated antitumor pathways.

To further investigate the correlation between risk score and
efficacy of immunotherapy, we calculated the TIDE score.
Patients with a low risk exhibited higher levels of T cell
dysfunction and a lower level of T cell exclusion and TIDE
score (Figure 8F). We further evaluated the association between
the expression of each gene and several immunotherapy-related
features, including T cell dysfunction, ICB response outcome,
phenotypes in genetic screens and cell types promoting T cell
exclusion (Figure 8G). Higher IPS was also exhibited by patients
in the low-risk group compared with those in the high-risk
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FIGURE 5

Construction and validation of a prognostic risk model. (A, B) Lasso regression analysis of prognosis-related DEGs. (C) Multivariate Cox
regression analysis. (D) Survival analyses for low- and high-risk group in training cohort. (E) ROC curves of predicting prognosis in training
cohort. (F) Survival analyses for low- and high-risk group in GEO validating cohort. (G) ROC curves of predicting prognosis in GEO validating
cohort. (H) Survival analyses for low- and high-risk group in individual validating cohort. (I) ROC curves of predicting prognosis in individual
validating cohort. (J) Alluvial diagram showing the relationships of survival status, Gln clusters, gene clusters and risk score. (K) The distribution
of risk score in different clusters. (L) The distribution of risk score in different gene clusters. "*" means that p < 0.05; “**" means that p < 0.01.

group, which indicated that patients with a low-risk score were
more sensitive to immunotherapy (Figures 8H-K). To fully
validate the accuracy of risk score in predicting the efficacy of
immunotherapy, multiple independent immunotherapy cohorts
in the published literature were used to validate immunotherapy
efficacy and prognosis. Melanoma treated with adoptive T cell
therapy (ACT) (Figures 9A-C), melanoma treated with
pembrolizumab, an anti-PD-1 antibody (Figures 9D-F),
melanoma treated with anti-CTLA4 and ant-PD1 therapy
(Figures 9G-I), NSCLC treated with nivolumab or
pembrolizumab, an anti-PD-1 antibody (Figures 9J-L),
advanced urothelial cancer treated with atezolizumab, an anti-
PD-L1 antibody (Figures 9M-0O) were used to validate the
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performance of risk score in predicting prognosis and efficacy
of immunotherapy. Patients with a low-risk score were more
sensitive to immunotherapy (Figures 9A, D, G, ], M). Further,
patients in the low-risk group had a significant survival
advantage compared with those in the high-risk group
(Figures 9B, E, H, K, N), and the predictive performance was
tested using ROC curves (Figures 9C, F, I, L, O). The response to
anti-PD1 and anti-CTLA4 therapy was calculated using the
TIDE website based on TCGA cohort (Figures 9P-S). Patients
in the low-risk group were established as responders to
immunotherapy (Figures 9P, Q). By contrast, patients in the
high-risk group were shown to be less likely to benefit from anti-
PDI and anti-CTLA4 immunotherapy (Figures 9R, S).
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FIGURE 6

TMB and drug susceptibility analysis. (A) Correlation analysis between risk score and TMB. (B) Difference between low and high-risk group. (C)
Kaplan—Meier curves show overall survival differences stratified by TMB and risk score (p < 0.001). Visualization of gene mutations in high-risk
group (D) and low-risk group (E). (F) Drug sensitivity analyses between low-and high-risk groups. Green, sensitive to patients with low risk

scores; Red, sensitive to patients with high risk scores; Blue, no sense.

Prognostic validation of risk score in
pan-cancer

To further validate the performance of risk score in predicting
prognosis of other tumors, we performed a survival analysis of
patients in the high- and low-risk groups involving 32 types of
tumors in TCGA other than LUAD (Figure 10A). Patients in the
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low-risk group had a significant survival advantage in 22 tumors,
including bladder urothelial carcinoma (BCLA, p = 0.001),
cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC, p 0.004), cholangiocarcinoma
(CHOL, p = 0.017), colon adenocarcinoma (COAD, p = 0.001),
lymphoid neoplasm diftuse large B-cell lymphoma (DLBC, p =
0.02), glioblastoma multiforme (GBM, p = 0.003), head and neck
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Association between Gln metabolism, risk scores and clinical characteristics. Difference of risk score between different survival status (A), stages
(B), T stages (C), N stages (D), and M stages (E). Level of Gln metabolism in different survival status (F), stages (G), T stages (H), N stages (l), and
M stages (J). (K) Expression of Gln metabolism regulators between low- and high-risk groups. (L) Difference of Gln metabolism level between

low- and high-risk groups. " **" means that p < 0.01.

