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IFN is the most potent antiviral cytokine required for the innate and adaptive

immune responses, and its expression can help the host defend against viral

infection. Arteriviruses have evolved strategies to antagonize the host cell’s

innate immune responses, interfering with IFN expression by interfering with

RIG, blocking PRR, obstructing IRF-3/7, NF-kB, and degrading STAT1 signaling

pathways, thereby assisting viral immune evasion. Arteriviruses infect immune

cells and may result in persistence in infected hosts. In this article, we reviewed

the strategies used by Arteriviruses to antagonize IFN production and thwart

IFN-activated antiviral signaling, mainly including structural and nonstructural

proteins of Arteriviruses encoding IFN antagonists directly or indirectly to

disrupt innate immunity. This review will certainly provide a better insight into

the pathogenesis of the arthritis virus and provide a theoretical basis for

developing more efficient vaccines.
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Introduction

The mammalian immune system can effectively detect and fight against viral

infections by inducing the production of type I interferon, which forms the first line of

defense. The type I interferon response consists of two parts. The first part is triggered by

viral stimulation when cells produce type I interferon and secrete IFN. In the second part

of the response, both the IFN-producing cell and adjacent cells sense IFN, leading to the

production of IFN-stimulated genes (ISG) (1).

Arteriviruses include porcine reproductive and respiratory syndrome virus (PRRSV),

equine arteritis virus (EAV), lactate dehydrogenase-elevating virus (LDV), simian

hemorrhagic fever virus (SHFV), and swing possum virus (SPV). They can persist in

infected animals, PRRSV can persist for six months in pigs, EAV can persist for life in
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horses, LDV can usually persist in mice without pathological

consequences for the host, and SHFV can show different

symptoms in macaques and baboons, with macaques showing

fatal hemorrhagic fever but baboons showing only persistent

asymptomatic infection (2–5). EAV and PRRSV are considered

important pathogens in veterinary studies among these

arteriviruses. They can cause significant economic losses in the

equine and swine industries, share similar molecular

characteristics, and cause reproductive disorders in livestock

(6). Therefore, effective Arterivirus control and prevention

methods are urgently needed. This review summarizes

research advances for the different pathways of anti-IFN

responses to Arteriviruses (Figure 1). We want to provide

creative insights to guide the development of innovative

strategies to achieve Arteriviruses prevention and control.
Overview of interferon response

IFN is a soluble factor discovered in 1957 in viral infections

and is named for its ability to interfere in viral replication (7).

Interferons are classified into types I, II, and III IFNs (IFN-I, II,

and III). In mammals, IFN-I is composed of 19 IFN proteins: 14

IFN-a subtypes (IFN-a1 to a14), IFN-w, IFN-e, IFN-t, IFN-k,
and IFN-b and IFN-I signaling is mediated through the IFN-I

receptor (IFNAR), which is a common cell surface receptor.

IFN-II family is mainly produced by T lymphocytes and natural

killer cells (NK cells), which are mediated by IFNGR (a receptor

composed of IFNGR1 and IFNGR2). IFN-III comprises 4

subtypes, IFN-l1, IFN-l2, IFN-l3, and IFN-l4, and it is

mediated by IFNLR (a receptor composed of IFNLR1 and

IL10R2) (8–12). IFN-III is associated with IFN-I and IL-10,

which have antiviral activity (10). IFN-l is an epithelial cytokine
Frontiers in Immunology 02
that limits viral replication in epithelial cells and forms an

additional protective layer at mucosal sites (13).

The activation of IFN-I response is divided into three phases:

①pattern recognition receptors (PRRs) on the cell membrane or

cytoplasm PRRs recognize pathogen-associated molecular

patterns (PAMPs); ②IFN triggers JAK-STAT via paracrine or

autocrine signaling; ③expression of a large number of antiviral

ISG genes, which puts the host into an antiviral state (14).

