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Integrated genomic,
transcriptomic, and epigenetic
analyses identify a leukotriene
synthesis-related M2
macrophage gene signature
that predicts prognosis and
treatment vulnerability
in gliomas

Hang Ji1,2,3, Zhihui Liu2,3, Nan Wang2,3, Jiaqi Jin2,3,
Jiheng Zhang2,3, Jiawei Dong2,3, Fang Wang2,3, Xiuwei Yan2,3,
Qin Gong4, Hongtao Zhao2,3, Haogeng Sun1, Yongzhe Li3*,
Shaoshan Hu2,3* and Chao You1*

1Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China, 2Cancer
Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s
Hospital, Hangzhou Medical College, Hangzhou, China, 3Department of Neurosurgery, Second
Affiliated Hospital of Harbin Medical University, Harbin, China, 4School of Life Sciences, Nanjing
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The pathological implications of tumor-associated macrophages in the glioma

microenvironment have been highlighted, while there lacks a gene signature to

characterize the functional status and clinical implications of these cells.

Comprehensive bioinformatics approaches were employed to develop an M2

macrophage-associated gene signature at bulk-tumor and single-cell levels

and explore immunological and metabolic features. Consequently, the PI3K

pathway and fatty acid metabolism were correlated with the M2 fraction.

Further distilling the pathway members resulted in a leukotriene synthesis-

related gene signature (Macro index), including PIK3R5, PIK3R6, ALOX5,

ALOX5AP, and ALOX15B, that was primarily expressed by monocytes/

macrophages. Increased Macro index predicted IL13-induced macrophages,

and was associated with T-cell dysfunction at both transcriptional and

epigenetic levels and predicted an unfavorable outcome. Besides, the Macro

index was proportional with PAI1 at the protein level, with high levels of the

latter suggesting a decreased progression-free interval of glioblastoma.

Notably, the monocytes/macrophages in the glioma environment contribute

to the expression of immune checkpoints and the Macro index predicts glioma

responsiveness to anti-PD1 treatment. Together, our study proposed a

leukotriene synthesis-related M2 macrophage gene signature, which may
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provide insights into the role of these cells in the gliomamicroenvironment and

facilitate individually tailored therapeutic strategies for the disease.
KEYWORDS

lower-grade glioma, glioblastoma, PI3K/Akt signaling pathway, leukotrienes, M2
macrophage, tumor microenvironment
Introduction

Gliomas represent the most common types of brain

malignancy that are characterized by high morbidity and

mortality. This group of heterogeneous tumors accounts for

approximately 80% of primary brain malignancies (1–3), and

includes lower-grade glioma (LGG) that comprising WHO II and

III diffuse low grade glioma and intermediate grade glioma and

WHO IV GBM with some differences in aetiology, histology, and

molecular underpinnings (1, 4, 5). Research achievements

in gliomas culminate in the proposal of classification

schemes and molecular biomarkers with prognostic and

therapeutic implications. Histologically, gliomas are

classified as astrocytomas, oligodendrogliomas, and mixed

oligodendrogliomas based on the morphological characteristics

of the tumor cells (1). The addition of anaplasia features (mitotic

activity, microvascular proliferation, and necrosis) led to the

WHO tumor grade for glioma which is indicative of malignant

degrees (6). At the molecular pathogenesis level, the status of

isocitrate dehydrogenase (IDH) gene mutation and chromosome

arm 1p19q deletion defines three types of invasive gliomas: IDH-

mutant with 1p19q co-deleted, IDH mutant with 1p19q non-co-

deleted, and IDH wild-type glioma, greatly advancing our

knowledge of the etiology (1, 7, 8). In addition, transcriptome

subtyping of IDH wild-type glioblastoma (GBM), including

proneuronal, mesenchymal and classical, delineated an

insightful theoretical basis for the evolution of GBM subtypes

and provided vital evidence that NF1expressing macrophage/

macroglia facilitates the transformation of GBM subtype

towards worse (9, 10). Nevertheless, glioma, especially

malignant glioma, remains treatment-resistance (11). The

mainstay of treatments, including invasive surgery combined

with radiotherapy and alkylating agents, as well as newly

thriving tumor treating fields (TTF), are far from achieving

satisfactory improvements for patients with malignant glioma.

Immune checkpoint blockade (ICB) therapy, which is a landmark

in several types of tumors, is still dismally effective in the

treatment of GBM (12–14). Therefore, there remains an urgent

need to explore key molecular mechanisms in the pathological

process of glioma and to develop new molecular biomarkers for

individually tailored strategies.
02
The tumor microenvironment (TME) instigated by tumor

cells is a complex, active ecosystem in which tumor-associated

macrophages (TAMs) have content and functional superiority

over other non-tumor cells (15, 16). TAMs in glioma TME

indicate two types of cells of different origins: intrinsic microglia

and blood-derived monocytes/macrophages, with functional

consistency when interacting with glioma cells (17–19). The

TAMs in TME are dogmatically defined as pro-tumoral M2

phenotypes and anti-tumoral M1 phenotypes, and this

dichotomy is overly simplistic and a much broader repertoire of

the polarization of macrophages lays the foundation of difficulties

in designing therapies targeting M2 macrophages (20, 21).