squamous cell carcinoma (HNSC, p< 0.001), kidney renal clear
cell carcinoma (KIRC, p< 0.001), kidney renal papillary cell
carcinoma (KIRP, p< 0.001), acute myeloid leukemia (AML, p =
0.007), brain lower grade glioma (LGG, p< 0.001), liver
hepatocellular carcinoma (LIHC, p<0.001), mesothelioma
(MESO, p = 0.005), pancreatic adenocarcinoma (PAAD, p<
0.001), pheochromocytoma (PCPG, p = 0.013), sarcoma (SARC,
p = 0.002), skin cutaneous melanoma (SKCM, p< 0.001), thyroid
carcinoma (THCA, p = 0.003), thymoma (THYM, p = 0.022),
uterine corpus endometrial carcinoma (UCEC, p< 0.001), uterine
carcinosarcoma (UCS, p = 0.017) and uveal melanoma (UVM, p<
0.001). The ROC curves were performed to evaluate the
prognostic performance of pan-cancer risk scores
(Supplementary Figure 2). The AUC values are presented
in Figure 10B.

Development of a nomogram to
predict survival

Considering the inconvenience of risk score in predicting OS
in patients with LUAD, a nomogram was developed to predict 1-
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, 3-, and 5-year OS rates by integrating the risk score, age and
clinicopathological parameters (Figure 11A). The performance
of the constructed nomogram in TCGA-LUAD cohort was
comparable to an ideal model (Figure 11B). We further
constructed ROC curves to evaluate the performance of
nomogram, risk, stage and age in predicting 1-, 3- and 5-year
OS (Figures 11C-E). The nomogram always showed the best
performance in predicting the 1-, 3- and 5-year OS rates,
followed by risk and stage.

Analysis of Gln metabolism at the level of
single cell

To investigate the differences in Gln metabolic activity of
various cell types in LUAD, we performed an in-depth analysis
of public single-cell sequencing data of lung cancer. We
developed a heatmap to present the expression of Gln
metabolism-related genes in four types of major cells that
constitute the TME, including flow-sorted malignant cells,
endothelial cells, immune cells and fibroblasts (Figure 12A).
Gln metabolism-related genes were most significantly
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of biological processes in low- and high- risk groups. (B) The abundance of tumor infiltrating immune cells in low- and high-risk groups. (C)
The difference of immune functions between low- and high-risk groups. (D) Correlation between risk score and tumor-related functions. (E)
Differences of ESTIMATE score, stromal score and immune score between low- and high- risk score. (F) Differences of T cell dysfunction,
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CTLA4+ and PD-1 (J) and CTLA4+ and PD-1+ (K) between low- and high-risk group. "*" means that p < 0.05; “**" means that p < 0.01; ""***"
means that p < 0.001; ns, no significance.

upregulated in malignant cells, followed by fibroblasts, while activity of Gln metabolism in infiltrating immune
the lowest expression of GIn metabolism was observed in cells (Figure 12B).

immune cells (Figure 12A). The ssGSEA revealed the highest To further investigate the differences in Gln metabolism of
level of Gln metabolism in malignant cells, and the least infiltrating immune cells in the TME, 208506 lung
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adenocarcinoma cells from 58 specimens were clustered and
defined into 10 cell types, including B lymphocytes, endothelial
cells, epithelial cells, fibroblasts, mast cells, myeloid cells, NK
cells, oligodendrocytes, T lymphocytes, and undetermined cells
(Figure 12C). Cell type fraction of each sample is presented in
Figure 12D. A heatmap was plotted to show the expression of
key regulators of Gln metabolism (Figure 12E). Compared with
other cells, T lymphocytes exhibited the most active Gln
metabolism. To further validate our findings, 9705 NSCLC
cells from GSE117570 were also clustered and defined
(Figure 12F). Cell composition is presented in Figure 12G.
Consistently, the key regulators of Gln metabolism were
significantly overexpressed in a variety of T cells, revealing a
relatively active Gln metabolism in infiltrating T cells
(Figure 12H). Subsequently, we used single-cell sequencing
data of T cells (GSE99254) to investigate the heterogeneity of
Gln metabolism in various types of T cells in NSCLC
(Figure 12I). Based on ssGSEA, exhausted CD8 T cells (Cé6-
LAYN) and suppressive Tregs (C9-CTLA4) were shown to
express the most active Gln metabolism compared with other
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T cells (Figure 12]). Interestingly, exhausted CD8 T cells and
suppressive Tregs are also key target cells for immune
checkpoint inhibitor (ICI) therapy.

