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Currently, breast cancer (BRCA) has become the most common cancer in the

world, whose pathological mechanism is complex. Among its subtypes, triple-

negative breast cancer (TNBC) has the worst prognosis. With the increasing

number of diagnosed TNBC patients, the urgent need of novel biomarkers is

also rising. Cyclin-dependent kinase inhibitor 2A (CDKN2A) has recently

emerged as a key regulator associated with ferroptosis and cuproptosis (FAC)

and has exhibited a significant effect on BRCA, but its detailed mechanism

remains elusive. Herein, we conducted the first converge comprehensive

landscape analysis of FAC-related gene CDKN2A in BRCA and disclosed its

prognostic value in BRCA. Then, an unsupervised cluster analysis based on

CDKN2A-correlated genes unveiled three subtypes, namely cold-immune

subtype, IFN-g activated subtype and FTL-dominant subtype. Subsequent

analyses depicting hallmarks of tumor microenvironment (TME) among three

subtypes suggested strong association between TNBC and CDKN2A. Given the

fact that the most clinically heterogeneous TNBC always displayed the most

severe outcomes and lacked relevant drug targets, we further explored the

potential of immunotherapy for TNBC by interfering CDKN2A and constructed

the CDKN2A-derived prognostic model for TNBC patients by Lasso-Cox. The

21-gene–based prognostic model showed high accuracy and was verified in

external independent validation cohort. Moreover, we proposed three drugs

for TNBC patients based on our model via targeting epidermal growth factor
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receptor. In summary, our study indicated the potential of CDKN2A as a

pioneering prognostic predictor for TNBC and provided a rationale of

immunotherapy for TNBC, and offered fresh perspectives and orientations

for cancer treatment via inducing ferroptosis and cuproptosis to develop novel

anti-cancer treatment strategies.
KEYWORDS

cuproptosis, immunotherapy, tumor microenvironment, triple-negative breast cancer,
cyclin-dependent kinase inhibitor 2A
Introduction

Nowadays, breast cancer (BRCA) is the worldwide leading

cause of cancer incidences and the second leading cause of

cancer-related death (1). Triple-negative breast cancer (TNBC),

which is distinguished by the absent expression of human

epidermal growth factor receptor 2 (Her2) and estrogen

receptor/progesterone receptor (ER/PR), is the most invasive

subtype with the highest mortality rate accounting for

approximately 15% of all BRCA (2). The mortality rate is up

to 40% within 5 years after the first diagnosis and distant

metastasis will occur in approximately 46% of TNBC patients

(3). Hence, the incidence and mortality of TNBC make it

necessary to explore reliable predictive biomarkers, construct

more promising prognostic models and develop novel drugs that

target at the known molecular pathways.

Cyclin-dependent kinase inhibitor 2A (CDKN2A), a cyclin-

dependent kinase inhibitor gene, that encodes the p16 protein

involved in the regulation of cell cycle pathways, is known as a

tumor suppressor (4). CDKN2A can inactivate the retinoblastoma

protein by binding to and inactivating the cyclin D-cyclin-

dependent kinase 4 complex (5). The expression of this gene is

verified to cause cell cycle arrested in the G1 phase, inhibit cell

proliferation, promote tumor cell apoptosis, and increase tumor

cell chemotherapy sensitivity (6). Recent studies have pointed out

that CDKN2A is correlated with ferroptosis (7) and cuproptosis

(8) (FAC), which are both novel types of regulated cell death that

their occurrence was ion-dependent. Ferroptosis indicates an

oxidative cell death resulting from the deterioration of

antioxidant function and accretion of lipid reactive oxygen

species (ROS) (9). Recent attention has been brought to a

brand-new cell death mode identified as cuproptosis, which

indicates that the excess copper can trigger proteotoxic stress

and death in cells through the combination with lipoylated

components of the tricarboxylic acid (TCA) cycle (8). These

ion-dependent cell death different from apoptosis, necrosis, and

autophagy can contribute to a burgeoning field that promising

cancer drugs are designed based on the induction of ferroptosis

(10) and cuproptosis (8).
02
Additionally, researchers have discovered that the

malfunctioning of CDKN2A in BRCA has promoted the

discovery of many CDK inhibitors (11). The role of CDKN2A in

BRCA cannot be ignored and needs further investigations.

However, the investigations about the role of CDKN2A in BRCA

are limited, we are thereby unable to comprehensively elaborate the

biological function of CDKN2A. Hence, we conducted the first

converge comprehensive landscape analysis of FAC-related gene

CDKN2A in BRCA, including expression, prognostic values, DNA

methylation, tumor microenvironment (TME) analysis, and drug

sensitivity of CDKN2A in BRCA. Immediately afterward,

unsupervised cluster analysis revealed the difference in

immunological analysis and FAC status of CDKN2A-associated

genes among 3 groups, namely cold-immune subtype, IFN-g
activated subtype, and FTL-dominant subtype, groundbreakingly

laying a foundation for the application of immunotherapy and FAC

regulators in BRCA. Given the strong association between TNBC

and CDKN2A, as well as the fact that the most clinically

heterogeneous TNBC always displayed the most severe outcomes

and lacked relevant drug targets, we further explored the potential

of immunotherapy for TNBC by regulating CDKN2A and

constructed the CDKN2A-derived prognostic model for TNBC

patients by machine learning, aiming to predict the prognosis of

TNBC patients and provide the guidance on their long-term disease

outlook and design of treatment strategies.
Materials and methods

Data collection

BRCA data was downloaded from the UCSC Xena data

mining platform (http://xena.ucsc.edu/), which included the

messenger RNA (mRNA) expression matrix from The Cancer

Genome Atlas (TCGA), as well as the clinical information of 33

cancer types. Gene expression profile of BRCA patients and their

corresponding clinical information were obtained. Specimens

without survival information were excluded during this study

and FPKM values of RNA-Seq were log2 transformed. In total,
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1072 BRCA patients and included 185 TNBC samples were

retained for subsequent analysis.

We extracted and exhibited detailed clinical information of

1072 BRCA patients as shown in Table 1: age, sex, pathological

stage, estrogen receptor (ER) status, progesterone receptor (PR)

status, human epidermal growth factor 2 (HER2) status, T/N/M

stage, and adjuvant chemotherapies. Additionally, gene expression

array GSE58812 containing 107 TNBC patients and their

corresponding clinical data was retrieved from the Gene

Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/)

to externally validate the CDKN2A-derived prognostic model

constructed in our study. Gene expression array GSE173839

containing clinical information of 100 BRCA patients was used

to evaluate the status of immunotherapy response between high

and low CDKN2A expression groups in TNBC patients.
Landscape analysis of CDKN2A in BRCA

To comprehensively investigate the biological role of

CDKN2A in BRCA, we started with the pan-cancer analysis of

the CDKN2A expressions via Tumor Immune Estimation

Resource (TIMER) (https://cistrome.shinyapps.io/timer/)

database (12). Then, the expression levels of CDKN2A in

BRCA, as well as normal tissues were validated in Gene

expression profiling interactive analysis (GEPIA) (http://gepia.

cancer-pku.cn/) sequencing expression (13). Subsequently,

Human Protein Atlas (HPA) (https://www.proteinatlas.org/)

provided the immunohistochemical images of CDKN2A

expression in BRCA samples (14). To further explore the

biological role of CDKN2A in BRCA, UALCAN (http://ualcan.

path.uab.edu/index.html) (15) and MEXPRESS (http://

mexpress.be) (16) were utilized to analyze the DNA promoter

methylation status of CDKN2A in BRCA and the effects of

methylation of CDKN2A on clinical stages in BRCA. Besides,

cBio Cancer Genomics Portal (cBioPortal) (http://cbioportal.

org/) and Catalogue of Somatic Mutations In Cancer (COSMIC)

(https://cancer.sanger.ac.uk) were conducted to analyze the

mutation status of CDKN2A in BRCA (17, 18). TIMER and

Tumor and Immune System Interaction Database (TISIDB)

(http://cis.hku.hk/TISIDB) database (19) were used to

comprehensively explore the relationship between CDKN2A

expression and immune infiltration. Moreover, CellMiner (20)

was performed to evaluate the relationship between CDKN2A

and drug sensitivity, looking for the targeted therapies for

BRCA patients.
Unsupervised clustering of CDKN2A-
associated differentially expressed genes

Based on the integration of CDKN2A strongly associated

genes and differential genes, we used the R package
Frontiers in Immunology frontiersin.org03
“ConsensusClusterPlus” (https://bioconductor.org/packages/

ConsensusClusterPlus/), to perform an unsupervised cluster

analysis. After 1,000 iterations of the consensus clustering

algorithm, the number of optimal clusters was confirmed

according to the Item-Consensus plot, cumulative distribution
TABLE 1 Clinical pathological characteristics of extracted BRCA
patients.