Transcriptome-based studies further defined the M2 phenotype

at the gene expression level and identified the expression and

functional characteristics of macrophage polarization mediated by

various stimulators (22, 23). However, due to the immunological

specificity of the central nervous system, the phenotype of TAMs

in glioma TME remains loosely defined. Overall, TAMs play a

paramount role in promoting angiogenesis, tumor invasion, and

impeding antitumor immunity, the latter being closely related to

the local chronic inflammationmediated by eicosanoid derivatives

(15, 24, 25). TAMs derived and differentiated from blood

precursor cells have theoretically a complete set of eicosanoid-

metabolizing enzymes, and previous studies have emphasized the

role of prostaglandins such as PGE2 in remodeling the TME, while

the LOX pathway and leukotrienes are overlooked. Moreover, the

role of the oncogenic PI3K/Akt signaling pathway, one of the

hallmarks of GBM, in the regulation and integration of tumor

metabolism, and thus in promoting tumor development, is

gaining increasing attention (26, 27). In addition to glycolysis,

the interaction of PI3K/Akt signaling with eicosanoid metabolism

in TAMs is less understood, and exploring its pathological and

clinical significance and association with TAMs phenotype may

lead to novel therapeutic targets.

In this study, we explored the signaling pathways and gene

expression associated with the fraction and phenotype of TAMs

in glioma TME through correlation and network analysis based

on multi-omics data from multiple glioma cohorts. We

identified a gene signature linking to TAMs (Macro index)

and validated their association with the functional status of

TAMs, immune function, prognosis, and immunotherapy
frontiersin.org

https://doi.org/10.3389/fimmu.2022.970702
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ji et al. 10.3389/fimmu.2022.970702
efficacy at the bulk-tumor and single-cell levels. These results

may open attractive avenues for designing novel glioma therapy

since leukotriene synthesis plays a vital role in glioma TME, and

provide an effective mRNA metric for characterizing

alternatively activated TAMs for glioma.
Materials and methods

Sample collection

Multiple glioma datasets from WHO grade II to IV were

included in this study. Of these, the integrated mRNA expression

profile (n = 702), single nucleotide polymorphisms (SNP) (n =

825), copy number variation (CNV) (n = 1122), and methylation

(n = 685) profiles were retrieved from the UCSC Xena portal,

and clinical phenotypes, including transcriptome subtype, were

summarized by Ceccarelli et al. (28). Other glioma expression

profiles with corresponding demographics, including CGGA693,

CGGA325, CGGA301, Ducray, Gravendeel, Joo, Nutt, and

Kamoun were retrieved from the CGGA and the GlioVis data

portal (29–32). Bulk-tumor mRNA sequencing data were TPM

normalized for further analysis. The single-cell transcriptome

profile was retrieved from the TISCH database (Glioma

GSE131928 10X) (33, 34).
Consensus clustering and
sample selection

Three in silico algorithms were performed to infer the immune

infiltration, including CIBERSORT, QUANTISEQ, and XCELL

(35–38). The CIBERSORT-derived immune infiltration fraction

was used for consensus clustering. Samples with a p-value > 0.05

and cells with a fraction of 0 in over half of the samples were

excluded. Consensus clustering was employed to stratify the

immune infiltration fraction matrix (39). The maximum number

of clusters was set to 6, the clustering algorithm was ‘PAM’, and the

distance was set to ‘Pearson’. The optimal number of clusters was

determined by the proportion of ambiguous clusters (PAC)

method. Identification of core members of each cluster was based

on the R packages ‘cluster’ and ‘vegan’. Samples with silhouette

width ranked top 75% were included.
Identifying signaling pathways and gene
signature associated with M2 fractions

Gene sets of the HALLMARK (n = 50), BIOCARTA (n =

292), and PID (n = 196) were retrieved from the MSigDB

database (v7.5.1), and the GSEA software (v4.2.3) and ssGSEA

algorithms were employed to assess the pathway activity (40–

42). The correlation between signaling pathways and gene
Frontiers in Immunology 03
expression with M2 fraction was evaluated by calculating the

regression coefficient using a multivariate regression model.

Logistic regression analysis was performed to evaluate the

correlation of SNP and somatic copy number alteration

(SCNA) with the M2 fraction. The vif value of each

independent variable was adjusted to within 5 using the R

function ‘step’ to avoid the potential interactions between

independent variables. The differentially expressed genes

(DEGs) were calculated using the R packages ‘limma’ and

‘edgeR’ (43, 44). Functional enrichment analysis was

performed using the web tool Metascape (45, 46). We defined

the Macro index as the average log2 transformed TPM value of

PIK3R5, PIK3R6, ALOX5, ALOX5AP, and ALOX15B. The

ranked gene list for GSEA was sorted according to logFC

values or Spearman rho of genes of interest with Macro index.
scRNA-seq data analysis

The expression of immune checkpoints at the single-cell scape

in multiple datasets was integrated using the webtool TISCH. The

R package ‘Seurat’ was employed for the management of sample

quality control, normalization, data dimensionality reduction,

clustering, and re-clustering of the scRNA-seq expression profile

(GSE131928 10X) (47). Identification of the cell identity was based

on the CellMarker database and signature genes summarized by

Neftel et al. (48). The expression profile of the Mono/Macro

subcluster was extracted, and Mono/Macro cells were split into

Macro index-high and -low groups. DEGs (Macro index-high

vs. -low) were calculated using ‘Seurat’, and transcription factor

enrichment analysis was performed using the web tool Metascape

based on the TRRUST database (49). Functional enrichment

analysis was performed using Cytoscape plugins ‘Bingo’ and

‘EnrichmentMap’. To evaluate the association between the

Macro index and function state of TAMs, the top and bottom

150 DEGs of macrophages (Supplementary File 1) under different

culture conditions were used as the corresponding gene

signatures, including glucocorticoids (GC), IL-10, IL-13, IL-4,

and PGE2 (23).
Evaluating immunological characteristics
and potential ICI responsiveness

The anti-tumor immune response was conceptually divided

into 7 stepwise events, including step1. Cancer antigen releasing,

step2. Cancer antigen presentation, step3. T cell priming and

activation, step4. Trafficking of immune cells to tumor, step5.

