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I-restricted immunogenic
neoantigens in triple negative
breast cancer
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Immune checkpoint inhibitor (ICI)-based immunotherapy in triple negative

breast cancer (TNBC) is achieving limited therapeutic results, requiring the

development of more potent strategies. Combination of ICI with vaccination

strategies would enhance antitumor immunity and response rates to ICI in

patients having poorly infiltrated tumors. In heavily mutated tumors,

neoantigens (neoAgs) resulting from tumor mutations have induced potent

responses when used as vaccines. Thus, our aim was the identification of

immunogenic neoAgs suitable as vaccines in TNBC patients. By using whole

exome sequencing, RNAseq and HLA binding algorithms of tumor samples

from a cohort of eight TNBC patients, we identified a median of 60 mutations/

patient, which originated a putative median number of 98 HLA class I-restricted

neoAgs. Considering a group of 27 predicted neoAgs presented by HLA-

A*02:01 allele in two patients, peptide binding to HLA was experimentally

confirmed in 63% of them, whereas 55% were immunogenic in vivo in HLA-

A*02:01+ transgenic mice, inducing T-cells against the mutated but not the

wild-type peptide sequence. Vaccination with peptide pools or DNA plasmids

expressing these neoAgs induced polyepitopic T-cell responses, which

recognized neoAg-expressing tumor cells. These results suggest that TNBC

tumors harbor neoAgs potentially useful in therapeutic vaccines, opening the

way for new combined immunotherapies.

KEYWORDS

triple negative breast cancer, neoantigens, immunogenicity, polyepitopic vaccines,
HLA-A*02:01 epitopes
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Introduction

Triple negative is the most aggressive breast cancer subtype.

In the metastatic scenario, median overall survival is about 15

months, as compared to other biological subtypes that exceed 4

years (1). Nowadays, improvement in survival has been shown

dramatically in the HER2 overexpressed subtype due to the

incorporation of new targeted therapies, missing this benefit in

advanced triple negative breast cancer (TNBC) (2). Thus, new

therapeutic strategies are mandatory in TNBC patients.

Pembrolizumab, an anti PD-1 monoclonal antibody, has been

approved by FDA in the neoadjuvant scenario in stage II and III

TNBC patients, due to the improvement shown in pathological

complete responses as well as in event-free survival (EFS), when

combined with anthracyclines and taxanes plus platinum salts-

based chemotherapy (3).

Regarding immunotherapy, TNBC has several features that

suggest its suitability to therapies based on immune checkpoint

inhibitors (ICI). When compared with other types of breast

tumors, TNBC has an enriched lymphocytic infiltrate, higher

levels of tumor mutational burden (TMB) and overexpression of

immune checkpoints (4). Despite these general features, TNBC

tumors have a heterogeneous microenvironment, with

differences in the amount and types of immune infiltrating

cells (5, 6). ICI, like anti-PD-1/PD-L1 antibodies, in

combination with chemotherapy, have been approved for

positive PD-L1 metastatic TNBC (3, 7). However, as in other

tumors, a proportion of patients do not respond, making

necessary the development of alternative strategies with

improved efficacy. In this regard, immunotherapies should be

tailored according to features of the tumor immune

microenvironment. As opposed to those patients with highly

infiltrated tumors that contain lymphocytes expressing

the immune targets, there are other patients with tumors

with lower presence of immune cell populations and

downregulation of most immune targets (8). Vaccination has

been traditionally used to promote antitumor immunity;

however, despite successful activation of tumor-specific T-cells,

the immunosuppressive tumor microenvironment, including

ligands for immune checkpoints, may hinder effector functions

of these cells (9). Therefore, combination of immunostimulatory

vaccines with ICI is an attractive approach to enhance response

rates to immunotherapy in patients with cold tumors. Several

vaccines have been used in preclinical models and TNBC

patients, using as antigens folate receptor, alpha-lactalbumin,

MUC-1, Brachiury or cancer-testis antigens, among others

(10–12). Our group recently reported results on a cellular

vaccine based on tumor lysate-pulsed dendritic cells (13).