Characteristic Group No. of cases (%)

Age (years) <60 570 (53.17%)

≥60 500 (46.64%)

Unknown 2 (0.18%)

Sex Female 1059 (98.78%)

Male 12 (1.12%)

Unknown 1 (0.09%)

Pathological Stage Stage I 176 (16.42%)

Stage II 607 (56.62%)

Stage III 245 (22.85%)

Stage IV 20 (1.86%)

Stage X 12 (1.12%)

Unknown 12 (1.12%)

Pathological T T1 274 (25.56%)

T2 621 (57.93%)

T3 133 (12.40%)

T4 40 (3.73%)

TX 3 (0.27%)

Unknown 1 (0.09%)

Pathological N N0 502 (46.83%)

N1 355 (33.11%)

N2 118 (11.01%)

N3 76 (7.09%)

NX 20 (1.86%)

Unknown 1 (0.09%)

Metastasis M0 896 (83.58%)

M1 22 (2.05%)

MX 153 (14.27%)

Unknown 1 (0.09%)

ER Positive 789 (73.60%)

Negative 232 (21.64%)

Unknown 51 (4.75%)

PR Positive 684 (63.80%)

Negative 334 (31.15%)

Unknown 54 (5.04%)

HER2 Positive 162 (15.11%)

Negative 547 (51.02%)

Unknown 363 (33.86%)

Adjuvant therapy No 1056 (98.51%)

Yes 13 (1.21%)

Unknown 3 (0.27%)

OS Status Living 921 (85.91%)

Dead 150 (13.99%)

Unknown 1 (0.09%)

https://www.ncbi.nlm.nih.gov/geo/
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http://ualcan.path.uab.edu/index.html
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function curves, and the k-means clustering algorithm. Three

unsupervised clusters (cold-immune cluster, IFN-g activated

cluster, and FTL-dominant cluster) were selected for

subsequent analysis.
Profiling analysis of tumor
microenvironment

As a generic computational method of calculating cell

fractions from gene expression data, Cell-type Identification

By Estimating Relative Subsets Of RNA Transcripts

(CIBERSORT) (21), was separately used to analyze the

proportions of 22 infiltrating immune cells in high and low

CDKN2A expression groups in BRCA, as well as between 3

groups from the unsupervised cluster. The ESTIMATE approach

calculated the stromal, immune, and ESTIMATE scores of three

groups, predicting the level of stromal cells and infiltrating

immune, which constructed the basis of tumor purity (22).

The immunotherapy-related pathways, immune checkpoints,

and 122 immunomodulators, including chemokines, receptors,

MHCs, and immune stimulators were obtained from previous

studies (23–25). Single-Sample Gene Set Enrichment Analysis

(ssGSEA) was performed to derive the enrichment score of all

steps via the R package “GSVA” (26).
Evaluation of immunotherapy response
sensitivity in TNBC patients with different
CDKN2A expression

Immunophenoscore (IPS) is a generic machine learning-

based algorithm for quantifying tumor immunogenicity, which

is measured grounded in the gene expression of representative

cell types, including immunomodulators, immunosuppressive

cells, MHC molecules, and effector cells (27). The IPS from The

Cancer Immunome Atlas (TCIA) (https://tcia.at/) was

calculated in the high and low CDKN2A expression groups in

TNBC patients. In general, the higher IPS indicates a better

immunotherapy response. Subsequently, to further predict the

sensitivity to immunotherapy response, GSE173839 was used to

evaluate the status of immunotherapy response between high

and low CDKN2A expression subpopulations in TNBC patients.
Exploration of functional annotation of
CDKN2A-associated genes

Gene Ontology (GO) and Kyoto Encyclopedia of Genes,

Genomes (KEGG) functional enrichment analysis confirmed the

functions of CDKN2A-associated genes via the R language “cluster

Profiler” package (https://guangchuangyu.github.io/software/

clusterProfiler/). Additionally, gene sets “h.all.v7.5.1.symbols.gmt”
Frontiers in Immunology 04
were obtained from Molecular Signatures Database (MSigDB)

(https://software.broadinstitute.org/gsea/downloads.jsp) and were

used for calculations of 50 hallmark tumor-related pathways.

Moreover, oxidative stress caused by the accumulation of lethal

ROS is the recognized process of ferroptosis. But, due to the

definition of cuproptosis being relatively avant-garde, the

controversy of whether cuproptosis is a form of cell death

independent of other cell death modes or not still exists.

Therefore, based on the GO enrichment analysis and previous

studies, we collected 7 pathways implicated in ferroptosis and

cuproptosis via literature retrieval and vicariously evaluated their

activities in BRCA by ssGSEA analysis, including fatty acids

degradation (28), inflammatory response (29), oxidative stress

(9), positive regulation of MAPK cascade (30), regulation of

mitochondrial membrane potential (9), TCA cycle (8) and

VEGF signaling pathway (31). Moreover, Metascape (32) was

used to analyze the functional annotation of 413 survival-related

differentially expressed genes (SDEGs), aiming to reveal

the biological mechanism of the influence of CDKN2A on the

survival status of TNBC patients. Besides, Search Tool for the

Retrieval of Interacting Genes (STRING) (https://string-db.org/)

database (33) was utilized to gather and construct data about

protein-protein interaction (PPI) of CDKN2A and genes

constructing the model.
Weighted gene co-expression network
analysis based on RNA-seq data

After deleting the outliers in the gene expression matrix, the

TCGA-A7-A0DC-01A sample and the TCGA-A2-A3XV-01A

sample were expelled. Based on a scale-free topology with R2 =

0.85, the adjacency matrix was defined by using soft thresholding

with power b =6, to identify and build the different co-

expression gene modules in BRCA samples. Then, the

CDKN2A-derived genes were clustered based on a topological

overlap matrix (TOM)-based dissimilarity measure, and the

cluster dendrogram of all these genes was constructed by R

package “WGCNA” (34). Every identified co-expression module

was labeled with a different color. Then, we conducted principal

component analysis (PCA) of each module, extracted and

summarized the gene co-expression based on the eigengene

external traits that included TNBC and the status of

ferroptosis and cuproptosis (substituted by the scores of

oxidative stress, regulation of mitochondrial membrane

potential and TCA cycle). We further calculated the

correlation between each eigengene external trait and each

module with the biweight midcorrelation (bicor) that could

offer robust correlations with minor weight given to outlier

measures (35, 36). Subsequently, we selected genes in modules

that possessed the strongest relationship with TNBC and FAC as

the input for the Least Absolute Shrinkage and Selection

Operator (LASSO) regression analysis.
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Construction and validation of the
CDKN2A-derived prediction model

Based on the genes from WGCNA, we sequentially

developed univariate Cox, LASSO regression via the R package

“glmnet” to construct the CDKN2A-derived prognostic model

(37). The risk score was calculated via the following formula:

Risk   Score   =o
n

i=1
Coefi � expi

The Coefi represented the risk coefficients of each gene

weighted by LASSO-Cox model, and expi indicated the

expression of each gene in our study. Then, the Kaplan–Meier

survival analysis was developed to evaluate the difference in

survival between low and high risk-score groups through R

package “survival”. Subsequently, we used the time-dependent

receiver operating characteristic (ROC) curve to appraise the

performance of the CDKN2A-derived model. Further, to test

whether risk score could be an independent prognostic predictor

of TNBC patients, univariate Cox and multivariate Cox

regression analyses were conducted with risk score, sex, age,

metastasis status, tumor stage and pathological status as

variables. Ultimately, external validation of the CDKN2A-

derived prognostic model was performed via the clinical data

of 107 TNBC patients contained in GSE58812.
Potential drug prediction based on the
CDKN2A-derived model