Most PRRs in the innate immune system of vertebrates can

be classified into the following five types: Toll-like receptors

(TLRs), retinoic acid-inducible gene I (RIG-I)-like receptors

(RLRs), nucleotide oligomerization domain (NOD)-like

receptors (NLRs), C-type lectin receptors (CLRs), and absent

in melanoma-2 (AIM2)-like receptors (ALRs) (15). We will

discuss two classes of viral sensing PRRs in this review. These

include TLRs and RLRs, which are important for inducing the

type I IFN response. TLRs primarily recognize viral RNA or

DNA in the endosomes, and RLRs primarily recognize viral

RNA in the cytoplasm. They play a key role in the induction of

host IFN expression (16–18). Still, another is a set of structurally

unrelated viral DNA sensors (Cyclic GMP-AMP synthase) and

IFI16 located in the cytoplasm and/or nucleus, and it also plays a

critical role in inducing the expression of host IFN (19).

Interferon is normally secreted and binds to cell surface

receptors in response to viral infection and activates a JAK/

STAT-dependent signaling cascade that produces ISG and puts

the cell in a state of resistance (20).

The prolonged infection caused by arteriviruses has a greater

association with immune evasion, mainly through the

suppression of interferon by various pathways to promote viral

proliferation and long-term infection. Clarifying the antagonism

between arteriviruses and interferon is important to understand

the pathogenesis and find relevant targets as a basis for vaccine
FIGURE 1

Interference of IFN induction and its downstream signaling pathway by Arteriviruses.
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development. Therefore, this review will summarize the

underlying immune evasion mechanisms by arteriviruses.

Arteriviruses induce mainly low
levels of IFN expression

Arteriviruses use different mechanisms to suppress interferon

responses to evade the host’s innate immune response. Early studies

have shown that PRRSV infection in pigs leads to a weak induction

of the natural immune response. Detection of interferon in alveolar

lavage fluid reveals that interferon is maintained at very low levels,

suggesting that PRRSV can interfere with IFN-I transcription

directly at the level of IFN-b gene transcription in the early stages

of infection (21–23). Before the challenge, IFN-pretreatment of pigs

in vivo reduced PRRSV-induced symptoms. However, it appears

that IFN therapy could not rescue PRRSV-infected swine from

death, but it extended survival time (24). In vitro study, the

inhibition of IFNs expression by PRRSV was similarly observed

in MARC-145 cells infected with PRRSV and PAMs cells (23, 25).

Similarly, IFN-b production in Equine endothelial cells

(EECS) was significantly inhibited after EAV infection, in

contrast to SeV infection, which stimulated high levels of IFN-

I expression, and EAV infection also significantly inhibited SeV-

induced IFN-I production (26). All of the above studies suggest

that Arteriviruses induce IFN inhibition, and the main

mechanisms responsible for this phenomenon are reviewed next.
Arteriviruses proteins inhibit the
IFN response

Different arteritis virus structural and nonstructural proteins

exercise different functions in IFN inhibition (Table 1).

ORF2, 2a, 3, 4, 5, 6, and 7 of PRRSV encode GP2, E, GP3,

GP4, GP5, M protein, and N protein, respectively (41).
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Mechanistic studies of PRRSV antagonism to type I interferon

have focused on IFN-a/b, two factors that play a major role in

the fight against PRRSV infection. At least two structural

proteins (M and N proteins) and four nonstructural proteins

of PRRSV, nsp1, nsp2, nsp11, and nsp4, have been identified as

exhibiting inhibitory effects on IFN-b promoter activation, with

nsp1 showing the strongest inhibitory effect and self-cleavage of

nsp1 during infection to produce NSP1a and NSP1b. NSP1b
can inhibit IRF3 phosphorylation and NF-kB-dependent
nuclear translocation (30, 31). Nsp4 is a 3C-like serine