EPHB2 affects the biological behaviors of
LUAD cells in vitro

We performed differential expression analysis of the 10 genes in
pan-cancer risk score (Supplementary Figure 3). Among the 10
genes, EPHB2 showed the most significant difference between
normal and tumor cells of all cancers and was significantly
overexpressed in tumors. However, the biological role of EPHB2
in LUAD was rarely studied. We subsequent performed a series of
experiments to elucidate the role of EPHB2 in LUAD.

The expression of EPHB2 in 22 LUAD specimens and 11
normal specimens was detected and EPHB2 was highly
expressed in LUAD specimens (Figure 13A). Patients with
high expression of EPHB2 showed worse overall survivals
compared with low EPHB2 group (Figure 13B).
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EPHB2 knockdown was detected by wound healing assay in PC-9 cells. (J) Expression of PD-L1 with treatment of Gln-replete medium, Gln-
deprived medium for 12h and Gln-deprived medium for 24h. (K) A volcano map to exhibit differential expressed genes between normal and
EPHB2 knockdown treated PC-9 cells. (L) GO and KEGG enrichment analysis between normal and EPHB2 knockdown treated PC-9 cells after
sequencing. (M) GAPDH, EPHB2, AKT, P-AKT (Ser473), ERK1/2, P-ERK1/2 (Thr202/Tyr204) were detected by western blotting in EPHB2

knockdown treated PC-9 cells. (N) Expression of key Gln metabolism regulators in normal and si-
0.05; "**" means that p < 0.01; ""***" means that p < 0.001.

Frontiers in Immunology 19

EPHB2 treated PC-9 cells. "™*" means that p <

frontiersin.org


https://doi.org/10.3389/fimmu.2022.960738
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Liu et al.

To validate the association between EPHB2 and Gln
metabolism, we used Gln-deprived/replete medium to culture
A549 and PC-9 cells. The expression of EPHB2 was significantly
downregulated by Gln-deprived medium in A549 and PC9
(Figures 13C, D). We further designed siRNA for EPHB2
knockdown and transfected siRNA into PC9 cells. The siRNA-
1 and siRNA-4 were selected for further investigation due to the
greater than 70% transfection efficiency (Figure 13E). The SRB
assay was performed to test the cell proliferation, and the
knockdown of EPHB2 significantly inhibited the proliferation
of PCY cells (Figure 13F). The number of cell clones was
decreased in PC9 cells with EPHB2 knockdown (Figure 13G).
Transwell assay was performed to investigate the cell invasion:
EPHB2 knockdown significantly reduced the invasion of PC9
cells (Figure 13H). EPHB2 knockdown also promoted migration
of PC9 cells in wound healing assay (Figure 13I). In conclusion,
knockdown of EPHB2 significantly inhibited cell proliferation,
migration and invasion. In addition, surprisingly, the removal of
Gln significantly upregulated the PD-L1 expression of PC9 cells,
which may indicate the potential therapeutic role of combining
Gln metabolism inhibitors with PD-L1I inhibitors (Figure 13]).

To explore the regulation of downstream signaling by
EPHB2, we knocked down EPHB2 in PC9 cells, followed by
transcriptome sequencing, which revealed 565 DEGs, which
were screened out with FC > 2 and P< 0.05, including 296
upregulated genes and 269 downregulated genes (Figure 13K).
GO and KEGG enrichment analysis was performed to identified
regulated pathways (Figure 13L). EPHB2 was mainly associated
with cell communication, cellular metabolic process, regulation
of immune, regulation of cell death, cytokine-mediated signaling
pathway, response to amino acids, TNF signaling pathway,
MAPK pathway and regulation of IL-1 and IL-8 production
(Figure 13L). Simultaneously, AKT pathway and ERK pathway
were verified to be down-regulated when EPHB2 was knocked
out, suggesting that EPHB2 is involved in the regulation of these
pathways (Figure 13M). Besides, 11 key Gln metabolism-related
genes were downregulated after treating with EPHB2
knockdown (Figure 13N). In particular, the key regulators of
GIn metabolism, SLC7A7, GLS, ALDH5A1 and GLUL were
significantly downregulated, which indicated significant
correlation between EPHB2 and Gln metabolism.