Drug sensitivity data of diverse cell lines and corresponding

gene-expression data from three databases were used to perform

the drug sensitivity analysis based on the CDKN2A-derived

signature, including GDSC (Genomics of Drug Sensitivity in

Cancer), PRISM (Profiling Relative Inhibition Simultaneously in

Mixtures) and CTRP (Cancer Therapeutics Response Portal)

(38) (39). AUC values functioned as a measure of drug

sensitivity and drugs with missing AUC values more than 80%

were excluded. Based on the different drug reactions of high and

low groups, drugs with Padj value less than 0.05 were screened

out. The compound overlapping in the outcomes of PRISM,

CTRP, and GDSC analyses may serve as a potential treatment

for the certain subpopulation.
Statistical analysis

Correlations were analyzed via Pearson correlation except

for the part of WGCNA using bicor. Statistical analyses were

conducted using Kruskal–Wallis, Wilcoxon, chi-square test, and

Tuckey’s honestly significant difference and differences were

considered significant at P value < 0.05.
Frontiers in Immunology 05
Results

Landscape analysis of CDKN2A hints at
prognostic value and its association with
drug sensitivity in BRCA

Figure 1 illustrates the flow chart of the present study. In the

comparisons of multiple cancers with corresponding normal

tissues, CDKN2A exhibited a significant overexpression in

bladder urothelial carcinoma (BLCA), BRCA, cervical

squamous cell carcinoma and endocervical adenocarcinoma

(CESC), cholangiocarcinoma (CHOL), colon adenocarcinoma

(COAD), head and neck cancer (HNSC), kidney chromophobe

(KICH), kidney renal clear cell carcinoma (KIRC), kidney renal

papillary cell carcinoma (KIRP), liver hepatocellular carcinoma

(LIHC), lung adenocarcinoma (LUAD), lung squamous cell

carcinoma (LUSC), prostate adenocarcinoma (PRAD), rectum

adenocarcinoma (READ), stomach adenocarcinoma (STAD),

thyroid carcinoma (THCA), and uterine corpus endometrial

carcinoma (UCEC) (Figure 2A). GEPIA database was used to

further confirm that CDKN2A was notably upregulated in

BRCA (Figure 2B). Immunohistochemistry outcomes from the

HPA database illustrated that the protein level of CDKN2A was

significantly increased in BRCA tissue (Figure 2C). As a

fundamental constituent element of epigenetics, DNA

methylation modification plays a vital role in silencing the

expressions of methylated genes. Our data indicated that

CDKN2A was notably hypermethylated in BRCA (Figure 2D),

especially in the luminal subtype and TNBC subtype

(Supplementary Figure S1C). BRCA patients with CDKN2A

hypermethylation possessed a relatively undesirable clinical

outcome (P = 0.0527833983) (Supplementary Figure S1D),

which needs further investigations. Additionally, the

hypermethylation of CDKN2A was positively correlated with

the tumor progression, verifying that CDKN2A may be a crucial

impact factor in the stage and grade of BRCA (Supplementary

Figures S1A, B). Besides, the COSMIC database was conducted

to evaluate the mutation type of CDKN2A. (Supplementary

Figures S2C, D). Missense substitutions notably occupied the

largest portion, accounting for 38.59%. Next, nonsense

substitutions occurred in 30.54%. Frameshift deletions

occupied 9.81% of the samples and frameshift insertions

occupied 6.40% of the samples. Moreover, our results

indicated that the substitution mutations chiefly occurred at C

> T (44.24%), G > A (20.45%), G > T (14.91%), and C > A

(5.5%). Additionally, cBioPortal database revealed that the

mutation frequency of CDKN2A in BRCA was 0.5% and the

mutation of CDKN2A had no effects on the prognosis of BRCA

patients (P > 0.05) (Supplementary Figures S2A, B).

To further explore the molecular characteristics of CDKN2A

in BRCA, we performed the relationship between CDKN2A and

tumor-infiltrating immune cells using the CIBERSORT
frontiersin.org
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algorithm. Our results demonstrated that BRCA patients with

high expression of CDKN2A exhibited an increased infiltration

level of most immune cells in BRCA, including activated

dendritic cells, M0 macrophages, activated NK cells, activated

memory CD4 + T cells, CD8 + T cells, follicular helper T cells,

and regulatory T cells (Figure 2H). Moreover, the expression of

CDKN2A was positively associated the expression of multiple

immune checkpoints, including CTLA4, PDCD1, PVR, TIGIT,

and so on in BRCA (Figure 2I). Our data from Timer 2.0 and

TISIDB database also indicated that CDKN2A expression could

significantly affect the immune infiltration status and immune

microenvironment of BRCA. The expression of CDKN2A was

respectively correlated with the infiltration abundances of

macrophages in basal-like BRCA, myeloid dendritic cells and

CD8+ T cells in luminal A (Supplementary Figure S3A). Besides,

CDKN2A expression was also correlated with CCL5, CCL7,

CCL8, CXCL16, etc (Supplementary Figure S3B).

Survival analysis was further indicative that BRCA patients

with high expression of CDKN2A had better overall survival

(OS) than those with low CDKN2A expression (Figure 2E). The

prognostic values of CDKN2A expression in different subtypes

of BRCA also presented a significant differentiation (Figure 2F).

The genetic alterations caused by the heterogeneity of BRCA

may also affect the responses to target agents (40). Improved

reliable biomarkers for targeted treatment are needed.

Consequently, the relationship between CDKN2A expression

and drug sensitivity was conducted, exploring the clinical roles

of CDKN2A. Our data indicated that the expression of

CDKN2A was positively connected with sensitivity to acetalax

(Figure 2G). Otherwise, CDKN2A presented a negative

correlation to sensitivity to mitoxantrone, O-6-Benzylguanine,
Frontiers in Immunology 06
bleomycin, valrubicin, and mitomycin. In conclusion, CDKN2A

has the potential of being a predictive marker of the

aforementioned agents.
Characterizations of CDKN2A-mediated
genes reveal linkage of CDKN2A to TME
and prognostic value in TNBC

To depict the crosstalk between CDKN2A and TME in

BRCA, two strategies were initially proposed to detect

CDKN2A-medicated genes. Concretely, 737 CDKN2A-

correlated genes were obtained using Pearson correlation

analysis (|corrcoef| > 0.4). Then we divided 1072 TCGA-

BRCA patients into four quartiles ranked by their expression

of CDKN2A and identified 228 differentially expressed genes

(DEGs) between the two quartiles groups with the highest and

lowest expression (|logFC| > 1, adjust P < 0.05). Combined with

737 CDKN2A-correlated genes, a total of 885 CDKN2A-

mediated genes were figured out. Subsequent functional

analysis indicated that these genes might involve in mitotic

cell cycle phase transition, double-strand break repair via

break-induced replication, DNA replication, positive

regulation of ubiquitin protein ligase activity, etc (Figure 3A,

Supplementary Figure S4A). Afterwards, an unsupervised cluster

analysis was conducted based on CDKN2A-medicated genes via

R package “ConsensusClusterPlus”. As a result, 1072 BRCA

patients were divided into 3 subgroups with optimal stability of

the classification. Through CIRBERSORT analysis, Subgroup 1

was closely associated with an increased infiltration of resting

dendritic cells, M2 Macrophages, resting mast cells, eosinophils,
FIGURE 1

The flow chart of our study.
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FIGURE 2