protease that antagonizes type I interferon production by

cleaving mitochondria antiviral signaling protein (MAVS) and

NF-kB essential regulators (NEMO) (32, 33, 42). PRRSV nsp7

inhibits IRF7 expression, downregulates IFN and downstream

ISG expression, and promotes viral replication (38). Nsp11 can

suppress the activation of IFN-b by cleaving the mRNA of

MAVS (also known as IPS-1, Cardif, and VISA) via the

endoribonuclease domain (43). PRRSV N protein is

distributed in both cytoplasm and nucleus, suggesting that

altered localization of N protein may affect its IFNs inhibitory

activity (28). Some studies have demonstrated that N protein

prevents IFN-b induction like that of nsp2 (44). IFN-g plays an
important role in the immune response against PRRSV. The

duration of viremia and the degree of morbidity did not correlate

well, but ELISA experiments showed that N, M protein, and

nsp2 were indeed associated with PRRSV-specific induction of

IFN-g secretion by lymphocytes (27).

Among the EAV nsp, four nonstructural proteins, nsp1,

nsp2, nsp4, and nsp11, have been identified as potential

interferon antagonists. It was shown that the homolog of

PRRSV nsp1a/b, EAV nsp1, has the strongest ability to inhibit

type I IFN synthesis (26). EAV nsp2-encoded papain-like

proteinase (PLP2) inhibits Ub- and ISG15-dependent innate

immune responses (36). Similarly, EAV nsp4 can inhibit virus-

induced IFN-b production by targeting NEMO for protein

cleavage, and cleavage occurs at four sites, including E166,
TABLE 1 Arteriviruses proteins inhibit IFN downstream signaling pathway.

Arteriviruses
proteins

The molecular mechanisms References

M PRRSV-specific IFN-g secretion is correlated with N and M proteins, but the exact mechanism is unclear. (27)

N N proteins can inhibit interferon-induced elevated STAT2 levels and ISGF3 nuclear translocation, and their altered localization may
also affect the inhibitory activity of IFNs.

(28, 29)

nsp1 Inhibition of IRF3 and IkBa phosphorylation, blocking nuclear translocation of STAT1 and each signaling step upstream of NF-kB
activation, cleavage of MAVS and NEMO to antagonize interferon production

(30–35)

nsp2 nsp2 is a potential ISG15 production and binding antagonist and can inhibit Ub and ISG15-dependent innate immune responses. (36, 37)

nsp4 Targeted cleavage of NEMO and NF-kB activator (TANK) to block NF-kB signaling, cleavage of MAVS and blocking RLR signaling,
and inhibition of IFN-b promoter activation.

(33, 34)

nsp7 Inhibits IRF7 expression, thereby downregulating IFN and downstream ISG expression, and promotes viral replication (38)

nsp11 nsp11 can induce STAT2 degradation directly through the ubiquitin-proteasome degradation pathway and inhibit the NF-kB
signaling pathway by de-ubiquitination-dependent activity

(39, 40)
fr
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E171, Q205, and E349, consistent with PRRSV cleavage

sites (34).
Arteriviruses interference with host
interferon induction

Blocking the recognition of TLR-
mediated pathways

The RLRs group consisted of RIG-I, melanoma

differentiation-associated gene 5 (MDA5), and Laboratory of

Genetics and Physiology 2 (LGP2). RIG-I recognizes the

triphosphate and diphosphate at the stem end of dsRNA,

which is the hallmark of viral RNA of most RNA viruses (45).

MDA5 perceives long dsRNA, which is believed to represent the

intermediate replication product of many RNA viruses (46).

LGP2, a protein structurally related to both RIG-I and MDA5,

appears to be a cofactor for viral RNA sensing by a mechanism

that is not completely understood and likely involves making

viral RNA more accessible to RIG-I or MDA5 (47). RIG-I and

MDA5 are important sensors for IFN-I production in the

porcine innate immune system (48). RIG-1 and MDA-5 detect

specific viral RNA PAMPs, while LGP2 negatively regulates

RIG-I signaling and promotes RNA binding to MDA5 (49).