Infiltration of immune cells to tumor, step6. Tumor call

recognition, and step7. Tumor cell killing (50). The activity of

each stepwise event was assessed using the webtool TIP.

Macrophage functional status gene signature was defined as

the top 150 up- or down-regulated genes in macrophages
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cultured under specific conditions for 72h (Supplementary

File 1). T cell dysfunction gene signatures were generated

based on the shRNA screen and have been summarized by

Jiang et al. (51). Positive hit genes were defined as the

upregulated genes and negative hit genes were the

downregulated genes. The Spearman rho between Macro index

and positive or negative hit genes were used as input of ROC

analysis for evaluating the concordance of Macro index with

macrophage functional status and T-cell dysfunction. Besides,

sample responsiveness to immune checkpoint inhibitors (ICI)

was predicted using the TIDE algorithm (51). The Submap

algorithm was also employed to classify the sensitivity of

glioma samples to ICI treatment, as referenced by a cutaneous

melanoma cohort receiving PD-1 and CTLA4 inhibitors (52,

53). Another uroepithelial tumor cohort with a corresponding

response to PD-L1 inhibitors was introduced to this study (54).

Samples were split into Macro index-high and -low groups

following the above methods. The composition of patients

with progressive disease (PD), stable disease (SD), partial

response (PR), and complete response (CR) included in the

two groups was compared.
Statistics

All statistics were performed using R software (v4.1.1). Log-

rank tests and the Cox-ph model were used to classify survival

differences. Two-tailed Wilcoxon test was employed to compare

the difference in the immune infiltration fraction, ssGSEA scores

of signaling pathways, and gene expression. The correlation

between gene expression, mutation, or SCNA with M2 fraction

was assessed using constructing multivariate and logistic

regression models or Spearman correlation tests. In the

regression analysis, two or more significant regression

coefficients with the same positive or negative sign were

considered statistically significant. Fisher’s exact test was

employed to compare the composition ratios. In the absence of

a specific statement, a p-value < 0.05 was considered significant.
Results

Combined M2 macrophage fraction
and histology defined three
groups of gliomas

First, we re-clustered LGG and GBM samples based on M2

fractions estimated by CIBERSORT, and two clusters were

identified by the Consensus cluster (Figures 1A, S1A-B). The

cluster with significantly increased M2 macrophage fraction was

defined as cluster 1, and the other cluster 2. Ranking the

silhouette widths of samples in descending order, the top 75%

of samples were selected from each cluster (cluster 1, n = 283;
Frontiers in Immunology 04
cluster 2, n = 171) for further analysis (Figure 1B). Cluster 1 of

the TCGA cohort is comprised of 132 GBM and 151 LGG, which

differ significantly in pathogenesis. Thereafter, cluster 1 was

further divided into two subgroups, namely Macro1 (GBM)

and Macro2 (LGG). On this basis, the TCGA glioma samples

were split into three subgroups (Macro1, n = 132, GBM; Macro2,

n = 151, LGG; and Macro3, n = 171, LGG), with Macro1 and

Macro2 containing comparable M2 macrophages, and Macro3

the least (Figures 1C, S1C). Following the same procedure, we

identified cluster 1 and cluster 2 in the Rembrandt and

CGGA693 cohorts. Thus, the GBM samples in cluster 1, the

LGG in cluster 1, and the LGG in cluster 2 were defined as

Macro 1, Macro 2, and Macro 3, respectively (Supplementary

File 2).

The clinical features between groups were exhibited

(Figure 1D and Table 1). The transition of transcriptome

subtypes from Classical (CL) and Mesenchymal (ME)

dominance of Macro1 to Proneural (PN) and Neural (NE)

dominance of Macro3 was found. Although Macro2 and

Macro3 were both LGG, Macro2 had an increased proportion

of WHO grade III tumors (58.94%, fisher’s exact p = 0.00004)

(Table 1). As expected, Macro1, Macro2, and Macro3 differed

significantly in OS and PFI, where Macro1 had the most

unfavorable prognosis (Figures 1E, S1D).
Signaling pathways correlated with
M2 fractions

Next, we explored the signaling pathways affecting the M2

fraction. The gene expression profiles were converted into the

HALLMARK, BIOCARTA, and PID signaling pathway matrices

using the ssGSEA algorithm. Consequently, the FA metabolism,

PI3KCI pathway, and integrin2 pathways were significantly

correlated with the fraction of M2 macrophage in Macro1 and

Macro3 (Figure 2A). Consistently, Macro1 had increased

ssGSEA scores of PI3K signaling pathway and FA metabolism

than Macro3 (Figure 2B). Besides, samples were also split into

high, median, and low groups based on the M2 fraction, and the

ssGSEA scores of the PI3K pathway and FA metabolism were

increased in the macrophage-high group in Macro1 (Figure

S2A), corroborating an association between the PI3K pathway

and FA metabolism with the M2 macrophage. To further

demonstrated the correlation between the PI3K pathway and

M2 macrophage, members of the PI3K pathway were collected

by massive literature search (Supplementary File 3). The

mutation frequency of PTEN, PIK3R1, PIK3CA, and EGFR

differed significantly between groups (Fisher’s exact test p <

0.0001), and the mutation of PTEN and EGFR was correlated

with M2 fraction (Figures S2B, S2C). As expected, the frequency

of SCNA in EGFR and PTEN decreased fromMacro1 to Macro3

(Figure S2D), in line with the pro-tumoral role of dysregulated

PI3K pathway. We systemically screened genes with significant
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differences in SCNA frequency between groups (Fisher’s exact