The landscape analysis of overexpressed CDKN2A in BRCA. (A) The difference in expression of CDKN2A between various malignant cancer types
from the cancer genome map (TCGA) database across TIMER database. CDKN2A was upregulated in bladder urothelial Carcinoma (BLCA),
breast invasive carcinoma (BRCA), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), cholangiocarcinoma (CHOL),
colon adenocarcinoma (COAD), head and neck squamous cell carcinoma (HNSC), kidney chromophobe (KICH), kidney renal clear cell
carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung
squamous cell carcinoma (LUSC), Prostate adenocarcinoma (PRAD), Rectum adenocarcinoma (PEAD), Stomach adenocarcinoma (STAD),
Thyroid carcinoma (THCA) and Uterine Corpus Endometrial Carcinoma (UCEC). (*P < 0.05. **P < 0.01. ***P < 0.001). (B) CDKN2A was
significantly upregulated in BRCA by GEPIA database. (C) Representative immunohistochemical images of CDKN2A in BRCA tissues. (D)
Promoter methylation levels of CDKN2A in normal tissues and primary BRCA tissues in the UALCAN database. (E) The Kaplan-Meier curves of
OS for low and high expression of BRCA patients. (F) The prognostic values of CDKN2A in different BRCA subtypes. (G) Scatter plots depict the
relationship between CDKN2A expression and drug sensitivity in BRCA. (H) Comparison of infiltration of immune cells between high and low
CDKN2A expression groups in BRCA. (I) Comparison of immune checkpoints expression between high and low CDKN2A expression groups in
BRCA. The P values of the figure are shown as follows: *P < 0.05. **P < 0.01. ***P < 0.001. ns (not significiant, P > 0.05).
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monocytes, and resting memory CD4+T cells (Figure 3C),

equivalent to the phenotype with immunosuppressive

characteristic (41), which, thereby, was defined as cold-

immune subtype. Similarly, subgroup 2 was defined as IFN-g
activated subtype due to its elevated infiltration of M0 and M1

Macrophages, activated dendritic cell, CD8 T cells, follicular

helper T cells and activated memory CD4+T cells (Figure 3C),

which correspond to the active-immune phenotype (42, 43).

Subtype 3 was characterized by the highest expression of FTL,

namely FTL-dominant subtype. Also, three subgroups were

found to present the conspicuous discrepancy of expression

differences of immune checkpoints genes (Figure 3D). In

particular, IFN-g activated subtype exhibited an elevated

expression level of multiple immune checkpoints, including

CD274, CTLA4, PDCD1, PVR, TIGIT and VTCN1, etc.

Moreover, IFN-g activated subtype correlated the relatively

highest scores of certain immunotherapy-related pathways,

especially in IFN-g pathway (Supplementary Figure S4B),

which was another reason for naming it. Furthermore, the

heatmap depicted each BRCA patient with a corresponding

enrichment of 122 immunomodulators among three groups,

including chemokines, receptors, MHCs and immune

stimulators (Figure 3B). As demonstrated in the chart, cold-

immune subtype could be insinuated as an immunologically

“cold” phenotype. Notably, IFN-g activated subtype relatively

possessed the highest immune activity. These findings were

consistent with results of ESTIMATE analysis (Figure 3F).

Notably, IFN-g activated cluster was significantly associated

with numerous pathways, such as MYC targets, inflammatory

response, IL6/JAK/STAT3 signaling pathway and IFN-g
response, which was consistent with our way of naming it

(Figure 3E). Since CDKN2A is the ferroptosis and

cuproptosis-related gene, we collected seven pathways

implicated in ferroptosis and cuproptosis via literature

retrieval and outcomes of GO enrichment analysis, aiming to

vicariously evaluate their activities in patients with BRCA by

ssGSEA. The results demonstrated that ssGSEA scores of those

FAC-related pathways significantly differed among three

subgroups (Figure 3G). Notably, the FTL-dominant subtype

possessed the relatively highest scores of oxidative stress,

demonstrating its elevated activity in ferroptosis.

Next, we investigated the correlation between molecular

subtyping, immunological subtyping, and our unsupervised

subtyping in BRCA. Unexpectedly, we found that the majority

of patients (approximately 98.4%) of basal-like subtype were part

of IFN-g activated subtype (Figure 4A). More subtly, IFN-g
activated subtype chiefly belonged to the C2 subtype that was

dominated by IFN-g (Figures 4B, C). Our results also

demonstrated that CDKN2A more significantly overexpressed

in TNBC patients than non-TNBC patients (Supplementary

Figure S5A). Notably, our analysis demonstrated the CDKN2A

expression was relatively the highest in our S2 subtype

(Figure 4D), which suggested the close correlation between
Frontiers in Immunology 08
CDKN2A and TNBC (basal-like) subtype. This point was

supported by subsequent survival analysis, which indicated

that TNBC patients with low expression of CDKN2A

exhibited an undesirable clinical outcome (Figure 4E).

Moreover, CDKN2A also exhibited four methylation sites with

statistical significance among the molecular subtypes

(Figure 4H). Subsequently, we aimed at exploring the

underlying biological mechanism behind the survival

difference between the two groups through difference analysis

and function annotation analysis. We further identified 413

survival-related differentially expressed genes (SDEGs) between

two groups with high and low CDKN2A expression in TNBC

based on the best cut results of survival analysis (|logfc| > 0.5,

adjust P < 0.05). Our results showed that there were 294 up-

regulated SDEGs in high CDKN2A expression groups, which

were associated with the positive regulation of transforming

growth factor beta receptor signaling pathway, cellular response

to metal ion, regulation of actin cytoskeleton, signaling by Rho

GTPases, Miro GTPases and RHOBTb3, etc (Figure 4G). And

119 down-regulated SDEGs indicated in low CDKN2A

expression group correlated with the regulation of production

of molecular mediator of the immune response, mitochondrion

organization and cytokine signaling in the immune system, etc

(Figure 4G). The above enriched functional pathways may be the

reason for the significant difference in survival between the two

groups of TNBC patients. Further, we tried to explore the

potential interplay between CDKN2A and TME implicated in

TNBC. The IPS score was used to assess the impact of CDKN2A

expression on TNBC immunity. The results showed that the low

CDKN2A expression was positively correlated with the

decreased IPS (Figure 4F), which indicates that low expression

of CDKN2A might be unresponsible for immunotherapy,

probably linking to inhibition of T cell infiltration and

suppression of immunogenicity (Supplementary Figure S5B).

GSE173839 further effectively verified that high expression of

CDKN2A had a better immunotherapy response (Figures 4I, J).

Taken together, our analyses suggested that CDKN2A might

influence the progression and prognosis of TNBC and affect the

effectiveness of immunotherapy in TNBC through TME,

implying the potential of CDKN2A as a pioneering prognostic

predictor for TNBC.
The CDKN2A-derived prognostic model
by machine learning for TNBC patients

To further explore the relationship between CDKN2A, FAC,

and TNBC, on the basis of TCGA-BRCA cohort, a co-expression

network and modules of differentially expressed CDKN2A-

derived genes were constructed via the WGCNA. Overall, the

brown and green module had the strongest correlation with

TNBC via the Kruskal-Wallis test and Tuckey’s honestly

significant difference, and simultaneously possessed the most
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FIGURE 3

The immunological and functional analysis of CDKN2A among 3 groups from unsupervised clustering in BRCA. (A) The GO enrichment analysis
revealed the function of CDKN2A-mediated genes. (B) The heatmap depicted each BRCA patient with a difference of a corresponding enrichment
of 122 immunomodulators. (C) Comparison of infiltration of immune cells between 3 groups. (D) Comparison of immune checkpoints expression
between 3 groups in BRCA. (E) Comparison of 50 tumor-related pathways between 3 groups in BRCA. (F) Comparison of estimate score, immune
score, stromal score, and tumor purity between 3 groups in BRCA. (G) Comparison of scores of ferroptosis and cuproptosis between 3 groups in
BRCA. The P values of the figure are shown as follows: *P < 0.05. **P < 0.01. ***P < 0.001. ns (not significiant, P > 0.05).
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FIGURE 4

The linkage of CDKN2A to immunotherapy and TNBC. (A) The correlation between molecular subtypes, immunological subtypes, and our
unsupervised subtypes in BRCA. (B) The relationship between CDKN2A expression and immunological subtypes of BRCA. (C) The relationship
between CDKN2A expression and molecular subtypes of BRCA. (D) The comparison between CDKN2A expression and unsupervised subtypes of
BRCA. (E) The survival value of CDKN2A in TNBC. (F) The comparison between IPS score and high and low CDKN2A expression subpopulations in
TNBC. (G) The function annotation analysis of up-regulated and down-regulated SDEGs in high and low CDKN2A expression subpopulations. (H)
The comparison between methylation status of CDKN2A and molecular subtypes of BRCA. (I, J) The correlation between immunotherapy response
status and CDKN2A expression in TNBC via chi-square test. The P values of the figure are shown as follows: *P < 0.05. **P < 0.01. ***P < 0.001.
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outstanding connection with the FAC activity (Figure 5A). A

total of 1,924 CDKN2A-derived genes in these two modules

were selected for further study. Subsequently, the univariate Cox

regression analysis was conducted to gain 106 genes associated
Frontiers in Immunology 11
with prognosis (Table 2). Then, LASSO regression further

screened out 21 prognostic genes for constructing the risk

predictive model (Table 3, Figure 5B). On the foundation of

21 genes, the formula of risk scores is as follows:
A

B C

FIGURE 5

The construction of CDKN2A-derived prognostic model of TNBC. (A) The relationships between each module and ER status, HER status, PR
status, BRCA subtypes, oxidative stress, regulation of mitochondrial membrane potential and TCA cycle. (B) 21 modeling genes determined by
lasso algorithm. (C) The ROC curves and AUC value of CDKN2A-derived model.
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TABLE 2 The 106 prognostic genes obtained by the univariate Cox regression analysis.