RIG-I-like receptor-mediated type I IFN production plays an

important role in the host’s defense against viral invasion (50).

dsRNA is a specific secondary structure of viral RNA detected by

RIG-I/MDA5 and induces IFN-a/b production through cascade

activation of the RLR pathway (51). Viral dsRNA can trigger

RIG-I, and the CARD domain of RIG-I interacts with the CARD

domain of MAVS, and activation of MAVS recruits multiple

downstream signaling components to the mitochondria, leading

to activation of k-B kinase inhibitor ϵ (Ikkϵ) and TANK-binding
kinase 1 (TBK1), which in turn causes IRF3 phosphorylation.

Phosphorylated IRF3 forms a dimer and translocates to the

nucleus, activating transcription of the IFN-I gene (52, 53).

PRRSV infection inhibits IFN-b production mainly by

interfering with MAVS activation in the RIG-I signaling

pathway (54). The porcine reproductive and respiratory

syndrome virus (PRRSV) 3C-like protease (3CLSP), by

contrast, cleaves MAVS in a proteasome- and caspase-

independent manner at Glu268 (E268/G269). Both cleavage

products fail to activate the type I IFN response (55). Further

studies showed that the highly pathogenic porcine reproductive

and respiratory syndrome virus (HP-PRRSV) protein nsp4

cleaves MAVS and blocks RLR signaling, and causes specific

downregulation of the MAVS, but nsp4 in the typical PRRSV

strain CH-1a has no effect on MAVS, so this may be a strategy

evolved by the virulent strain (32). Nsp11 reduces RIG-I mRNA

dependent on its endoribonuclease activity. Nsp11 inhibits IRF3

and NF-kB activity when stimulated with dsRNA analogs and
Frontiers in Immunology 04
TNF-a, respectively, suggesting that this inhibition also depends

on RLR (56).

Recent studies have shown that MDA5 senses the EAV

genome to induce IFN expression (57).
Evasion of the IRF3/7 signaling pathway

Interferon regulatory factors (IRFs) are a family of

transcription factors with 9 members identified so far. IRF4, 5,

and 6 have no substantial role in IFN regulation and are also not

described. IRF-1 and IRF-2 mRNA were expressed in multiple

cell types, whereas IRF-8 expression was restricted to myeloid

and lymphoid cell lines, and its mRNA was significantly

upregulated in response to viral infection or IFN stimulation

(58, 59). IRF-9 was originally identified as the DNA-binding

subunit of ISGF3 and was proven essential for the antiviral

response to IFN-a/b and IFN-g (60, 61). IRF-3 and IRF-7 are

closely related in their primary structure, and recent studies have

identified an important and distinct role for these two factors in

IFN-a/b gene induction in arteritis virus infection.

It has been suggested that IFN-l expression is more flexible

than IFN-a/b expression, which may allow IFN-III to be

expressed in response to a wider range of stimuli than IFN-I,

and would potentially make IFN-III expression less sensitive to

microbial evasion strategies targeting the IRF pathway (62, 63).

IRF3 is a target factor for various viruses and can impair natural

immune signaling. Most viruses inhibit IRF3 phosphorylation

and thus also IRF3 dimerization and translocation. In the

absence of IRF-3 activation and IFN-b production, alternative

pathways allow IFN-l to be induced without IRF-3 activation.

IRF-3 is a virus targeting factor and can impair innate immune

signaling. Most viruses inhibit IRF3 phosphorylation,

dimerization, and nuclear translocation. TBK1 and IKKϵ can

induce IRF3 and IRF7 phosphorylation and be affected by K63-

linked polyubiquitination (64, 65). The ubiquitin chain may

serve as a platform for the assembly of the TBK1 signaling

complex, so for TBK1, polyubiquitination of the K63 linkage

appears to be important for TLR and RLR-induced IFN

production (65, 66). Activated TBK1/IKKϵ phosphorylates

IRF3 and/or IRF7 at specific serine residues in the cell

membrane, which are subsequently transferred to the nucleus

to recruit the coactivator CBP/p300 and form a complex to bind

the IRF-3 response element of the IFN-b promoter (PRD I and

III) (67–69). Interestingly, IRF7 was induced during IFN

signaling at low levels in most cells, suggesting that IRF7 can

strongly enhance IFN production (70).