p < 0.05) and exhibited the association between SCNA and M2

fraction (Figure S2E). For example, the M2 fraction was

positively correlated with copy number gain of EGFR, AKT2,

and PIK3CA and copy number loss of PTEN, AKT1, and

ERBB2, while negatively associated with copy number loss of

AKT2 and MTOR. The association between gene SCNA,

expression, and their correlation with M2 fraction was

summarized (Figure 2C). We found that copy number gain

events that were positively associated with the M2 fraction

tended to enrich in Macro1, while copy number loss events

negatively associated with M2 tended to enrich in Macro3,

indicating differential molecular mechanisms associated with

the M2 fraction. In terms of gene expression, PIK3R5 was

positively correlated with the M2 fraction across groups and

AKT1 was negatively correlated with M2 in Macro1 and Macro3
Frontiers in Immunology 05
(Figure 2D). Besides, the association between several genes and

M2 was group-specific, such as PIK3R3, PIK3C2A, ERBB2,

and PIK3CA.

Rewired FA metabolism also plays a vital role in remodeling

the TME, which has been underestimated previously. We

collected and exhibited the expression of genes involved in the

de novo FA synthesis, FA uptake, and eicosanoid metabolism

between groups (Supplementary File 3). As a result, Macro1 had

significantly downregulated genes involved in the de novo FA

synthesis, particularly ACACA, FASN, SCD, and SREBF1/2, and

upregulated genes involved in FA uptake, such as CD36,

SLC27A3, FABP5, and FABP7 (Figures S3A, S3B), while the

opposite was true for Macro3, possibly indicating the

heterogenous FA sources between glioma groups. Since

eicosanoid metabolism as a branch of FA metabolism is

involved in the production of many inflammatory mediators,
B

C

D

E

A

FIGURE 1

The classification of gliomas. (A) The abundance of estimated immune infiltration of glioma clusters. Five types of cells including dendritic cells
activated, dendritic cells resting, T cells CD4 memory activated, T cells CD4 naïve, and T cells gamma delta were excluded for low content.
(B) The silhouette width for the selection of core samples of each cluster. (C) Comparison of the fraction of macrophages between glioma
groups. (D) Association of the glioma groups with prevalent clinicopathological biomarkers. (E) The survival differences between glioma groups.
***p < 0.001. ns, non significant.
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TABLE 1 Comparison of clinical features between subtypes.

Term Macro1 Macro2 Macro3 P value

Cohort TCGA

Age 59.28 ( ± 14.02) 45.95 ( ± 13.47) 40.11 ( ± 12.57) < 2.2E-16

Gender

Male 88 (66.67%) 85 (56.29%) 98 (57.31%)

Female 44 (33.33%) 66 (43.71%) 73 (42.69%) 0.15

Histology

Astrocytoma 61 (40.40%) 44 (25.73%)

Oligoastrocytoma 33 (21.85%) 55 (32.16%)

Oligodendroglioma 42 (27.81%) 58 (33.92%)

Glioblastoma 132 (100%) 0.0097a

WHO grade

WHO II 47 (31.13%) 93 (54.39%)

WHO III 89 (58.94%) 64 (37.43%)

WHO IV 132 (100%) 3.732E-05a

Transcriptome subtype

Classic 40 (30.30%) 21 (13.91%) 2 (1.17%)

Neural 6 (4.55%) 12 (7.95%) 58 (33.92%)

Proneural 16 (12.12%) 49 (32.45%) 70 (40.94%)

Mesenchymal 57 (43.18%) 20 (13.25%) 2 (1.17%) < 2.2E-16

Cohort Rembrandt

Age 55-59 40-44 35-39

Gender

Male 62 (54.39%) 36 (59.02%) 41 (50%)

Female 37 (32.46%) 12 (19.67%) 32 (39.02%) 0.1116

Histology

Astrocytoma 23 (37.70%) 12 (14.63%)

Oligodendroglioma 12 (19.67%) 31 (37.80%)

Mixed 2 (3.28%) 1 (1.22%)

Glioblastoma 114 (100%) 0.001111a

WHO grade

WHO II 23 (37.70%) 46 (56.10%)

WHO III 30 (49.18%) 22 (26.83%)

WHO IV 114 (100%) 0.009657a

Cohort CGGA693

Age 48.39 ( ± 13.49) 38.26 ( ± 10.13) 40.11 ( ± 9.25) 2.2E-16

Gender

Male 58 (61.70%) 64 (60.38%) 21 (58.33%)

Female 36 (38.30%) 42 (39.62%) 15 (41.67%) 0.8638

Histology

Astrocytoma 34 (32.08%) 10 (27.78%)

Anaplastic astrocytoma 53 (50%) 12 (33.33%)

Oligodendroglioma 4 (3.77%) 1 (2.78%)

Anaplastic oligodendroglioma 13 (12.26%) 12 (33.33%)

Anaplastic oligoastrocytoma 2 (1.87%) 1 (2.78%)

Glioblastoma 94 (100%) 0.05901a

WHO grade

WHO II 38 (35.85%) 11 (30.56%)

WHO III 68 (64.15%) 25 (69.44%)

WHO IV 94 (100%) 0.6858a
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D E
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A