gene HR z P value

1 PIGA 0.397277864 -2.198591033 0.027907015

2 PDK1 0.357375189 -2.671129231 0.007559654

3 DLGAP5 0.567091502 -2.062635139 0.039147307

4 ASF1A 0.359053378 -2.653642374 0.007962817

5 ST6GALNAC6 1.898724967 2.019711022 0.043413371

6 SUMO2 0.346718485 -2.365117868 0.018024333

7 BRIP1 0.453575362 -2.119749975 0.034027136

8 AC131097.2 3.937831563 2.632738899 0.008469943

9 CENPF 0.586505608 -2.30669878 0.021071618

10 PTPN2 0.378693961 -2.177849625 0.029417234

11 CHEK2 0.422240769 -2.07745616 0.037759477

12 PAK1IP1 0.483556649 -2.245128753 0.024759868

13 NUS1 0.295640654 -2.890349779 0.003848134

14 C15ORF59 2.956081195 2.237525193 0.025252035

15 GTSE1 0.451487549 -2.438868384 0.014733333

16 TRIM59 0.310058943 -3.060009496 0.0022133

17 FAM111B 0.59996083 -2.269372812 0.023245664

18 ASPM 0.518452041 -2.349979602 0.01877444

19 MCM6 0.523212965 -2.251137167 0.024376851

20 TOM1L2 2.161448416 2.143470398 0.032075346

21 NEIL3 0.462511653 -2.160366585 0.030744302

22 HELLS 0.321344977 -2.789331014 0.005281705

23 ZDHHC1 2.628482692 2.440752437 0.014656698

24 GJC3 1.44465959 2.114886157 0.034439651

25 E2F8 0.425974425 -2.553875056 0.010653148

26 GRIA1 1723.544976 3.621990675 0.000292345

27 KIF11 0.55847202 -2.247271125 0.024622705

28 EXO1 0.460937898 -3.030924746 0.00243806

29 EZH2 0.572485292 -1.983570228 0.047303771

30 YES1 0.601630765 -2.039299095 0.041420186

31 FOXM1 0.650871311 -2.133764473 0.032862065

32 TYMS 0.628826297 -2.080108988 0.037515537

33 RAD51AP1 0.60276431 -2.043099948 0.041042545

34 CENPU 0.493079906 -2.724145067 0.006446818

35 RAPGEF3 3.967600937 2.640190769 0.008285937

36 DUSP4 0.565981807 -2.369869937 0.017794344

37 CENPQ 0.447055144 -2.271846928 0.023095757

38 ZNF883 1.55594112 2.089772472 0.036638243

39 LRRC8D 0.605125564 -2.132304254 0.032981843

40 CNIH2 0.65503232 -2.144605916 0.031984369

41 CEP55 0.562523781 -2.39416595 0.01665821

42 CCDC160 0.325162054 -2.138272672 0.032494619

43 KIF14 0.510799562 -2.092932584 0.036355173

44 ZWILCH 0.445430957 -2.106543951 0.03515713

45 FAM219A 1.893507046 1.964846926 0.049431957

46 KIF18A 0.449222812 -2.402609976 0.016278539

47 TMPO 0.553419185 -2.117824503 0.034189933

48 NFIA 0.638052834 -2.189504267 0.028560209

(Continued)
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TABLE 2 Continued

gene HR z P value

49 TPCN1 3.290932788 2.415741287 0.015703214

50 RHNO1 0.514295412 -2.204128211 0.027515329

51 CTSF 1.472449338 2.072960013 0.038176001

52 FAM72C 3.066644433 2.822432329 0.004766088

53 SEPT3 0.55369899 -3.504183774 0.000458009

54 APBA2 1.714725532 2.073801231 0.038097775

55 FUT8 0.474158219 -2.111769715 0.034706206

56 LRGUK 0.062432238 -2.110568263 0.034809438

57 ADCY6 2.067368208 2.081207676 0.037414901

58 VWA2 0.497605963 -2.143156172 0.03210056

59 TTC39C 0.508246458 -2.015928299 0.043807474

60 CYB5D2 2.662637199 2.878174729 0.003999835

61 EXOC6 0.291966726 -2.558775588 0.010504153

62 FAM228B 4.003772856 2.542647066 0.011001629

63 FYB2 0.004631401 -1.992285256 0.046339768

64 SPACA9 2.189328115 2.467635909 0.013600858

65 ARNT2 0.680364619 -2.106494914 0.035161384

66 KRT37 20.62888681 2.558603819 0.010509343

67 AGBL2 0.009647128 -2.17119562 0.029916388

68 AGR2 0.591598511 -2.312899108 0.020728187

69 CCNG2 0.505625171 -2.100827065 0.03565615

70 DNAH5 2.989128412 1.980489126 0.047648594

71 CFAP99 9925778.946 3.182566191 0.001459761

72 C16ORF71 3.729277111 2.109173849 0.034929578

73 FOLH1 0.560549119 -2.027960378 0.042564292

74 C11ORF70 2.694865042 2.529973668 0.011407109

75 LYPD6B 0.427966493 -2.203336375 0.027571049

76 TEX9 0.227190102 -2.109559499 0.034896316

77 NCCRP1 1.287452778 2.89136402 0.003835735

78 SLC1A4 0.569212551 -2.344642453 0.019045334

79 PSD3 0.467450303 -2.303773658 0.021235353

80 KITLG 0.589293262 -2.217628814 0.026580152

81 NT5DC2 1.82691064 2.549310104 0.010793628

82 HMGCL 2.643566798 2.3086158 0.02096491

83 AK8 5.224451486 3.075228928 0.00210341

84 TRERF1 0.510437127 -2.029071436 0.042451015

85 PLPPR3 1.450251013 2.269292578 0.02325054

86 PER2 0.403209642 -2.331594507 0.019722033

87 CFAP45 3.034070634 3.486607251 0.000489189

88 TRIM3 2.974918176 2.62253278 0.008727887

89 ZNF587B 0.19192526 -3.234985541 0.001216489

90 KIAA0040 0.620949694 -2.094736682 0.036194406

91 KCNK6 1.592776419 2.606639009 0.00914357

92 ZNF92 0.359485724 -2.793031961 0.005221653

93 PATZ1 0.401765187 -2.695232839 0.007033946

94 FRY 0.338592705 -2.016077604 0.043791862

95 RHOB 1.713754168 2.231692989 0.025635261

96 ZNF586 0.383365946 -2.064031138 0.039014764
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Risk   Score = AC131097:2   expression� 0:603906061605295 + TRIM59   expression

� −0:250311439654858ð Þ + GRIA1   expression  �4:75432106611303

+EXO1   expression� −0:151147624875987ð Þ + RAPGEF3   expression  

�0:0694637045689866 + FAM72C   expression� 0:687109193015145

+SEPT3   expression� −0:15730852851611ð Þ + FAM228B   expression

�0:0245662769232489 + AGBL2   expression� −0:255478956488232ð Þ
+AGR2   expression� −0:0563974779408671ð Þ + CFAP99   expression

�7:67515956697156 + CFAP300   expression� 0:271605260819289

+LYPD6B   expression� −0:0224796251790447ð Þ + NCCRP1   expression

�0:0265870429310081 + NT5DC2   expression� 0:196412885888264

+AK8   expression� 0:224051779836318 + CFAP45   expression

�0:226574196279908 + ZNF587B   expression

� −0:00393169189489084ð Þ + ZNF703   expression

�0:213684395875983 + LRRC46   expression� 0:202045367075346

+EMARD   expression� 0:0329920921209145:

The AUC was 0.867 and the survival analysis indicated that

TNBC patients with a high-risk score possessed a prognosis with

misery than those with a low-risk score (P < 0.0001) (Figures 5C,

6A, B). Additionally, univariate and multivariate Cox regression

analyses were both used to assess whether the 21 CDKN2A-

derived genes signature was an independent prognostic factor

for other features, including age, sex, metastasis status, tumor

stage, and so on. As the forest plots shown, univariate and

multivariate Cox regression analyses both indicated that risk

score, age, sex, metastasis status, tumor stage, and pathological

status were the independent prognostic factors (Figures 6C, D).