Effect of EPHB2 on infiltrating immune
cells of TME

To investigate the expression and role of EPHB2 in immune
cells, we selected single cell sequencing data of NSCLCs
(GSE127465) for further analysis by clustering and defining
53215 cells into 21 types using algorithm Uniform Manifold
Approximation and Projection (UMAP) (Figure 14A). EPHB2
was found to be mainly enriched in MO and M2 macrophages,
especially in M2 macrophages, suggesting that EPHB2 may

Frontiers in Immunology

20

10.3389/fimmu.2022.960738

function mainly in macrophages (Figure 14B). The cell type
fraction of each sample is shown in Figure 14C, with M2
constituting almost the highest proportion. We further
analyzed the correlation between EPHB2 expression in M0/M2
and the composition of infiltrating immune cells. The expression
of EPHB2 in M0 macrophages was significantly and positively
correlated with abundance of infiltrating M2 macrophages,
which indicated that EPHB2 may be involved in the
polarization of M2 macrophages (Figure 14D). Besides, the
expression of EPHB2 in M2 macrophages was negatively
correlated with the abundance of activated NK cells and
resting NK cells (Figures 14E, F). These results suggest that
EPHB2 may be associated with cell communication between M2
macrophages and NK cells. The interaction network of
infiltrating immune cells showed that M2 macrophages
exhibited the most extensive interactions with other immune
cells (Figure 14G). The ligand-receptor interaction between M2
macrophages and activated NK cells is presented in Figure 14H.
Similarly, the ligand-receptor interaction between M2
macrophages and resting NK cells was also investigated
(Figure 14I). To verify the distribution of EPHB2 in
macrophages M0 and M2, we induced THP-1 cells into
macrophages M0 and M2, and detected the expression of
EPHB2 by qPCR (Figure 14]J). Compared with MO
macrophages, M2 macrophages showed a significant
upregulation of EPHB2, accompanied by significant
upregulation of the markers of M2. We further used Gln-
deprived medium to culture MO and M2 macrophages and
found that Gln deprivation significantly downregulated
EPHB2 expression in M0 macrophages, but did not affect the
expression in M2 macrophages (Figure 14K). Besides, we also
found that EPHB2 was significantly co-expressed with the M2
macrophage marker CD206 in LUAD tissues via
immunofluorescence (Figure 14L). These results suggest that
EPHB?2 also plays a huge role in macrophages.

Discussion

Although targeting cancer metabolism to enhance
immunotherapy responsiveness is highly promising, the
heterogeneity and crosstalk of metabolic pathways between
cancer cells and immune cells in TME lead to disruption of
normal metabolic pathways in immune cells by strategies to
inhibit/alter cancer metabolism (27). Therefore, it is critical to
target the appropriate metabolic pathways and molecules to kill
tumors without interfering with or even promoting anti-tumor
immunity. However, recent studies have shown that JHU083, a
broad-spectrum inhibitor of Gln metabolism, effectively kills
tumor cells while activating the anti-tumor effects of CD8+ T
cells, thereby significantly enhancing the efficacy of anti-PD-1
immunotherapy (15). Meanwhile, another study reported that
targeting Gln metabolism increased antitumor immunity in
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FIGURE 14
Effect of EPHB2 on infiltrating immune cells of TME. (A) The distribution of immune cell clusters in UMAP plot. (B) The expression of EPHB2 in
distinct clusters of immune cells. (C) Cell type fraction of each sample. (D) Correlation analysis between expression of EPHB2 in macrophages
MO and composition of infiltrating macrophages M2. Correlation analysis between expression of EPHB2 in macrophages M2 and composition of
infiltrating activated NK cells (E) and resting NK cells (F). (G) Correlation network between tumor infiltrating immune cells. (H) The ligand-
receptor interaction between macrophages M2 and activated NK cells. (I) The ligand-receptor interaction between macrophages M2 and resting
NK cells. (3) Expression of EPHB2 and macrophages M2 markers in macrophages MO and M2. (K) Expression of EPHB2 in normal macrophages
MO, M2 and Gln-deprived macrophages M0, M2. (L) Co-localization between EPHB2 and CD206 detected by IF in LUAD specimen. “**" means
that p < 0.01; "***" means that p < 0.001; ns, no significance
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mouse models by upregulating mitochondrial metabolism of
CTLs in NSCLC (28, 29). These studies make Gln metabolism an
ideal target for improving tumor immunotherapy, but related
multi-omics systematic studies are still extremely rare in LUAD
and even in other tumors.