G

FIGURE 2

Resolving signaling pathways correlated with M2 fraction using multivariate regression analysis. (A) Correlation between M2 fractions and the
538 HALLMARK, BIOCARTA, and PID signaling pathways. Regression coefficients that were significant in at least two independent algorithms
were marked. (B) Comparison of the ssGSEA score of the PID PI3KCI pathway and HALLMARK FA metabolism between groups. (C) Evaluation of
the correlation between genes with significant copy number variants in the PI3K pathway and M2 fraction based on logistic regression. The
colors represent the regression coefficients between a certain type of SCNA of a gene and the M2 fraction, with red being positive and blue
being negative. The size of the bubble represents the frequency of SCNA. The area of the sector indicates the distribution of this type of SCNA
of a gene in each group. (D) Assessing the correlation between the mRNA expression of PI3K pathway members and M2 fraction using
multivariate linear regression. We determined results with significant and consistently positive and negative regression coefficients in two or
more algorithms were statistically significant. (E, F) The correlation between FA metabolism genes and M2 fraction in Macro1 and Macro3.
Colors represent the log2FC (Macro1 vs. Macro3). (G) Functional enrichment analysis of FA metabolic genes that are significantly associated with
the M2 fraction in each group. *p < 0.05, **p < 0.01, ***p < 0.001. ns, non significant.
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we also exhibited the differences in eicosanoid metabolic-related

gene expression between groups (Figure S3C). The expression of

the PLA family, which generates AA through hydrolysis, differs

between groups. For example, the expression of PLA2G4A,

PLA2G2A, and PLA2G5 was significantly increased in

Macro1, while the opposite was true for PLA2G6, PLA2G12A,

and PLA2G4C. In terms of FA metabolic genes significantly

associated with M2 fractions, a comparable proportion was

found in genes involved in eicosanoid metabolism between

groups (Macro1 8/12, Macro2 8/11, and Macro3 6/8), higher

than that of FA synthesis and uptake (Figure S3D), suggesting

that the eicosanoids metabolism was indeed related to the

abundance of TAMs. Notably, we exhibited the types of these

genes, their expression, and their regression coefficients with the

M2 fraction. In Macro1, genes including ALOX5, ALOX5AP,

and ALOX15B were upregulated and positively correlated with

M2, and ALOX12B seemed to be a negative regulator that has

been downregulated (Figure 2E). Interestingly, PTGS2, an

inducible COX enzyme, was negatively correlated with the M2

fraction. There were few intersections of genes correlated with

M2 in Macro1 and Macro3, except for ALOX15B/12B

(Figure 2F), possibly indicating a functional transition of M2

macrophages in different classes of gliomas, with macrophages

relying on ALOX15B for leukotriene synthesis in Macro3, which

represents the lower grade, and ALOX15B and ALOX5/

ALOX5AP in the higher grade. From a holistic perspective,

functional enrichment analysis found that FA-metabolism

associated genes upregulated in Macro1 were significantly

enriched in leukotriene (ALOX5/ALOX15B/DPEP1/PTGR1)

and prostaglandin (PLA2G4A/PLA2G5/PTGS1/PTGS2/

PTGR1) synthesis, while in Macro3, only PTGDS, PLA2G6,

and PNPLA3 were involved in the eicosanoid metabolism

(Figure 2G), suggesting that genes involved in leukotriene

synthesis were remarkably altered between low- and high-

grade glioma.
The intersection of PI3K signaling and FA
metabolism defines M2 and leukotriene
synthesis-related gene signature

Several studies revealed the interaction between the PI3K

signaling and FA metabolism (24, 25), we, therefore, addressed

such association in glioma. The correlation of PI3K pathway

members with FA metabolism-related genes was calculated

using a multivariate linear regression model and genes that

were significantly associated with M2 fraction were of

particular interest. Genes significantly correlated with M2-

related eicosanoid metabolism genes were mainly those

encoding different subunits of PI3K (p < 0.0001) (Figure 3A).

For instance, PIK3R5 was positively correlated with leukotriene

metabolic genes like ALOX5, ALOX5AP, and ALOX15B. In

addition to leukotriene metabolic genes, PDK1 was also
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correlated with PTGS2, which was shown to be negatively

correlated with the M2 fraction. As Macro2 was a subset of

LGG with increased M2 fraction when corrected for WHO

grade, histology, and transcriptome subtype, the increased

expression of PIK3R6 remained significant (Figures S4A-C).

Besides, Spearman analysis showed a sparse association of

PTGS2 and ALOX12B with PIK3R5/6, ALOX5/5AP/15B

(Figure 3B). Therefore, we proposed that PIK3R5/6, ALOX5/

5AP/15B comprised of an M2-related gene network associated

with leukotriene metabolism (Figure S5A). In evaluating the

association of these genes with FA metabolism pathways, we

found that PIK3R6 was correlated with only a few pathways,

including AA and glycerol metabolism, in Macro1, but with

most FA metabolism pathways in Macro3 (Figures 3C-E),

suggesting different levels of involvement of PIK3R6 in FA

metabolism between groups. The opposite was seen in the

correlation of ALOX15B with FA metabolism and immune

pathways (Figures 3C-E, S5B-E). Thereafter, we defined the

average expression of PIK3R5/6, ALOX5/5AP/15B as an

mRNA metric (Macro index), which was significantly

associated with the M2 fraction (Figure S5F). GSEA found that

inflammation-related signaling pathways such as inflammatory

response, allograft rejection, and TNFA signaling were

correlated with Macro index across groups (Figure 3F), while

the correlation between signaling pathways such as angiogenesis,

TGFB, glycolysis, etc. and Macro index was differentiated.