All results indicated that the 21 CDKN2A-derived genes

signature was an independent prognostic factor for

TNBC patients.

To further assess the robustness of the CDKN2A-derived

genomic model, an independent GEO dataset was used for

validation. Reassembly, our scoring system indicated that

TNBC patients in the low-risk subgroup had better survival

than those in the high-risk subgroup (P = 0.013) (Figure 6E).

The AUC for OS was 0.874 at 1.5 years, 0.577 at 3 months, 0.622

at 4.5 years, and 0.617 at 6 years in the GSE58812

cohort (Figure 6F).
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Moreover, 46 TNBC-specific differentially expressed genes

(TDEGs) were screened by two subpopulations comparison in

TCGA training data, and then the enrichment analysis of

TDEGs was conducted. GO functional annotations described

those TDEGs mainly involved in response to interferon-gamma,

virus receptor binding, several chemokines receptor binding,

and so on (Supplementary Figure S6A). The analysis of the

KEGG pathway revealed enrichment of COVID-19, pertussis,

Kaposi sarcoma-associated herpesvirus infection, IL-17

signaling pathway, staphylococcus aureus infection, and so on

(Supplementary Figure S6B). Additionally, our PPI network also

exhibited the correlation between CDKN2A and the genes

constructing the model (Supplementary Figure S6C).
Potential therapeutic agents for
TNBC patients based on the
CDKN2A-derived model

Profiles of gene expression and drug sensitivity were obtained

from the PRISM, CTRP, and GDSC dataset, which was used to

build the predictive signature of drug response for TNBC. We

obtained a total of 1995 drugs from the three databases, as well as

12 compounds shared among 3 datasets (Figure 7A). After

removing the drugs whose missing AUC value exceeded 80%

and was regarded as NA value, we obtained 174 drugs and 270 cell

lines in GDSC, 355 drugs and 638 cell lines in CTRP, as well as

1444 drugs and 462 cell lines in PRISM. The procedure in detail is

shown in (Figure 7B). We separated the TNBC patients into high

and low risk-score subpopulations pursuant to the CDKN2A-

derived prognostic model. The difference in AUC estimates of

lapatinib was compared via the Wilcoxon rank-sum test. Our data

demonstrated that the high risk-score group had higher AUC

estimates (Figure 7C). After confirming the reliability of the

calculation method, we made some modifications to the analysis

of Yang et al. (44). In our study, we started with the differential

drug response analysis between low risk-score group and high risk-
TABLE 2 Continued

gene HR z P value

97 ZNF703 1.9295092 2.970538785 0.002972779

98 AC008560.1 0.217653792 -2.008129249 0.044629559

99 LRRC46 8.348516913 2.84673037 0.004417076

100 ERMARD 3.155353 2.806137256 0.005013933

101 IKBKB 1.812822308 1.965508385 0.049355426

102 OSCP1 2.410070524 2.698798257 0.006959035

103 AC096887.1 16.86023895 2.189770024 0.02854092

104 INAVA 0.647831638 -2.038272415 0.041522697

105 CASD1 0.407790687 -2.164321144 0.030439711

106 ST8SIA6 0.494039492 -2.094576191 0.036208684
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score group by the median split. Next, agents with correlation

coefficients (P < 0.05) were identified according to Pearson rank

correlation analysis between the risk-score of the CDKN2A-

derived model and AUC values. Three overlapping drugs were

eventually found in these three databases, including afatinib,

erlotinib and lapatinib (Figures 7D–F). Then, we analyzed the

target gene expression difference of three mentioned-above
Frontiers in Immunology 15
potential drugs between high risk-score and low risk-score

subpopulations. Notably, EGFR is the co-target gene of the three

candidate drugs. The expression level of EGFR was significantly

upregulated in the low risk-score subpopulation (Figure 7G). In

summary, our outcomes indicated that afatinib, erlotinib and

lapatinib could be designated as the potential drugs for low risk-

score TNBC patients by targeting EGFR.
TABLE 3 The 21 prognostic genes for constructing the risk predictive model.

Symbol Name Category Ensembl
Version

Description and Functional Summary

TRIM59 Tripartite Motif
Containing 59

Protein
Coding

ENSG00000213186 Activating ubiquitin protein ligase and Acting upstream of or within negative
regulation of I-kappaB kinase/NF-kappaB signaling.

GRIA1 Glutamate Ionotropic
Receptor AMPA Type

Subunit 1

Protein
Coding

ENSG00000155511 Ionotropic glutamate receptor. This gene belongs to a family of alpha-amino-3-
hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors. It can alternatively splice

transcript variants encoding different isoforms.

EXO1 Exonuclease 1 Protein
Coding

ENSG00000174371 Encoding a protein with 5’ to 3’ exonuclease activity and being essential for male and
female meiosis.

RAPGEF3 Rap Guanine Nucleotide
Exchange Factor 3

Protein
Coding

ENSG00000079337 Enabling guanyl-nucleotide exchange factor activity and protein domain specific
binding activity.

FAM72C Family With Sequence
Similarity 72 Member C

Protein
Coding

ENSG00000263513 A neuronal progenitor cell (NPC) self-renewal supporting protein expressed under
physiological conditions at low levels in other tissues.

SEPT3 Neuronal-specific septin-3 Protein
coding

ENSG00000224883 Playing a role in cytokinesis.

FAM228B Family With Sequence
Similarity 228 Member B

Protein
Coding

ENSG00000219626 FAM228B is a Protein Coding gene. An important paralog of this gene
is ENSG00000276087.

AGBL2 AGBL Carboxypeptidase 2 Protein
Coding

ENSG00000165923 Enabling metallocarboxypeptidase activity and involved in protein side chain
deglutamylation.

AGR2 Anterior Gradient 2,
Protein Disulphide

Isomerase Family Member

Protein
Coding

ENSG00000106541 Encoding a member of the disulfide isomerase (PDI) family of endoplasmic reticulum
proteins that catalyze protein folding and thiol-disulfide interchange reactions.

CFAP99 Cilia And Flagella
Associated Protein 99

Protein
Coding

ENSG00000206113 Predicted to be located in motile cilium.

CFAP300 Cilia and Flagella-
associated Protein 300

Protein
Coding

ENSG00000137691.13 Playing a role in axonemal structure organization and motility.

LYPD6B LY6/PLAUR Domain
Containing 6B

Protein
Coding

ENSG00000150556 Enabling acetylcholine receptor regulator activity and predicted to be located in
extracellular region and plasma membrane.

NCCRP1 NCCRP1, F-Box
Associated Domain

Containing

Protein
Coding

ENSG00000188505 Predicted to contribute to ubiquitin protein ligase activity and be involved in positive
regulation of cell population proliferation.

NT5DC2 5’-Nucleotidase Domain
Containing 2

Protein
Coding

ENSG00000168268 Predicted to enable 5’-nucleotidase activity and be involved in dephosphorylation.

AK8 Adenylate Kinase 8 Protein
Coding

ENSG00000165695 Enabling AMP binding activity and nucleobase-containing compound kinase activity.

CFAP45 Cilia And Flagella
Associated Protein 45

Protein
Coding

ENSG00000213085 Enabling AMP binding activity and involved in establishment of left/right asymmetry
and flagellated sperm motility.

ZNF587B Zinc Finger Protein 587B Protein
Coding

ENSG00000269343 Enabling DNA-binding transcription repressor activity, RNA polymerase II-specific
and RNA polymerase II transcription regulatory region sequence-specific DNA binding

activity.

