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The role of the complement
system in kidney glomerular
capillary thrombosis

Yoko Yoshida* and Hiroshi Nishi

Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine,
Tokyo, Japan
The complement system is part of the innate immune system. The crucial step

in activating the complement system is the generation and regulation of C3

convertase complexes, which are needed to generate opsonins that promote

phagocytosis, to generate C3a that regulates inflammation, and to initiate the

lytic terminal pathway through the generation and activity of C5 convertases. A

growing body of evidence has highlighted the interplay between the

complement system, coagulation system, platelets, neutrophils, and

endothelial cells. The kidneys are highly susceptible to complement-

mediated injury in several genetic, infectious, and autoimmune diseases.

Atypical hemolytic uremic syndrome (aHUS) and lupus nephritis (LN) are both

characterized by thrombosis in the glomerular capillaries of the kidneys. In

aHUS, congenital or acquired defects in complement regulators may trigger

platelet aggregation and activation, resulting in the formation of platelet-rich

thrombi in the kidneys. Because glomerular vasculopathy is usually noted with

immunoglobulin and complement accumulation in LN, complement-

mediated activation of tissue factors could partly explain the autoimmune

mechanism of thrombosis. Thus, kidney glomerular capillary thrombosis is

mediated by complement dysregulation and may also be associated with

complement overactivation. Further investigation is required to clarify the

interaction between these vascular components and develop specific

therapeutic approaches.
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Introduction

Complement system

The complement system is essential for the innate immune

system to eliminate invading pathogens. The crucial step in

activating the complement system is the generation and

regulation of C3 convertase. All complement mechanisms in

immune defense, namely opsonization, phagocytosis,

inflammation, and target cell lysis, rely on the enzymatic step that

generates C3 convertase. The complement system is activated by

three different pathways: the classical (CP), lectin (LP), and

alternative (AP) pathways (Figure 1). Although each of these

routes has a different activation mechanism, they all produce C3

convertase, which cleaves C3 into C3a and C3b to activate the

terminal complement pathway and generate C5b-9 (1).

The CP is activated by C1q recognition of antigen-bound

antibodies, which eventually induces C1s to produce the CP C3
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convertase (C4bC2b) through the cleavage of C2 and C4. In the

LP, the binding of mannose-binding lectin (MBL) to microbial

carbohydrates triggers the generation of C3 convertase

(C4bC2b) via the MBL-associated serine proteases 1 and 2

(MASP-1 and MASP-2). In contrast, the AP is constitutively

activated at low levels by the hydrolysis of C3 (C3(H2O)). C3

(H2O) rapidly reacts with complement factors B (FB) and D,

resulting in the formation of an initial fluid-phase C3 convertase

(C3(H2O)Bb). This initial convertase can cleave C3 and generate

C3b, which is generally inactivated by various complement

regulatory proteins. However, in the presence of pathogens,

C3b binds to the target surface and induces the formation of

C3 convertase (C3bBb). All C3 convertases (CP/LP C4bC2b and

AP C3bBb) can attach to the C3b fragment and form C5

convertases (CP/LP C4bC2bC3b and AP C3bBbC3b), which

cleave C5 into C5a and C5b. The C5b molecule sequentially

binds to C6, C7, and C8 to form C5b-8. Finally, C5b-8 binds to

C9, which polymerizes and forms a transmembrane ring, leading
FIGURE 1

Complement activation pathway. The complement system is activated via three different pathways: classical (CP), lectin (LP), and alternative (AP).
The CP is activated by the binding of C1q to antigen-bound antibodies. This reaction activates C1s and C1r, leading to the formation of the CP
C3 convertase (C4bC2b). The LP generates the same C3 convertase as the CP, but its activation is caused by mannose-binding lectin (MBL) and
MBL-associated serine proteases (MASPs). The AP is spontaneously activated via hydrolysis of C3 (C3 (H2O)), which generates the initial C3
convertase (C3(H2O)Bb). All three activation routes merge at the cleavage of C3 and lead to the formation of the C5 convertases (C4bC2bC3b
and C3bBbC3b), which cleave C5 into C5a and C5b. The C5b fragment forms the membrane attack complex (C5b-9, MAC) by binding to C6,
C7, C8, and C9. C9 polymerization is required for C5b-9 generation. C5b-9 creates pores in the membrane and lyses the target cells. The
fragment of C3b is opsonin, and C3a and C5a are also known as anaphylatoxins and chemotactic factors, respectively.
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to the formation of C5b-9, which is also known as the membrane

attack complex (MAC).