Together, these results proposed an M2 and leukotriene

synthesis-associated gene signature, and the differential

regulation mechanisms for this network among glioma groups.
Differences in anti-tumor immune
responses in glioma groups and the
association with Macro index

The anti-tumor immune response is critical in influencing

tumor outcome and has been artificially defined as several step-

wise events for quantitative assessment. In general, Macro1

scored higher in the recruitment of immune cells but was less

active in T-cell activation and tumor cell killing than Macro2

and Macro3 (Figure S6A). We enumerated the expression and

methylation of genes involved in T-cell activation (step3),

immune cell infiltration into tumors (step5), and tumor cell

killing (step7), and found that most of the differences in gene

expression converged on their methylation levels (Figure 4A).

However, there were exceptions, for example, the methylation

levels of EZH2 did not differ significantly between groups and its

differential expression may be regulated by factors associated

with the Macro index (Figure S6B). The overall expression of

genes that play either positive or negative roles in steps 3, 5, and

7 of the anti-tumor immune response were significantly

increased in Macro1 (Figure 4B), suggesting that the activated

immune response in Macro1 was accompanied by enhanced
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inhibitory mechanisms. The overall methylation level of the

genes between groups was opposite to their expression level

(Figure 4C), suggesting a role for methylation in regulating the

immune response, and the Macro index was significantly

negatively correlated with gene methylation level (Figure 4D).
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Similarities were found between the association of Macro index

with immune responses in each group, positively correlating

with immune cell recruitment but negatively correlating with T

cell activation and tumor cell killing (Figures S6C, D), suggesting

an active but ‘ineffective’ immune response.
B C

D E

F

A

FIGURE 3

Association of PI3K signaling pathway members with FA metabolic genes that significantly correlated with M2 fraction. (A) The correlation
between PI3K pathway members and FA metabolic genes was evaluated using a multivariate regression model at the significance level of p <
0.0001. Bubbles indicate that the regression coefficients of the two are significant, red indicates positive regression coefficients and blue
negative. Horizontal or vertical lines mark PI3K members or FA metabolic genes that are significantly correlated with the M2 fraction.
(B) Spearman correlation analysis of candidate genes that were likely to form a gene network. (C-E) Correlation of PIK3R5/6, ALOX5/5AP/15B,
and KEGG lipid metabolism-related signaling pathways in each group. (F) GSEA analysis determines signaling pathways that affect the M2-
related gene network based on the HALLMARK gene sets. The input pre-ranked gene list is a ranked list of genes determined by the Spearman
rho of all human genes with the Macro index.
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The association between the Macro
index and the functional state of TAMs

Since the Macro index correlated with the M2 fraction, we

proceeded to interrogate its association with the functional

status of TAMs. TAMs were loosely defined as M1 and M2

phenotypes, and recent studies have shown the complexity of

functional states of macrophages induced and activated by

different stimulators (23). We defined the positive and

negative hit genes as the top and bottom 150 DEGs of

macrophages under each condition (Supplementary File 1) and

determined whether the Macro index predicted positive or
Frontiers in Immunology 10
negative hit genes. We found that the macro index performed

better in predicting macrophages induced by IL13, IL4, and

HDL, with similar efficiency between glioma groups

(Figures 5A-D). From a single-cell perspective, genes

comprised of the Macro index were mainly expressed by

monocytes and macrophages (Mono/Macro) in glioma (Figure

S7A). We extracted the expression profile of monocytes/

macrophages and grouped the monocytes/macrophages

according to the median Macro index. As a result, the Macro

index-high group was mainly transcriptionally regulated by NF-

KB and STAT3 (Figures S7B, C), corroborating that STAT3

induces the immunosuppressive phenotype of glioma TAMs
B

C

D

A

FIGURE 4

Immunological characteristics associated with Macro index-based groups. (A) Expression, methylation of immune-related genes and correlation
with Macro index. Genes assigned to the TIP step3 (T cell priming and activation), step5 (infiltration of immune cells into cancer), and step7
(cancer cell killing) were included. (B) The overall expression of immune-activating and immune-suppressing genes in each group. (C) The
overall methylation levels of these genes in each group. (D) Spearman correlation analysis of the Macro index with the overall gene methylation
level. ***p < 0.001.
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FIGURE 5

Association between the Macro index and the TAM phenotypes. (A) The consistency between the Macro index and gene signatures of TAM
phenotype. Cells stimulated with GMCSF for 72 hours were M0 macrophages, and positive cells are cells cultured for 72 hours under different
conditions after GMCSF-induced differentiation. Genes defined as positive or negative hits were the top 150 up- or down-regulated in the
positive vs. M0 group, respectively. The ROC curves measure the performance of the Macro index in the prediction of the positive or negative
hit genes based on the significant Spearman rho of the two. (B-D) The efficiency Macro index in predicting positive and negative hit genes
induced by IL13, IL4, and HDL in each group. (E, F) Enrichment analysis of the biological processes of DEGs in Mono/Macro cells of the Macro
index-high and Macro index-low groups. The color of the bubbles is inversely proportional to the q value of the enrichment score. (G) The
prediction of T cell dysfunction-related gene signatures by the Macro index.
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(55). Besides, the Macro index-high group had increased

expression of CD163, as well as other macrophage alternative

activation-related gene signatures (Figure S7D). Functional

enrichment analysis found that genes upregulated in the

Macro index-high monocytes/macrophages mainly enriched in

BPs including wound healing, chemotaxis, and response to

stimulus (Figure 5E). Genes upregulated in the Macro index-

low group were mainly involved in the inflammatory response

(Figure 5F). Moreover, recent studies based on the shRNA

screen have identified genes involved in T cell dysfunction.