Herein, we first defined four patterns based on prognosis-
related regulators of Gln metabolism. The four clusters exhibited
significantly different prognostic features, Gln metabolism and
TME. The immune phenotype gradually changes from “cold” to
“hot” sequentially, from clusters C1 to C4, accompanied by an
upregulation of the abundance of infiltrating immune cells and
activation of the anti-tumor immune pathway. Notably, the
“hot” immune phenotype in different clusters is often
associated with a survival advantage and low levels of Gln
metabolism. Gln is a common metabolic substrate in tumor
and immune cells (9), and therefore tumor cells can reduce the
anti-tumor effect of Gln-dependent immune cells, such as T cells
and DCs, by competing for and depleting Gln. Gln metabolism
was shown to mediate the activation of DCs, and coincidentally,
low levels of Gln metabolism and highly enriched DCs were
present concurrently in cluster C4, followed by upregulation of
APC co-stimulation and HLA. These suggest activation of the
antigen presenting pathway, which may contribute to the
significant upregulation of TIL and T cell co-stimulation in
cluster C4. Based on DEGs, patients with LUAD were further
classified into three geneClusters. Similar to the previous
clusters, the immune phenotype also showed a transition from
“cold” to “hot” from geneClusters A to C, and exhibited a similar
TME landscape. In addition to DCs, various helper T cells
exhibited significant differences, including Th1l and Th2 cells.
Studies have shown that Gln deficiency alters Th1 differentiation
and converts CD4+ T cells to a Treg phenotype (30). In addition,
genetic deletion of the Gln transporter protein ASCT2 impaired
Thl production and function (31). In the group with low Gln
metabolism, CD4+ T cells may acquire additional Gln and thus
promote Thl cell differentiation and activation. Th1 mediates
anti-tumor immunity mainly by expressing CD40L and
secreting cytokines such as INFy and IL-2 to recruit and
activate macrophages and cytotoxic T cells, which may be
involved in the upregulation of TIL, macrophages and type II
IFN response in geneCluster C (32). In addition, we found that
low Gln metabolism in tumors may drive the Th1/Th2 balance
toward Th1, which favored anti-tumor immunity (33).

Based on prognosis-related DEGs, we developed a risk score
and divided patients with LUAD into low- and high-risk groups.
Similarly, the low-risk group was defined as “hot”
immunophenotype, corresponding to a survival advantage and
lower levels of Gln metabolism, while the high-risk group showed
the opposite effect. In the low-risk group, the low levels of tumor
GIn metabolism may imply a weaker competitive depletion of
Gln, thus allowing immune cells to acquire further Gln and
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activate anti-tumor effects, which may explain the upregulation
of anti-tumor immune cells or pathways such as DCs, TIL, Thl
cells, NK cells, APC co-stimulation, T-cell co-stimulation and type
IT IEN response. “Hot” immune phenotype was shown to benefit
strongly from immunotherapy, which was also validated by the
levels of immune checkpoints, TIDE, IPS and immunotherapy
cohorts. Patients in low-risk group benefited significantly from
immunotherapy, especially following ACT therapy of melanoma
cohort and anti-PD-1 antibody treatment of NSCLC cohort.
Deletion of glutaminase enhanced the effector differentiation of
CAR-T cells (34). Alternatively, no further studies are available to
demonstrate that Gln metabolic blockade improves the efficacy of
ACT therapy. Although extensive blockade of Gln metabolism has
been shown to significantly enhance the efficacy of anti-PD-1
therapy, corresponding studies in LUAD are still lacking.
Therefore, the constructed risk model not only facilitates the
differentiation of the efficacy of immunotherapy, but also provides
an important reference for Gln blockade combined with
immunotherapy. In addition, the risk model was used to
significantly differentiate patient prognosis in 23 different
cancers, indicating the generalizability of the model.