ZNF703 Zinc Finger Protein 703 Protein
Coding

ENSG00000183779 Enabling DNA-binding transcription factor binding activity.

LRRC46 Leucine Rich Repeat
Containing 46

Protein
Coding

ENSG00000141294 LRRC46 is a Protein Coding gene. Diseases associated with LRRC46 include Ciliary
Dyskinesia, Primary, 13. An important paralog of this gene is LRGUK.

EMARD Not Available Not
Available

Not Available Not Available

AC131097.2 Not Available Not
Available

Not Available Not Available
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Discussion

The rapidly increasing number of diagnosed BRCA patients

results in the urgent need for new biomarkers that can elucidate

breast carcinogenesis and predict the immune prognosis (45). In

view of problems, such as small sample size, multiple BRCA

subtypes, and complex mechanisms of BRCA, previous studies

disputed that heterogeneity existed in the expression of
Frontiers in Immunology 16
CDKN2A in BRCA (46–48) and did not obtain the final

verdict of CDKN2A’s effects on BRCA.

The landscape analysis based on the multiple data indicated

that CDKN2A had an overexpression and critical values of

prognosis in BRCA, hinting at its clinical property as a

prognostic biomarker. Additionally, its upregulation was

strikingly correlated to DNA hypermethylation. Genetic and

epigenetic alterations are both involved in the procession of
A B

D

E
F

C

FIGURE 6

Assessment of the independent prognostic value and validation of CDKN2A-derived prognostic model of TNBC. (A) The correlation between OS
status and risk score. (B) The survival curve of high and low risk score in TNBC. (C) Univariate Cox regression analysis of CDKN2A-derived
prognostic model. (D) Multivariate Cox regression analysis of CDKN2A-derived prognostic model. (E) The survival curve verified by the external
validation set. (F) The time-dependent ROC curve and AUC values respectively at 1.5 years, 3 years, 4.5 years, and 6 years verified by an external
validation set.
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breast carcinogenesis. The promoter hypermethylation level is

commonly associated with transcriptional gene silencing (49).

Our results were indicative that DNA hypermethylation of

CDKN2A promoted breast carcinogenesis and had a

significant association with subtypes of BRCA. Especially in

the Luminal and TNBC subtypes, the hypermethylation of

CDKN2A was more significant (P < 0.05). Lubecka et al. (50)

indicated that the administration of sulforaphane and

clofarabine could inhibit the tumor cell growth in breast

tissues via reactivating methylation-silenced CDKN2A. Thus,

inhibiting the hypermethylation levels of CDKN2A could be a

potential therapeutic method of BRCA, especially for patients

with Luminal and TNBC subtypes. In view of the uncommon

phenomenon that CDKN2A showed hypermethylation in BRCA

but exhibited high expression, we searched more literatures.

Smith et al. (51) reviewed several cases about promoter DNA
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hypermethylation promoting target gene transcription and they

postulated a context-dependent model whereby epigenetic

contributions to transcriptional regulation occur in a more

complex and dynamic manner, which needs further

investigation. The analysis of CDKN2A and drug sensitivity in

BRCA expanded clinical applications of CDKN2A. A case-

control study (52) indicated the risk of BRCA had a 1.82-fold

increase in women with high sensitivity to bleomycin, which

reversely confirms our results that CDKN2A upregulation could

reduce sensitivity to bleomycin, resulting in a positive prognosis.

Herein, regulating the expression of CDKN2A might alter the

drug sensitivity and affect the therapeutic results.

As numerous evidence robustly supported, the overload of

copper is thought to induce neurotoxicity in neurodegenerative

disorders (Parkinson’s disease and Alzheimer’s disease) and

hepatocerebral (Wilson’s disease) over several decades (53).
A

B D
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C

FIGURE 7

The exploration of potential targeted drugs based on the CDKN2A-derived model for TNBC patients. (A) The shared drug between PRISM,
GDSC and CTRP. (B) The flow chart of exploring potential therapeutic agents. (C) The AUC of lapatinib in high and low risk score
subpopulations of TNBC patients. (D–F) The AUC of three selected drugs in high and low risk score subpopulations of TNBC patients. (G) The
relationship between AUC values and targets of three drugs. The P values of the figure are shown as follows: *P < 0.05. **P < 0.01. ***P < 0.001.
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However, the previous regulation of ferroptosis to trigger tumor

cell death (54) gave us inspiring hints that it is highly viable to

regulate the certain copper levels in a suitable concentration to

induce the cuproptosis and tumor cell death (55). Ferroptosis

indicates an oxidative cell death resulting from the deterioration

of antioxidant function and accretion of lipid reactive oxygen

species (9). Excess copper can trigger proteotoxic stress and

death in cells through the combination with lipoylated

components of the tricarboxylic acid (TCA) cycle (8). The

stimulation of inflammatory conditions will lead to elevated

serum copper levels and trigger oxidative stress, thereby

activating the inflammatory response (56). In reverse,

inflammation could also accelerate the cytotoxicity mediated

by copper via overexpressing six-transmembrane epithelial

antigens of prostate 4 (STEAP4) (29). Disulfiram/copper was

investigated to induce cytotoxic and anti-tumor effects on

nasopharyngeal carcinoma cells through p53-mediated

ferroptosis and ROS/MAPK pathways (30). Fatty acids

degradation can tremendously alter the microbial sensitivity to

copper, thus induce copper toxicity (28). Copper also could

trigger the expression of GPER, VEGF, and HIF-1a via

activating EGFR/ERK/c-fos transduction pathway, affecting the

angiogenesis and tumor progression in BRCA and LIHC (31).

Our study groundbreakingly and vicariously evaluated the

activities of ferroptosis and cuproptosis for patients with

BRCA based on the seven above-mentioned pathways. Our

three subtypes obtained from unsupervised cluster analysis not

only exhibited distinct activities in multiple tumor-related

pathways but also had critical significance in scores of FAC.

Ke et al. (57) indicated that FTL could function as a prognostic

and diagnostic ferroptosis regulator in hepatocellular carcinoma

via random forest analysis, which was consistent with our results

that the FTL-dominant cluster possessed a strong connection

with ferroptosis. Their resemble conclusion that higher

infiltrating immune cells, including Gamma delta T cells and

activated CD8+ T cells, emerged in the high FTL expression

group, was also confirmed in our study. Hence, regulating

pathways involved in CDKN2A-associated genes or designing

novel metal-based anticancer agents to induce ferroptosis and

cuproptosis may guide us to develop new anti-cancer treatment

strategies for BRCA, especially for the patients in the FTL-

dominant subtype.

As previous studies reported, the dynamical characteristics

of the TME, chemokines, immune checkpoints, and tumor

immune infiltration have a clear underlying role in

tumorigenesis and progression (58, 59). Surgery, endocrine

therapy, and chemotherapy remain the fundamental

cornerstones of BRCA, nevertheless, immunotherapy has

gradually become one of the neoadjuvant combination therapy

strategies (60). Our further analysis proved that CDKN2A

overexpression was correlated to the increased immune cells,

enhanced immune checkpoints, and elevated chemokines,

indicating that CDKN2A might be applied as a potential
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immunotherapeutic therapy. The profile from CIBERTSORT

in our unsupervised groups is highly in line with current studies

on immune cell infiltration. Group 1, namely the “cold immune

subtype”, showed relatively high levels of naïve B cells, resting

memory CD4+ T, and M2 macrophages. Gunderson et al. (22)

reported that patients with overexpression of naïve B cells had a

sign of misery prognosis, verifying its carcinogenic effect. The

higher ratio of resting memory CD4+ T cells in our cold immune

subtype was consistent with the hints that resting memory CD4+

T cells predicted an undesirable clinical outcome (61). As an

anti-inflammatory and pro-tumor factor, M2 macrophage, was

widely recognized as a promoter of metastatic progression and

poor prognosis in BRCA (62). However, Spear et al.

demonstrated that the infiltration of memory B cells could

serve as an immunostimulatory factor and supported the

adaptive antitumor immunotherapy (63), which was consistent

with our analyses of INF-g activated subtype. As was mentioned

above, our unsupervised groups were correlated with the TME

and gave us potential immune therapeutic opportunities by

respectively modulating corresponding immune cells in

each group.