Viral proteins target TBK1 to block IFNb production by

preventing TBK1 activation from MAVS or inhibiting IRF3

activation from TBK1. Once activated, MAVS signaling

recruits multiple kinases, ubiquitin ligases, and adapters,

leading to phosphorylation and activation of potential

transcription factors involved in IFN promoter activation.
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These transcription factors, IRF factors, especially IRF3 and

IRF7, are essential for IFN induction (71, 72). In addition, IRFs

are also required for IFN induction during TLR activation.

Therefore, it is unsurprising that virally encoded IFN

antagonists can inhibit IRFs.

PRRSV nsp1 is the most potent interferon repressor protein

among the nonstructural proteins. Studies have shown that the

inhibition of type I IFN is due to PRRSV nsp1a/b blocking

dsRNA-induced activation of IRF-3. In the presence of nsp1a/b,
phosphorylation of IRF-3 and its nuclear translocation occurred

normally, but the association of IRF3 with cAMP response

element-binding protein(CBP) in the nucleus was inhibited,

thereby blocking IRF-3 activation (73, 74). Nsp4 was reported

to inhibit IRF-3-mediated activation of the IFN-b promoter, an

inhibition derived from the hydrolytic activity of the nsp4 3C-

like serine protease (75, 76). Recently, it has been shown that N

proteins can inhibit poly(I:C)-mediated IRF-3 phosphorylation

and nuclear translocation, thereby suppressing the expression of

IFN-b (44). Therefore, IRF3 can be a direct viral target to block

IFN production and a key target for vaccine development. IRF7

is another important regulator in the interferon signaling

pathway. IRF7 can inhibit the early replication of PRRSV.

While PRRSV nsp7 significantly down-regulates IRF7

expression, nsp4 and nsp5 do not down-regulate IRF7

expression. Instead, nsp11 upregulates IRF7 expression, which

may result from complex virus-protein interactions (38).

Similarly, EVA nsp1a and NSP1b mediated the inactivation

of MAVS, leading to inhibition of IRF-3 activity, which is similar

to the role of PRRSV nsp1 (77). It was also found that EAV nsp1

blocked every signaling step upstream of IRF-3, suggesting that

EAV nsp1 acts downstream of all these tested steps in this

signaling pathway and, interestingly, does not have much effect

on the nuclear accumulation of IRF-3, presumably having an

effect on the IFN-b promoter in the nucleus (26).
Blocking TLR-mediated recognition
pathway and activation of transcription
factor NF-kB

Pathogen-associated molecular patterns in viral RNAs are

recognized by various pattern recognition receptors, such as

TLR3. TLR-3, -7, -8, and -9 are all capable of inducing type I IFN

gene expression, and they exercise the function of detecting

different forms of nucleic acids. They scan the extracellular and

endosomal space to detect RNA and DNA, detect the viral

genome from extracellularly lysis viral particles and initiate

signaling cascades that lead to the secretion of IFN and other

proinflammatory molecules, such as TLR3 recognition of

dsRNA, initiating a TRIF-dependent signaling cascade (52, 78).

Suppressors of cytokine signaling (SOCS) are intracellular

family proteins involved in the negative regulation of the
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immune response (79). Lung epithelial cells can induce IFN-b
production and are the first to interact with pathogens, and

plasmacytoid dendritic cells (PDCs) can rapidly establish a

connection with TLR7 and induce IFN-I expression (80, 81).

Recent studies have also shown that SOCS1 and SOCS3 strongly

inhibit TLR7-mediated IFN-I production (82, 83) and that

PRRSV N proteins can significantly activate SOCS1 promoter

activity and induce SOCS1 expression at the protein level in

Marc-145 cells, ultimately leading to IFN inhibition (84).

Interestingly, TLR3-mediated IFN production after infection

with Herpes simplex virus 1 (HSV-1) is cell type-dependent,

with TLR3 limiting HSV-1 replication in mouse fibroblasts and

CNS-resident cells (neurons, astrocytes), whereas no such

protective mechanism is produced in mouse macrophages (85).