These vaccines were usually safe: thus clinical and immune

responses were detected in many cases, however no impact on

survival was shown. A strategy to improve vaccine potency has

been the selection of more immunogenic antigens (9). Many

antigens used in vaccination protocols are self-antigens whose
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repertoire of T cells has been negatively selected during thymic

development, resulting in a subset of T cells with lower affinity.

Moreover, autologous tumor cell lysates, despite their content of

personal ized antigens , may potential ly include an

overrepresentation of self-antigens that would mask the

repertoire of targetable antigens. Neoantigens (neoAgs),

antigens arising as a consequence of tumor mutations, are new

molecules non subjected to clonal deletion, and therefore, may

induce potent tumor-specific responses (14). The amount of

neoAgs in a tumor associates with its TMB, which is positively

correlated with response to ICI (15). Immune responses against

these antigens have been detected in patients responding to ICI,

suggesting their relevance as rejection antigens (16, 17).

Accordingly, they have gained great interest as candidates to

be included in vaccines (18–21). Due to these reasons, we aimed

to demonstrate that TNBC tumors could harbor mutations

potentially considered as neoAgs, and that these sequences are

immunogenic and could be included in vaccines.
Patients and methods

Patients and samples

The studies involving human participants were reviewed and

approved by Ethical and Scientific Committees, Universidad de

Navarra (ref # 2017.210). The patients/participants provided

their written informed consent to participate in this study. Eight

patients with II-III stage TNBC diagnosis (only one patient with

IV oligometastatic stage) were included in the study. Median age

was 51 (35–74) years old. All patients received neoadjuvant

chemotherapy based on sequential anthracyclines and taxanes ±

platinum salts plus radiation therapy. Seven patients were

evaluable for response and pathological complete response

(residual cancer burden, RCB=0) was reached in 71.4% of the

patients (2 patients with RCB=2). No patients received adjuvant

systemic therapy.

A needle tumor biopsy was extracted at diagnosis and

preserved at -80°C in RNAlater. Mononuclear cells were

isolated by Ficoll-gradient from EDTA-anticoagulated

whole blood extracted at diagnosis and preserved at -80°C

as dried pellet. Tumor breast biopsies and blood samples and

data from patients were provided by the Biobank of the

University of Navarra and were processed following

standard operating procedures approved by the Ethical and

Scientific Committees.
Whole exome sequencing and RNAseq

For Whole exome sequencing (WES), genomic DNA was

purified from tumor biopsy and blood samples (normal tissue)

(Maxwell 16 Tissue DNA Purification Kit, Promega) and preserved
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at -80°C. WES library (SureSelect Human All Exon V6) and

sequencing (NovaSeq6000 150PE 18Gb 100X on target) was

subcontracted to Macrogen Inc (Korea). WES data were analyzed

with an in-house bioinformatics pipeline. Briefly, alignments of

WES to the reference human genome build hg38 was performed

using BWA-mem algorithm (0.7.17). Duplicates were marked using

Picard’s MarkDuplicates tool. Insertion and deletion (indel)

realignment and base recalibration were performed according to

Genome Analysis Toolkit (GATK) best practices. SAMtools was

used to create tumor and normal pileup files. Different mutation

callers were used to call somatic non-synonymous SNVs (single

nucleotide variants) [Mutect3.8, Varscan2, SomaticSniper (version

1.0.5.0), and Strelka(version 2.9.2)]. Mutations were annotated

using Annovar. Only mutations annotated as exonic and non

synonymous_(SNV mutation) in RefGene were considered. To

generate an initial list of putative mutations for evaluation, the

following filters were used: a tumor and normal coverage of greater

than 6, a variant allele frequency (VAF) ≥ 5%, variant read counts ≥

4. WES data were used for HLA genotyping using HLA-HD

algorithm (22).