Additionally, our results from unsupervised clusters analysis

were consistent with prior investigations that TNBC was more

likely to harbor immunogenicity and more suitable for

immunotherapy than other molecular subtypes (64).

Moreover, current clinical investigations are paying attention

to making non-responders convert to responders or deepening

those occurred responses. The previous study reported that the

loss of CDKN2A significantly made non-small cell lung cancer

patients experience disease progression after immune

checkpoint blockade therapy (65). Horn et al. also

demonstrated that the frequent loss of the CDKN2A could

trigger the susceptibility to IFN-g resistance via JAK2 gene

deletion in melanoma (66), which was in line with our

conclusion that high expression of CDKN2A potentially

benefited from immunotherapy. However, the immunotherapy

response of CDKN2A in TNBC has not been reported. Our IPS

and verification of external BRCA cohorts (GSE173839)

comprehensively suggested that the expression of CDKN2A

could modulate the response to immunotherapy to TNBC, and

TNBC with high CDKN2A expression patients have higher

immunogenicity and benefit from immunotherapy.

Because the overexpression of CDKN2A was indicative of

desirable clinical outcomes for TNBC patients, we further

conducted WGCNA analysis to determine CDKN2A-derived

genes that were chiefly associated with TNBC and pathways of

FAC. Determining genes and utilizing cox and lasso analysis, we

established a CDKN2A-derived prognostic model, consisting of

TRIM59, EXO1, AGR2, ZNF703, and other 17 genes. According

to immunohistochemistry, Liu et al. (67) found that TRIM59

levels were notably higher in the TNBC subtype and promoted

the malignant behavior via regulating the AKT pathway, leading

to the undesirable prognosis. Previously, RT-qPCR also proved
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the overexpression of EXO1 in BRCA cells MDA-MB231, and

the elevated EXO1 might be utilized as an indicator of poor

BRCA prognosis (68). A clinical observation study (69) via the

cross-sectional method indicated that AGR2 expression is

positively associated with the incidence of distant metastases

in BRCA and upregulated AGR2 was a poor prognosis predictor.

Current research reported that ZNF703 expressed in

approximately 34.2% of TNBC via immunohistochemistry and

the knockdown of ZNF703 triggered a powerful inhibition of

TNBC cell proliferation and cell cycle, along with the

downregulation of cyclin D1, CDK4, CDK6, and E2F1 (70).

Remaining genes were firstly explored to have effects on the

prognosis of TNBC patients. Deeper studies of the biological

roles of these genes in TNBC are warranted and clinical

investigations of this signature need to be further tested.

In terms of the high heterogeneity of TNBC, it’s incredibly

difficult to find new curative targets and develop novel targeted

therapy. DNAmicroarray analysis conducted by Nielsen et al. (71)

indicated that overexpression of EGFR existed in 60% of TNBC

samples, which was consistent with our results. The study of

Livasy et al. (72) also validified that approximately 70% of TNBC

samples significantly expressed elevated EGFR. Hence, it is

inferred that EGFR may be a promising curative target in

TNBC, especially for TNBC patients with low risk-score

according to our model. As the irreversible ErbB family blocker,

afatinib (AFT) was approved by the FDA to treat the advanced

EGFR mutation-positive NSCLC (73). The investigations of AFT

treatment in BRCA are undergoing. In an open-label, multicenter,

and phase II clinical trial, Hickish et al. (74) reported that for

metastatic BRCA patients whose prior HER2-targeted therapy

had undesirably failed, AFT alone and combined with paclitaxel

or vinorelbine could enhance the objective response. Our data

demonstrated AFT may have a good therapeutic effect on TNBC.

Coherent with our outcomes, Wang et al. (75) developed AFT/2-

BP@PLGA@MD, a poly(d,l-lactide-glycolide) (PLGA)-based

intelligent bionic nanoplatform, which was covered under a

cancer cell membrane to block PD-1 and PD-L1. AFT/2-BP@

PLGA@MD nanoparticles integrated the targeted therapy of AFT

and immunotherapy, exhibiting enhanced inhibition of the

growth of TNBC. As a dual inhibitor of EGFR and HER2,

lapatinib could also induce inhibition of p-Akt and CIP2A and

trigger apoptosis in TNBC cell lines (76). LHNPs, human serum

albumin nanoparticles loaded with lapatinib, were developed by

the advanced nanoparticle albumin-bound technology, and could

inhibit the brain metastasis from TNBC ascribed to the

downregulation of metastasis-related proteins (77). Collectively,

based on the model, we proposed three drugs that may be

applicable to TNBC patients with low risk-score. Previous

ssGSEA results also presented the CDKN2A-associated genes

also correlated to the EGFR activity, indicating that CDKN2A

may function as a promising predictive biomarker for anti-EGFR

therapy in TNBC. Moreover, drawing support from advanced

nanoparticle technology, we put forward the perspective that
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developing novel nanoparticles combined with immunotherapy

and targeted therapy to achieve a better prognosis for

TNBC patients.
Conclusion

In summary, our study comprehensively analyzed the

biological role and prognostic values of CDKN2A in BRCA.

Given the strong association between CDKN2A and FAC, we

indicated that regulating pathways involved in CDKN2A-

associated genes or designing novel metal-based anticancer

agents to induce ferroptosis and cuproptosis may guide us to

develop new anti-cancer treatment strategies. Besides, we

substantively found that CDKN2A may serve as the

pioneering prognostic predictor for TNBC. TNBC patients

with high CDKN2A expression possess the higher

immunogenicity and benefit from immunotherapy. The

CDKN2A-derived model we established can also guide the

prognosis of TNBC patients. To further guide the treatment,

we also provided three drugs for precision medicine of TNBC via

targeting EGFR and indicated that CDKN2A may function as a

promising predictive biomarker for anti-EGFR therapy in

TNBC. Therefore, this investigation provides a rationale and

offers fresh perspectives and orientations for TNBC treatment.
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BRCA breast cancer

BLCA bladder urothelial carcinoma

CESC cervical squamous cell carcinoma and endocervical
adenocarcinoma

CHOL cholangiocarcinoma

COAD colon adenocarcinoma

HNSC head and neck cancer

KICH kidney chromophobe

KIRC kidney renal clear cell carcinoma

KIRP kidney renal papillary cell carcinoma

LIHC liver hepatocellular carcinoma

LUAD lung adenocarcinoma

LUSC lung squamous cell carcinoma

PRAD prostate adenocarcinoma

READ rectum adenocarcinoma

STAD stomach adenocarcinoma

THCA thyroid carcinoma

UCEC uterine corpus endometrial carcinoma

TNBC triple-negative breast cancer

CDKN2A cyclin-dependent kinase inhibitor 2A

FAC ferroptosis and cuproptosis

TME tumor microenvironment

Her2 human epidermal growth factor receptor 2

ER/PR estrogen receptor/progesterone receptor

ROS reactive oxygen species

TCA tricarboxylic acid

mRNA the messenger RNA

IPS Immunophenoscore

MAPK mitogen-activated protein kinase

VEGF vascular endothelial growth factor

PCA principal component analysis

Bicor biweight midcorrelation

ROC receiver operating characteristic

GDSC Genomics of Drug Sensitivity in Cancer

PRISM Profiling Relative Inhibition Simultaneously in Mixtures

CTRP Cancer Therapeutics Response Portal

OS overall survival

DEGs differentially expressed genes

TDEGs TNBC-specific differentially expressed genes

STEAP4 six-transmembrane epithelial antigens of prostate 4

GPER G protein-coupled estrogen receptor

AFT afatinib

TCGA The Cancer Genome Atlas

GEO Gene Expression Omnibus

TIMER Tumor Immune Estimation Resource

GEPIA Gene expression profiling interactive analysis

HPA Human Protein Atlas

TISIDB Tumor and Immune System Interaction Database

(Continued)
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Continued

CIBERSORT Cell-type Identification By Estimating Relative Subsets Of RNA
Transcripts

ssGSEA Single-Sample Gene Set Enrichment Analysis

TCIA The Cancer Immunome Atlas

GO Gene Ontology

KEGG Kyoto Encyclopedia of Genes

Genomes

MSigDB Molecular Signatures Database

LASSO Least Absolute Shrinkage and Selection Operator.
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