Although cell lysis by C5b-9 is effective against gram-negative

bacteria, the complement system also acts against gram-positive

bacteria by promoting opsonization and neutrophil phagocytosis.

The C3b and C4b fragments are opsonins, and opsonized pathogens

are recognized by complement receptor type 1 (CR1) on neutrophils,

which then phagocytose them. In addition to opsonization,

complement C3b enhances antibody generation by B cells, and

another important role of complement is the generation of two

anaphylatoxins, C3a and C5a. These peptides support inflammation

and activate cells expressing anaphylatoxin receptors (1).
Negative regulators of the
complement system and their
expression in the kidneys

Various complement-regulatory proteins tightly control

complement activation to protect autologous tissues from

complement attack (2–4). The plasma protein C1 inhibitor

(C1-INH) prevents the initiation of the CP and LP by binding

to and inactivating C1r, C1s, and MASPs (5). During C3

convertase formation, various complement regulators function

as cofactors for factor I (FI), a serine protease that inactivates

C3b and C4b. Some regulators also exhibit decay acceleration

activity, which decreases the stability of C3 convertases by

accelerating the dissociation of Bb from C3bBb and/or C2b

from C4bC2b (1, 2, 4).

Factor H (FH) and C4b-binding protein (C4BP) are fluid-

phase proteins associated with FI-mediated C3b or C4b cleavage,

as well as the decay acceleration activity of the AP or CP C3

convertase (1, 2, 4). Cell membrane inhibitors, such as CR1 and

membrane cofactor protein (MCP), also function as cofactors

for the inactivation of C3b and C4b via FI. CR1 also shows decay

acceleration activity with respect to the CP C3 convertase, but

MCP does not. Decay accelerating factor (DAF or CD55) and

CD59 are glycosylphosphatidylinositol (GPI)-anchored

membrane inhibitors of the complement system. As its name

implies, DAF accelerates the decay of C3/C5 convertases, and

CD59 inhibits C5b-9 formation by binding to C8 and C9. CR1-

related gene/-protein y (Crry) is a rodent-specific membrane

regulator with both cofactor and decay-accelerating activities,

and is similar to human MCP and DAF (6). Animal experiments

using Crry-neutralizing antibodies have revealed that Crry is a

critical complement regulator in rodent kidneys (2).

In the context of renal physiology, MCP, CR1, DAF, and CD59

are expressed in the glomeruli and protect them from complement

attacks. The expression levels of these regulatory proteins can be

altered by complement attack and in various glomerular disorders

(2). MCP, DAF, and CD59 are ubiquitously expressed in all resident

glomerular cells, although DAF is barely detectable in the

glomerular cells of normal kidneys (2). The expression of MCP
Frontiers in Immunology 03
and DAF, but not that of CD59, is concentrated in the

juxtaglomerular apparatus (3). In contrast, the expression of CR1

is mainly restricted to podocytes (2).

Although FH is a fluid phase complement regulatory

protein, it is also present on the cell surface. The C-terminal

region of FH can bind to glycosaminoglycans and sialic acid on

the cell surface. After binding to the cell surface, it can trap

deposited C3b to induce FI-mediated C3b inactivation (4).