RNA was purified from tumor biopsy (Maxwell 16 LEV

simplyRNA Tissue Kit, Promega) and preserved at -80 °C. RNA

sequencing (RNAseq) was subcontracted to Macrogen Inc

(Korea). Briefly, complementary DNA libraries were

constructed from High quality RNA (1 mg) using TruSeq

stranded Total RNA Sample Prep Kit. Library was subjected to

paired-end sequencing using the NovaSeq platform (10 Gb

100PE 100Mreads/sample). Alignments were performed using

the STAR method to human genome build hg38. Duplicates

were marked and Sorted using Picard’s MarkDuplicates tool.

Reads were then split and trimmed using GATK SplitNTrim

tool. In/Del realignment and base recalibration were performed

using GATK toolbox. Gene counts were calculated using

featureCount (23), Cufflinks (24) and HTseq (25).
TMB calculation and
neoantigen selection

For TMB calculation, SNVs detected by Mutect2 (3.8) were

used. For neoantigen selection, SNVs called by 2 or more callers

were considered. TMB was calculated as the ratio between the

number of mutations and the size of the sequenced regions (35.7

Mb). For those patients with available RNAseq, quartiles of

FPKM were calculated. Mutations identified by WES analysis

were considered as “expressed mutations” if at least one of the

gene counter algorithms was expressed in 3rd or 4th quartile.

Once mutations were filtered, 29-mer amino acid sequences,

containing the mutated residue at position 15, were designed.

These sequences were applied to NetMHCPan 4.0 to predict

peptide binding to patients’ own HLA class I molecules.
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Cell lines

T2 cells (26), used in HLA binding experiments, and MC703

cells (a fibrosarcoma cell line generated in HHDmice; a kind gift

of Dr. Matthias Leisegang; Berlin, Germany), used for in vitro T

cell assays, were grown in RPMI 1640 medium (Gibco)

containing 10% FBS (Sigma) and antibiotics (100U/mL

penicillin, 100 mg/mL streptomycin, Gibco). Platinum-A (Plat-

A) (Cell Biolabs, Inc.) were cultured in Plat-A medium (DMEM-

Glutamax, Gibco), FCS 10%, sodium pyruvate 1%, essential

amino acids 1%, HEPES (all from Gibco), and antibiotics,

supplemented with Puromycin (1mg/ml) and Blasticidin (10

mg/ml).
Binding assays to HLA-A*02:01
molecules

T2 cells (2.5 × 105/well) were incubated overnight at 37°C in

96-well microplates with peptides at 100 mM in RPMI 1640

medium containing 10% FBS and antibiotics (complete RPMI).

They were washed and stained with FITC-labeled anti-HLA-

A*02 (Genetex) (2 mg/mL, 15 min at room temperature) and

mean fluorescence intensity (MFI) was determined by flow

cytometry using a FACSCantoII (Becton Dickinson) flow

cytometer and FlowJo software (Tree Star Inc.). Peptide

binding was expressed as Fluorescence index (FI) using the

following formula: (MFI with peptide – MFI without peptide)/

MFI without peptide.
Peptides

Nine- and fifteen-mer peptides containing HLA-A*02:01

epitopes were purchased from GeneCust (Boynes, France) with

>90% purity. They were solubilized in PBS containing 10%

DMSO and preserved at -20°C.
Plasmids

Plasmids pBK-T-SFV-b12A-TMGP69 and pBK-T-SFV-

b12A-TMGP73 used in immunization experiments have a

cytomegalovirus (CMV) promoter driving expression of the

Semliki Forest Virus (SFV) vector, which contains the SFV

replicase, and a subgenomic promoter driving the expression

of the inserts of interest. Each insert was fused to the b1 SFV

translation enhancer using the 2A self-protease from foot and

mouth disease virus as a linker. The inserts contain a signal

peptide from MHC class I, followed by selected 15-mer neoAgs

located in tandem and the MHC class I trafficking domain
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(MITD) sequence (27). Inserts encoding the neoAgs (TMGP69

and TMGP73) were obtained from Genscript and cloned into

MSCV-IRES-Thy1.1 DEST and pBK-T-SFV-b12A (28) using

BglII&SalI and Apa I sites, respectively. MSCV-IRES-Thy1.1

DEST was a gift from Anjana Rao (Addgene plasmid # 17442).