Using ROC curves, we found that the Macro index gave the

best performance in predicting ICB resistance (anti-CTLA4), as
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well as MDSC and M2 (Figure 5G). Therefore, these results

highly suggested that the Macro index was associated with an

immunosuppressive M2 phenotype of TAMs, and was involved

in the T cell dysfunction.
The prognostic significance of the
Macro index

Then, we explored the prognostic significance of the Macro

index. As a result, K-M analysis showed that an increased Macro

index predicted decreased OS and PFI in both Macro2 and
B

C

D E

A

FIGURE 6

The prognostic significance of Macro index-based groups. (A) The differences in OS and PFI between the Macro index-high and -low groups
based on the TCGA cohort. (B, C) The prognostic significance of the Macro index as well as other immune-related gene signatures in GBM and
LGG of multiple cohorts. The Gray box represents statistically insignificant. CTL, cytolytic T lymphocyte; CYT, cytolytic activity; MHC, major
histocompatibility complex; TIS, T cell inflammation signature. (D) Comparison of the scores of immune gene signatures in GBM patients that
were early relapsed (PFI < 6 months) and late relapsed (PFI > 12 months). (E) Comparison of the scores of immune gene signatures in LGG
patients that were early relapsed (PFI < 5 years) and late relapsed (PFI > 5 years). *p < 0.05, **p < 0.01, ns, non significant.
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Macro3 (Figure 6A), thus an unfavorable outcome in LGG

(Figures S8A-C). From a broader perspective, the Macro index

was a robust risk prognostic factor for LGG, which performs

comparably to other immune-related gene sets, but not for GBM

(Figures 6B, C). In addition, the GBM samples were split into

early (PFI < 6 months) and late (PFI > 12 months) relapse

groups. Macro index, as well as several other immune-related

indicators, such as CTL, CYT, and TIS, were significantly

decreased in the late relapse group, suggesting an association

between Macro index and disease progression (Figure 6D).

Notably, the LGG was split into two groups based on the PFI

and the Macro index was the only immune-related biomarker

that may indicate PFI beyond 5 years in LGG (Figure 6E).

Further at the protein level, we found that the Macro index was

positively correlated with PAI1 (Spearman rho = 0.286, p =

0.015), and GBM patients with decreased PAI1 had prolonged

PFI (Figures S8D, E). Together, these results indicate that the

Macro index was a robust prognostic biomarker for LGG, and its

clinical implication in GBM needs further exploration.
The Macro index was associated with
ICI responsiveness

M2 macrophages are vital in remodeling the TME and

frustrating the anti-tumor immune response (56, 57),

therefore, we investigated the relationship between the Macro

index and the immune checkpoint blockade that aimed at

reviving the antitumor immune response by relieving the

inhibition of cytolytic T lymphocyte by TME. Integration of

multiple glioma single-cell expression profiles revealed that

considerable immune checkpoints were expressed by

monocytes/macrophages in the glioma TME (Figure 7A),

which suggested that TAMs in the glioma TME may impede

the anti-tumor immune response through immune checkpoints.

TIDE provides a computational framework for assessing tumor

immune evasion, i.e., induction of T-cell dysfunction in tumors

with high CTL infiltration and prevention of T-cell infiltration in

tumors with low CTL infiltration (51). Evidence suggested that

gliomas, especially LGG, have little T-cell infiltration and

abundant TAMs and are therefore lymphocyte-depleted or

immune-quiet tumors (58). In our context, the Macro index

was positively correlated with T-cell dysfunction and negatively

correlated with T-cell exclusion (Figure S9), indicating that

induction of T-cell dysfunction was the predominant mode of

immune evasion in samples with an increased Macro index.

Consistently, samples with elevated Macro index and TIDE T-

cell dysfunction scores scored higher in cytolytic activity

(Figure 7B), and the Macro index-high group had decreased

TIDE score (Figure 7C), characterizing higher levels of

antitumor activity with lower levels of tumor immune evasion.

Notably, TIDE predicted that a greater proportion of patients in
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the Macro index-high group were likely to respond to ICI

(fisher’s exact p = 0.012) (Figure 7D). Although we have

shown that increased Macro index was strongly associated

with anti-CTLA4 resistance, unsupervised machine learning

algorithms suggested that these samples may still benefit from

anti-PD-1 treatment (Figure 7E). As an indirect testimony to the

significance of the Macro index in facilitating the application of

ICI therapy, a similar approach was employed to stratify the

uroepithelial carcinoma cohort that received ICI treatment, and

the proportion of patients with stable disease (SD) after anti-

PD1 therapy was significantly higher in the Macro index-high

group (fisher’s exact test p = 0.023) (Figure 7F). Taken together,

these results indicated that the Macro index showed promise for

facilitating the application of PD-1 antibodies in glioma, which

deserves further investigation.
Discussion

The importance of TAMs in the glioma TME cannot be

overstated. With the rise of ICI therapy, there has been an

increasing interest in the immunological properties of glioma

TME (57). TAMs are involved in the failure of the anti-tumor

immune response by promoting the formation of an

immunosuppressive TME (15, 16), which makes them one of

the sizzling therapeutic targets. Our knowledge of glioma TAMs

remained at the M2 phenotype, a category that encompasses

several functional states, which has hindered the development of

TAMs-targeting therapies. Furthermore, recent studies have

found that the metabolic and functional states of immune cells

are conjugated and that alterations in lipid metabolism have

important implications for the TME (24–26, 59). This has

inspired the exploration of the association between the lipid

metabolism of TAMs and the immunological properties of the

glioma TME.