TLR3 interacts with TRIF by interacting with upstream

adaptors. TRIF undergoes conformational changes and recruits

the downstream TNF receptor-associated factor (TRAF)6 (86).

The kinase receptor-interacting protein-1 (RIP-1) is part of the

signaling pathways downstream of TLR3 and RIG-I. It can

interact with TRIF to induce NF-kB activation (87). In its

inactive state, the transcription factor NFkB is complexed with

its inhibitor IkB (88). Upon stimulation, IkB is phosphorylated

by the IkB kinase (IKK) complex, which is composed of two

catalytic subunits, such as IKKa and IKKb, and a regulatory

subunit, such as NF-kB essential modulator (NEMO) (89). NF-

kB regulates more than 100 genes that play key roles in

inflammation, the innate immune response, and the initiation

of adaptive immunity (90).

PRRSV nsp1 and nsp2 inhibit the NF-kB signaling pathway

to antagonize IFN-b production (91, 92). Nsp1a inhibits the

phosphorylation of IkBa, resulting in the nuclear localization of

p65 being blocked, thereby aborting NF-kB function, which is

associated with its C-terminal 14 amino acids (92). The nsp2

ovarian tumor protease (OUT) structural domain has

deubiquitination activity, and IkB degradation is a necessary

step for NF-kB activation, which can act on the IkB
polyubiquitination process to prevent its degradation and

ultimately inhibit NF-kB-mediated production of IFNs (91).

PRRSV nsp4 cleaves TRAF family member-associated NFkB
activator (TANK), which inhibits TRAF6-mediated NFkB
activation (93). PRRSV nsp4 can also block NF-kB signaling

targeting NEMO at a single locus E349 (33). Interestingly, the

cleaved fragment of NEMO (1-349) still activates IFN and NF-

kB promoter production, suggesting that nsp4 may fail to

completely prevent NEMO-mediated IFN-b activation via

cleavage at NEMO E349 (34). PRRSV nsp11 has also been

reported to inhibit the NF-kB signaling pathway in response

to deubiquitination activity (39).

EAV nsp1 inhibits IFN-b activation mainly through the NF-

kB-dependent signaling pathway, which blocks each signaling

step upstream of NF-kB activation, but nsp1 has little effect on

NF-kB nuclear accumulation. It is speculated that EAV nsp1

may affect the IFN-b promoter in the nucleus (26). It has also
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been shown that EAV Nsp4 can cleave TANK to inhibit NF-kB
expression (93).
Interference with type I IFN-
activated JAK/STAT signaling
pathway and antiviral ISGs

Interferons are normally produced and secreted upon viral

infection, and secreted IFN binds to the IFN receptor and activates

Janus kinase 1 (JAK1) and tyrosine kinase 2 (TYK2) which

phosphorylate signal transducers and activators of transcription

proteins (STAT1 and STAT2) (94). Phosphorylated STAT1 and

STAT2 form heterodimers that bind to IRF9 to form IFN-

stimulated gene factor 3 (ISGF3). ISGF3 translocates to the

nucleus and binds to the IFN-stimulated response element

(ISRE), triggering the expression of hundreds of ISGs with

antiviral functions and putting the cell in an antiviral state (20).

Antiviral ISG plays a crucial role in eliminating viral infections

(95). Many ISGs are signaling molecules or regulatory proteins in

innate and adaptive immunity, and their induction of ISGs can

further amplify and develop immune responses (including IFN

responses) (96, 97).

PRRSV inhibits the IFN-activated JAK/STAT signal

transduction and ISG expression in both MARC-145 and

PAM cells (29, 98). Further research found that PRRSV nsp1b
could block the nuclear translocation of STAT1 and significantly

inhibit the expression of ISGs (35). IFN induces IFN-stimulated

gene expression by activating phosphorylation of STAT1 and

STAT2, which can form a heterotrimer with IRF9 (ISGF3) and

translocate to the nucleus. Severe acute respiratory syndrome

(SARS) and PRRSV both interfere with the host innate immune

responses. Still, mechanisms that block nuclear translocation of

ISGF3 are different, and SARS ORF6 can block nuclear

translocation of STAT1 by sequestering KPNA2 alone (99).