Clinically, FH dysfunction is highly associated with renal

impairment caused by atypical hemolytic uremic syndrome

(aHUS) and C3 glomerulopathy, suggesting that FH-mediated

complement regulation plays an essential role in kidney health.
Roles of the complement system
and inflammation in thrombosis

The complement system, coagulation-fibrinolytic system,

platelets, and leukocytes all form a close network and interact

with each other (7). Therefore, dysregulation of any component

can lead to multiple diseases with different pathological

conditions and clinical manifestations (8) (Figure 2).
Complement and coagulation systems

Both the complement and coagulation systems share

common cascade pathways that involve proteolysis and enable

an inflammatory response as a way of defending the host (9–11).

The complement system modulates the coagulation cascade

in several ways. Both C5- and C3-deficient mice have longer tail

bleeding time and reduced susceptibility to thrombosis,

indicating that the complement system plays an essential role

in the coagulation process (12). MASP-1 and MASP-2 cleave

coagulation factors such as prothrombin, fibrinogen, factor XIII,

and thrombin-activatable fibrinolysis inhibitors in vitro (13, 14).

C5a and C5b-9 induce tissue factor (TF) expression, which

initiates the extrinsic coagulation pathway in both endothelial

cells and neutrophils (9, 15). C5a also induces the secretion of

ultra large von Willebrand factor multimers and P-selectin and

increases neutrophil adhesion to cultured endothelial cells (16).

These suggest that C5a is an important inflammatory mediator

between neutrophils and endothelial cells during the acute

inflammatory response.

Coagulation factors can also activate the complement

cascade at different levels. Thrombin cleaves C3 and C5 into

C3a and C5a in vitro, which amplifies the activation of the

complement system and the induction of chemotaxis and

neutrophil activation (17, 18). Plasmin also cleaves C3 and C5

(17). Plasminogen, on the other hand, enhances FI-mediated

cleavage of C3b in the presence of FH, and plasmin degrades

C3b (19). Factor XIa (FXIa) and FH modulate each other. FXIa
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cleaves FH, which decreases the cofactor and decay acceleration

activity of FH and the ability of FH to bind to human endothelial

cells. Conversely, FH inhibits FXIa activation via either

thrombin or factor XIIa (20).
Complement system and platelets

Various complement components specifically activate

platelets (10, 11). Thrombin-mediated platelet aggregation and

release are enhanced by several complement components, such

as C3, C5, C6, C7, C8, and C9 (21). Most of these proteins are

stored in platelets and are secreted following activation (22–24).

The binding of C1q to the C1q receptor (gC1qR/p33) expressed

on platelets activates glycoprotein (GP) IIb-IIIa fibrinogen

binding sites and P-selectin expression, which contributes to

the thrombotic events associated with complement activation

(25). The binding of C5b-9 induces a change in the membrane

potential of platelets, thereby exposing the binding sites to factor

Va and serving as a basis for the proteolytic generation of
Frontiers in Immunology 04
thrombin (26). In addition, anaphylatoxins C3a and C5a

induce platelet activation and aggregation (27).

Platelets also release variousmolecules that activate or modulate

the complement system (10, 11). Chondroitin sulfate released by

thrombin-activated platelets induces fluid-phase activation of the

CP in a C1q-dependent manner (28). Platelet microparticles also

support the activation of the CP, whereas they induce the

expression of C1-INH from the a-granules of platelets (29).

Intriguingly, P-selectin expressed in activated platelets acts as a

receptor for C3b, thereby initiating the activation of the AP (30).

Experimental animal data have shown that C3, but not C5, is not

redundant in platelet activation (12).