Several studies highlighted the impact of the PI3K/Akt

pathway on macrophages. For example, advanced oxidative

protein products inhibit autophagy by activating the PI3K/

AKT/mTOR pathway, leading to macrophage dysfunction and

impaired M1 polarization (60). Also, PM2.5 activates

macrophages in a PI3K/Akt signaling-dependent manner. Akt

is essential for the IL-4-induced M2 polarization of macrophages

and the deficiency of TSC attenuates such a program by

regulating mTOR (61). Particularly, TSC-deficient bone

marrow-derived macrophages were impaired in the induction

of Arg1, Fizz1, and Ym1 by IL-4 (62). Therefore, the PI3K/Akt

signaling plays a role in macrophage M2 polarization. The PI3K/

Akt signaling pathway also induces increased levels of FA b-
oxidation in M2-type macrophages under chronic inflammatory

conditions, thereby maintaining sustained energy expenditure

(26). However, TAMs in the GBM TME may not have increased

mitochondrial b-oxidation compared to LGG, as we found the
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FIGURE 7

Association between the Macro index and ICI responsiveness. (A) Expression of immune checkpoints by different types of cells in the glioma
TME at the single cell scope. (B) Association between the Macro index, TIDE T cell Dysfunction score, TIDE T cell Exclusion score, and CYT.
Spearman rho measures the correlation between Macro index with Dysfunction and Exclusion scores. (C) TIDE score between Macro index-
high and -low groups of TCGA glioma. (D) Distribution of predicted ICI responders and non-responders between the Macro index-high and
-low groups. (E) Sample responsiveness to anti-PD1 or anti-CTLA4 was evaluated using the unsupervised Submap algorithm. (F) Macro index-
based group in predicting the ICI benefit of the uroepithelial carcinoma sample. SD, stable disease; PR, partial response; PD, progression
disease; CR, complete response. **p < 0.01.
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expression of CPT1A/B/C was significantly reduced in Macro1.

Furthermore, the relatively reduced FA b-oxidation in

macrophages of the glioma TME may lead to the greater shunt

of FA to phospholipids and then AA, the substrate of

eicosanoids, and overexpression of lipid carriers should also

allow for a greater influx of exogenous FAs or AA, making

macrophages to be vehicles for tumor shaping of TME.

The interaction between PI3K/Akt signaling and eicosanoids

is less characterized. TongWG et al. reported that LTB4 activates

PI3K/Akt signaling and the blockade of the PI3K pathway using

wortmannin attenuated LTB4-mediated tumor cell proliferation

(63). Likewise, PGE2 promotes tumor cell invasion and

metastasis in a PI3K/Akt-dependent manner (64). Therefore, it

appears that eicosanoid derivatives promote various malignant

behaviors of tumor cells via the PI3K/Akt signaling pathway.

Nevertheless, insufficient evidence is found for direct regulation

of LTs production by the PI3K/Akt pathway. Nikos Koundouros

et al. demonstrated that mutant PIK3CA facilitates the

production of AA and subsequently eicosanoids through

activating PI3K/Akt/PLA2 axis (65). Zhou et al. also reported

an association between the PI3K/Akt signaling pathway and the

expression of ALOX5 in breast cancer (66). Mechanistically,

PI3K/Akt signaling regulates the activity of multiple FA

synthesis and transport enzymes, thereby funding anabolism

(26, 27). PLA2 is the main enzyme that dissociates AA from

phospholipids when cells encounter a stimulus resulting in

increased intracellular Ca2+ (67). Gimenes et al. reported that

gCdcPLI1 inhibits the activity of PLA2 in a PI3K/Akt dependent

manner, possibly by interfering with the expression of Akt1/3

and PI3KR1 (68). Besides, PI3K also funds the activity of

Crotoxin B, a catalytically active subunit IIA sPLA (69). These

results are not yet sufficient to demonstrate a regulatory

relationship between the PI3K signaling pathway and

leukotriene production, and we raise the possibility by

correlating the PI3K signaling pathway with the alternative

activation of TAMs and eicosanoid metabolism.

The Macro index comprised of PIK3R5, PIK3R6, ALOX5,

ALOX5AP, and ALOX15B serves as a valid prognostic

biomarker for gliomas, especially LGG. Macro index is not a

valid prognostic predictor for GBM, although abnormalities in

the PI3K signaling pathway are present in over half of GBM (70).

This may be related to the consensus that it is mainly the

deletion of PTEN or abnormal activation of RTKs that

accelerates the development of GBM. Although PIK3R5 and

PIK3R6 are involved in the encoding of regulatory subunit of the

class I PI3K gamma complex, their weight in the Macro index is

diluted by three other genes related to leukotriene synthesis,

whose impact on the GBM microenvironment is not yet known.

Interestingly, we did not directly screen for genes of prognostic

value, thus these results preliminarily confirmed the important

role of the PI3K/Akt pathway and leukotrienes in glioma.

Notably, we found that the Macro index-high group expressed
Frontiers in Immunology 15
more immune checkpoints and was characterized by

dysfunction of CD8 T cells. Decreased TIDE scores in the

Macro index-high group may indicate reduced levels of CD8 T

cell dysfunction as well as immune evasion, as we have shown

that the Macro index was positively correlated with T cell

dysfunction score. Overall , Macro index acts as an

inflammatory biomarker of the glioma microenvironment and

is associated with the recruitment of multiple immune cells.

However, M2-type polarization of macrophages and release of

leukotrienes in this type of TME hindered the function of

effector T cells, which may be one of the reasons that the

Macro index is associated with ICI responsiveness in gliomas.

Therefore, leukotriene synthesis and alternative activation of

TAMs characterized by the Macro index are essential for the

regulation of immunity in glioma TME where various

factors intermingle.
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