Gln metabolism was shown to be involved in multiple cancer
progression as shown in our study. GIn metabolism was
significantly and positively correlated with TNM and stage
(Figures 7G-J). We performed single-cell sequencing analysis
to describe the landscape of Gln metabolism in TME. Consistent
with previous results, tumor cells exhibited significantly
activated Gln metabolism compared with immune cells or
fibroblasts. However, in two independent single-cell
sequencing analyses of LUAD, T cells exhibited relatively
higher active Gln metabolism compared with other immune
cells. Although Gln metabolism has been reported to be involved
in T cell differentiation and activation, the landscape of Gln
metabolism in tumor-infiltrating T cells remains elusive (30).
Therefore, we further extracted and analyzed single-cell
sequencing data targeting lung cancer-infiltrating T cells.
Surprisingly, exhausted CD8 T cells and suppressive Tregs
exhibited the most active Gln metabolism compared with
other 14 types of T cells, and represent key target cells in anti-
PDI and anti-CTLA4 immunotherapy, respectively (35, 36).
These results suggest the feasibility of utilizing Gln metabolism
inhibitors combined with immunotherapy. Indeed, due to the
robust plasticity of T cell metabolism, the blockade of Gln
metabolism increases T cell proliferative capacity and
anticancer activity, in addition to preventing exhaustion via T
cell metabolic reprogramming (15).

To further characterize the genes used in the model, we
performed differential pan-cancer analysis, showing that EPHB2
is most differentially and highly expressed in the vast majority of
tumors (Supplementary Figure 3). EphB2 is a significant member
of the Eph receptor family, which has been verified to regulate the
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malignant progression of various tumors through different
signaling pathways. In hepatocellular carcinoma, EPHB2
enhances cancer stem cell properties and drive sorafenib
resistance by activating SRC/AKT/GSK3[/B-catenin signaling
cascade. Moreover, EPHB2 mediated malignant progression of
medulloblastoma by regulating ERK, P38 and mTOR pathway
(37, 38). Although studies have shown that EPHB2 is involved in
the malignant progression of various cancers, its role in LUAD has
yet to be investigated (37). In the present study, we found that
EPHB2 was closely associated with malignant progression of
LUAD, promoting proliferation, invasion and migration of
LUAD cells. Simultaneously, EPHB2 has been verified to be
involved in the regulation of AKT pathway and ERK pathway,
which may be the potential mechanism for promoting the
malignant progression of LUAD by EPHB2. Interestingly, Gln
deprivation significantly downregulated EPHB2 expression, and
knockdown of EPHB2 in turn downregulated key regulators of
GIn metabolism, such as GLS, GLUL, SLC7A7 and GLUDI.
Meanwhile, the results of enrichment analysis after
transcriptome sequencing showed that EPHB2 was associated
with cellular metabolic regulation and response to amino acid
stimulus. Therefore, we speculate that EPHB2 may be involved in
the GIn metabolic pathway, which has yet to be reported.

Based on transcriptome sequencing analysis, EPHB2 was also
significantly associated with cell communication and immune
regulation. Although previous studies reported that EPHB2
promoted monocyte activation and T-cell migration, studies
investigating the regulation of tumor immunity by EPHB2 are
still unavailable (39, 40). In our study, we found that EPHB2 was
mainly enriched in macrophages, especially in M2 types. EPHB2
expression in M0 macrophages enhanced the levels of M2
macrophages, and the expression of EPHB2 in M2 macrophages
reduced the composition of activated and resting NK cells
(Figure 14). These results suggest that EPHB2 may promote M2-
like polarization and also mediate the interactions between M2
macrophages and NK cells, which in turn suppress NK cell
infiltration or proliferation. Previous studies revealed that the
expression of EPHB2 was significantly correlated with trans-
differentiation of monocytes into macrophages by upregulating
CCL2 and IL-8 (40). However, no previous study explored the
function of EPHB2 in M2 macrophages, which was precisely the
focus of our study. Previous research revealed that Gln metabolism
positively regulated M2-like polarization of macrophage, which
may be the potential mechanism of regulating M2-like
polarization by EPHB2 (13).

However, our study did not elucidate the mechanism of
EPHB2 in LUAD cells and M2 macrophages, which will be
addressed in future studies.

In conclusion, based on the regulators of Gln metabolism,
we finally constructed a Gln metabolism-related risk model to
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accurately predict the prognosis of patients with LUAD and even
multiple cancers as well as the efficacy of multiple
immunotherapies. In addition, we described the Gln
metabolism of cells in TME at the single-cell level. Finally,
EPHB2, a GIn metabolism-related molecule in the model was
shown to promote the malignant progression of LUAD cells and
also play an essential role in M2 macrophages.
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