Furthermore, platelets have a complement regulatory system

that limits complement activation on their surfaces. Platelets

express MCP, CD55, and CD59 and carry C1-INH and FH (31,

32) in their a granules. In addition, activated platelets and

neutrophils can remove C5b-9 in the form of microparticles

(33). The absence or impairment of such regulatory proteins is

associated with platelet dysfunction, alterations in platelet

activation, or thrombocytopenia (8).
FIGURE 2

Schematic overview of the interaction between the complement system and the coagulation system, platelets, and neutrophils. (i) MASPs can
cleave coagulation factors, such as prothrombin, fibrinogen, and factor XIII. (ii) C5a and C5b-9 enhance blood thrombogenicity through
upregulation of TF in endothelial cells and neutrophils. (iii) C5a induces UL-VWF secretion and P-selectin expression. Conversely, coagulation
factors activate the complement cascade. (iv) Thrombin and plasmin can generate C3a and C5a, whereas plasminogen enhances FI-mediated
C3b cleavage in the presence of FH and plasmin degrades C3b. (v) Factor XIa decreases the cofactor and decay acceleration activity of FH and
the ability binding of FH to bind to human endothelial cells. Conversely, FH inhibits FXIa activation.
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Complement system, leukocytes,
and the endothelium

Neutrophils accumulate at inflamed sites with the help of the

chemoattractant C5a and phagocytose bacteria with surface

deposits of C3b or iC3b via CR1 and CR3 (34, 35). Neutrophil

extracellular traps (NETs) are also considered part of the human

innate immune system. These form when neutrophils respond to

bacteria or immune complexes by ejecting nuclear chromatin

and digestive enzymes to kill pathogens (36) and can sometimes

evoke autoimmune tissue injury (37, 38).

Properdin is a positive complement regulator that stabilizes

C3 convertase in the AP (39). Intriguingly, activated neutrophils

(including those activated by C5a) release C3, FB, and properdin

(40), and induce the formation of AP C3 convertase, leading to

C5a generation. C5a activates additional neutrophils, which

secrete key components of the AP. C3- and C3a receptor

(C3aR)-deficient knockout mice fail to form NETs (41, 42),

suggesting that the complement system also affects the

formation of NETs. Furthermore, C3b opsonization promoted

the release of NETs (43). In addition, neutrophils stimulated

with phorbol myristate acetate (PMA) secrete properdin and

deposit it on NETs and certain bacteria to induce the formation

of C5b–9 (40).

FH, a negative regulator of the AP, binds to neutrophils,

inhibits the formation of PMA-stimulated NETs (44), and

reduces the inflammatory response (45). Conversely, binding

of C1q prevents the degradation of NETs by directly inhibiting

DNAse-I by C1q (46). NETs also exert thrombogenic activity

through their expression of functionally active TF (47), which is

disrupted by complement C3 inhibition (48).
Role of the complement system in
glomerular capillary thrombosis in
kidney disorders

Thrombotic microangiopathy

Thrombotic microangiopathy (TMA) is a pathological

condition caused by the formation of microvascular thrombi

that leads to thrombocytopenia, microangiopathic hemolytic

anemia, and end-organ damage (49). TMA is caused by

various hereditary or acquired factors, and is classified into

four main categories: thrombotic thrombocytopenic purpura

(TTP), hemolytic uremic syndrome (HUS) caused by Shiga

toxin-producing Escherichia coli (STEC), atypical HUS

(aHUS), and secondary TMA.

TTP is caused by a severe deficiency of ADAMTS13 (a

disintegrin-like metalloprotease with thrombospondin type 1

motif, member 13) resulting from genetic or acquired defects

(50). STEC-induced HUS is predominantly found in children
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and is diagnosed based on the direct detection of Shiga toxins in

feces and the presence of ant i- l ipopolysaccharide

immunoglobulin M antibodies (51).

aHUS is a complement-mediated TMA caused by the

overactivation of the AP as a result of inherited and/or acquired

complement abnormalities (52, 53). aHUS mainly targets the

kidneys, and 50-70% of patients develop end-stage kidney

disease (ESKD) unless they receive early and appropriate

treatment (52). The efficacy and safety of the complement-

inhibiting drug, eculizumab (54, 55) and ravulizumab (56, 57),

have been described in many reports. Genetic variants of several

complement regulators (FH, FI, andMCP) and activators (C3 and

FB) have been identified in up to 50% of patients with aHUS (58).

Thus, complementary diagnostic approaches have been developed

to address the limitations of comprehensive gene analysis (59, 60).