However, no interaction between nsp1b and any KPNAs was

found in PRRSV-infected cells. PRRSV VR2385 can inhibit IFN-

a signaling in MARC-145 and PAMs by interfering with ISGF3

nuclear translocation, but PRRSV modified live virus (MLV)

infection of PAMs can directly activate IFN signaling, suggesting

that there may be different effects of IFN induction between the

two PRRSV strains, which may provide reference implications

for PRRSV vaccine design (35). PRRSV nsp11 can induce

STAT2 degradation directly via the ubiquitin-proteasome

degradation pathway, in which amino acid residue

K59 in nsp11 plays a key role but does not depend on

endoribonuclease activity (40). Similarly, N proteins can

inhibit interferon-induced elevation of STAT2 levels and

ISGF3 nuclear translocation (29). PAM cells are affected by

IFN-g and microbial products such as lipopolysaccharide (LPS)

and viral infection, and LPS-activated PAMs inhibit PRRSV

replication, and genes in the JAK/STAT signaling pathway were
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found to be significantly upregulated, suggesting that it might

play a key role in cellular activation (100).

Among the antiviral ISGs, the best-studied ones are ISG15, 2

‘,5’-oligoadenylate synthetases (OASs), ribonuclease L (RNaseL),

the dsRNA-activated protein kinase (PKR), p56 [ISG56,

interferon-induced protein with tetratricopeptide repeats 1

(IFIT1)], and Mx1 (Myxovirus (influenza virus) resistance 1),

and IFNs induce upregulation of transcriptional expression of

several hundred interferon-stimulated genes (101, 102). ISG15 is

a ubiquitin-like antiviral protein [59, 60]. ISG15 conjugation

(ISGylation) to substrate proteins follows a process similar to

ubiquitin conjugation (103, 104). Many viruses target STAT1

and STAT2 to inhibit the induction of ISG. ISG can inhibit

nucleic acid nuclear input and RNA and protein synthesis or

enhance viral degradation (102). ISG15 and ISGylation act in

different cellular pathways, particularly in regulating antiviral

innate immune responses. PRRSV nsp2 was previously

identified as a potential antagonist of ISG15 production and

ISGylation, overexpression of ISG15 inhibited PRRSV

replication in cell culture, and the antiviral activity of

interferon was reduced by inhibition of ISG15 binding (37).

Interestingly, the pseudoknot region of the 3’ untranslated

region (UTR) of the PRRSV genome can be recognized by

RIG-I and TLR3 and strongly induces the expression of ISGs

in PAMs, and importantly, similar structures predicted for other

arterivirus members, including EAV, LDV, and SHFV, also

show strong IFN-inducing activity (105).

The interferon-induced PKR plays an important role in

antiviral response. PKR mediates translational control by

phosphorylating the protein translation initiation factor eIF2a,
inhibiting protein synthesis and viral replication (106). The

addition inhibitor of PKR (2-AP) restored PRRSV replication

in IFN-g-treated cells (107). Research shows that PRRSV

inhibited PKR activation during its early stage infection of

PAMs (108).
Conclusion

Arteriviruses have evolved much to evade the host’s innate

immune system to better survive in the host over the long term.

The sustained low level of interferon expression is a fundamental

reason for their ability to persist. Current studies have identified

at least six viral proteins identified as IFN antagonists of PRRSV,

further understanding of the immune regulation of viruses and

strategies to evade the host immune system is necessary. The

development of antiviral drugs can be facilitated by

understanding the relationship between Arteriviruses and IFN

antagonism to identify key immune evasion proteins. Also,

understanding current antiviral strategies can enhance known

antiviral pathways and further facilitate the development of safe

and effective vaccine strains.
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