In addition, the acquisition of inhibitory autoantibodies against

FH can cause aHUS (52, 61). In both genetic and acquired defects,

impaired complement control on self-cell surfaces via the

formation of C5b-9 leads to endothelial tissue damage and the

generation of thrombi in the microvasculature (62).

Thrombocytopenia is a typical feature of TMA in which

platelet thrombi are found in the capillaries and arterioles (62,

63). As mentioned above, various complement regulators

normally protect platelets from complement attack; thus,

defects in these regulators in aHUS may cause platelet

activation and the formation of platelet-rich microvascular

thrombi. Although there are few reports regarding the

coagulation profile of aHUS (64), genetic variants of some

coagulation-related proteins are associated with the

pathogenesis of aHUS (65–67). Because the activations of

complement and coagulation systems synergistically amplify

each other as discussed earlier, this vicious cycle may be

associated with the formation of microvascular thrombi

in aHUS.

Patients with FH variants have a significantly increased risk

of ESKD than those with variants in CD46 (MCP) (68). FH

variants associated with aHUS are primarily located at the C-

terminus, and inhibitory autoantibodies also target the C-

terminal region of FH (68–70). These genetic and acquired

defects inhibit FH binding to the cell surface, resulting in C5b-

9 formation in endothelial cells and platelets (62, 71). Although

it is still unclear why complement damage seems to be restricted

to the kidneys, heparan sulfate expressed in the kidneys appears

critical for FH binding on cell surfaces (72).

In addition to TTP, STEC-induced HUS, and aHUS, a

variety of pathological conditions such as autoimmune disease

(73, 74), drug use (75), infection (76, 77), malignancy (78),

malignant hypertension (79–81), pregnancy (82, 83), and

transplantation (84, 85) can trigger secondary TMA. Although

TTP and STEC-HUS have well-established diagnostic tests, the

differentiation between aHUS and secondary TMA remains

controversial because pathogenic variants in complement-

related genes are only identified in about half of the patients
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with aHUS. In addition, complement abnormalities have been

found in some secondary TMA (86).

Complement abnormalities may play a role in secondary

TMA caused by malignant hypertension (79–81) and pregnancy

(82). Rare genetic variants in complement-related genes have

been identified in approximately 30-70% of patients with

malignant hypertension-associated TMA (79–81). In these

cases, ex vivo analysis showed that patient sera induced

massive C5b-9 formation in microvasculature endothelial cells,

suggesting that these variants induced excessive complement

activation. In addition, patients with over-deposition of C5b-9 in

vascular endothelial cells had a higher incidence of ESKD, and

the administration of anti-C5 antibodies improved renal

function in these cases.
Lupus nephritis

Systemic lupus erythematosus (SLE) is a autoimmune disease

that primarily affects young women. SLE affects the kidneys in

approximately 50% of such patients as lupus nephritis (LN) (87).

A variety of abnormal immune responses, such as defects in the

clearance of immune complexes and apoptotic cells, nucleic acid-

sensing abilities, lymphocyte signaling, and interferon-production

have a central role in the pathogenesis of this disease (88, 89).

Because immune complexes are deposited in tissues, and the

deposition of C1q in tissues is relatively characteristic of SLE, it is

plausible that these immune complexes activate the complement

system and decrease complement levels (C3, C4, and CH50) in the

peripheral blood. Activation of the complement systemmay cause

inflammatory injury to tissues, as C3 or C4 fragments bind to

complement receptors on B lymphocytes to enhance antibody

generation (90, 91). However, this cannot explain why the

deficiency of complement components such as C1q, C1s, C1r,

C2, and C4 causes lupus-like symptoms (92). Deficiencies in this

component activity may disturb the efficient disposal of dying and

dead cells (93) or the normal tolerance mechanisms of

lymphocytes (94), with both leading to the generation

of autoantibodies.

The International Society of Nephrology/Renal Pathology

Society meeting report mentioned the importance to have a

standardized approach and terminology to distinguish ordinary

arterial or arteriolar sclerosis from lupus-related lesions such as

vasculopathy associated with immune complex deposition,

vasculitis, and TMA (95). Indeed, within the glomerular

capillaries and small arterioles in LN kidney specimens,

microvascular thrombosis is conventionally recognized as one

of the most common histopathological findings (96, 97). This

characteristic finding has been variously described as “lupus

vasculopathy (LV)” (97, 98), “immunoglobulin microvascular

cast” (96), and “glomerular thrombosis” (99). LV is documented
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predominantly in diffuse proliferative LN, but the underlying

etiology and its prognostic value remain undetermined (96, 97,

100) . LV is characterized by the accumulat ion of

immunoglobulins and complements in the vascular wall (98).

This results in luminal narrowing and suggests the presence of

immune-mediated vascular injury (98). Notably, unlike lupus

vasculitis, LV does not involve the deposition of inflammatory

cells in the vascular wall (98).

In lupus-prone MRL/lpr mice, treatment with aspirin and

dexamethasone partially attenuates glomerular thrombosis

(101). In rodents with nephrotoxic nephritis that mimics the

downstream effector phase of LN (102), Fcg receptors (103, 104)
and components of the complement system (105, 106) have been

implicated in the pathogenesis of tissue injury, including

glomerular thrombosis. These experimental findings in

animals suggest that inflammation may promote kidney

glomerular thrombosis in LN.

Antiphospholipid syndrome (APS) frequently occurs in SLE

and is characterized by vascular thrombosis, repeated miscarriages,

and the presence of antiphospholipid antibodies (APLA) (107).

Although patients with APS show a prolonged activated partial

thromboplastin time, APLA exert prothrombotic effects because

they inhibit b2-glycosylphosphatidylinisotol, which is an inhibitory
regulator of phospholipid-dependent coagulation, protein C

activation, thrombomodulin, and heparan sulfate on vascular

endothelial cells (108, 109). Intriguingly, C4 deficiency attenuates

fetal loss in mice with APS (110). Moreover, APLA stimulate TF

activation in myelomonocytic cells, and mice deficient in C3,

unlike mice deficient in C5, are protected from in vivo thrombus

formation induced by cofactor-independent APLA, suggesting that

C3 is required for TF activation and APLA-induced thrombosis

(111). Because complement mediates TF enrichment in NETs (47,

48), neutrophils may be another player in thrombin formation in

this context.
Primary glomerulonephritis

Glomerulonephritis refers to a group of kidney diseases

affecting the glomeruli due to the damage mediated by

immunological dysregulation. Hypocomplementemia is a

significant feature of kidney glomerular diseases such as post-

infectious glomerulonephritis, immune complex-mediated

membranoproliferative glomerulonephritis, C3 glomerulopathy,

dense deposit diseases, and IgG4-related kidney disease (112,

113). In addition, the majority of patients with IgA nephropathy

(114) or membranous nephropathy (115) have local C3 deposits in

the glomeruli. Other complement elements, such as the FH-related

proteins 1 and 5 and lectin pathway products, also accumulate

(114–116). These findings suggest that systemic or local activation

of the complement system may cause kidney tissue damage.
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However, thrombosis is rarely observed in these patients

unless they develop heavy proteinuria (117), which evokes a

hypercoagulable state due to the urinary loss of coagulation

regulatory proteins, including antithrombin and protein S,

which counterbalances the increase in the synthesis rate of

hemostatic proteins in the liver (118). Further studies are

needed to determine the association of the development of

thrombosis with complement-mediated kidney injury.
Conclusion

The complement system has long been recognized as a

central mediator of innate immune defenses that eliminate

invading pathogens. Accumulating evidence has revealed how

the complement system can modulate the function of the

coagulation system, platelets, and neutrophils, and contribute

to thrombosis. Further research on the link between the

complement system and kidney disorders may deepen our

understanding of complement-dependent mechanisms that

promote glomerular capillary thrombosis and severely impair

glomerular filtration. Such insights may provide novel

therapeutic options for patients and clinicians.
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