Plasmids pMSCV-TMGP69-IRES-Thy1.1, pMSCV-TMGP73-

IRES-Thy1.1 encoding the neoAgs and control plasmid

(MSCV-IRES-Thy1.1 DEST) were used to prepare retrovirus

for transduction experiments.
Retrovirus production

Retroviral particles were generated using Plat-A cell-

mediated transfection. Plat-A cells (8×105 cells/well) were

seeded 24h before transfection in 6-well plates in 2 mL/well of

infection medium (Plat-A medium without antibiotics). 20-24h

later, once the cells had reached 70% confluence, 500mL/well of a
mix containing plasmids and Lipofectamine 2000 (Thermo

Fisher Scientific) were added. The mixtures contained 3 mg/
well of transgene carrying plasmid, 2 mg/well of pMD2.G (helper

plasmid) and 10 mL/well of Lipofectamine 2000, and were

prepared in OPTIMEM medium according to the

manufacturer´s protocol. pMD2.G was a gift from Didier

Trono (Addgene plasmid # 12259). Plat-A medium was

changed 24h post-transfection. The supernatant containing the

retroviruses was collected 48h and 72h post-transfection. Debris

was removed by centrifugation at 2000rpm for 1 minute.

Supernatants were kept at 4°C until cell transduction.
Cell transfection and selection

MC703 cells were transduced twice (two consecutive days)

with retrovirus-containing supernatants in the presence of

polybrene (10 mg/mL) (Sigma). Efficiency of transfection (90%)

was checked at day 4 from infection by measuring the surface

expression of CD90.1 (Thy1.1) protein by staining with

phycoerythrin-labeled anti-mouse CD90.1 (Thy1.1) (clone

OX-7) mAb by flow cytometry. Transduced cells were used to

evaluate the T cell response as described below.
Mice and immunization

HHD-DR1 mice encoding human HLA-A*02:01 and HLA-

DRB1*01 (29) were obtained from Dr. F. Lemonnier (Paris,

France) and bred in our facilities in pathogen-free conditions.

The animal study was reviewed and approved by Ethics

Committee for Animal Research (Universidad de Navarra; ref#

045-19). When using peptides, they were immunized

subcutaneously with 100 nmoles/mouse combined with polyI:C

(Amersham) and anti-CD40 (FGK4.5; Bioxcell), both being
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administered at 50 mg/mouse. For immunization with pBK-T-

SFV-b12A-TMGP69 and pBK-T-SFV-b12A-TMGP73 plasmids,

mice were anesthetized with ketamine (Richter Pharma, 0.66 mg/

kg) and rompun (Bayer, 8 mg/kg) and injected with 10 mg of

plasmid intradermally in the base of the tail. They next received an

electroporation using an ECM 830 square wave electroporation

system (BTX), by placing a needle array electrode at the injection

site injection immediately after immunization. Electroporation

consisted in two pulses of 1,125 V/cm for 50 ms followed by 8

pulses of 275 V/cm for 10 ms. They were boosted at two weeks. In

all cases, seven days after the last immunization, mice were

sacrificed, and spleens were obtained.
Evaluation of murine T cell responses

Most T cell responses were evaluated by using an IFN-g
ELISPOT Set from BD-Biosciences as described (30). In brief,

spleens were removed, homogenized, erythrocytes were lysed

and cells (8×105/well) were stimulated with different peptide

concentrations (10-0.01 mM). To analyze recognition of

neoantigen-presenting tumor cells, irradiated (200 Gy) MC703

cells (8×104 cells/well), transduced with retroviruses encoding

neoantigens or with control vector, were cocultured with

splenocytes (8×105/well) obtained from immunized mice. In

all cases, 24 h later ELISPOT plates were developed and spot-

forming cells were counted with an ImmunoSpot automated

counter using Immunospot Image Acquisition 4.5 and

Immunospot 3 software.

In some cases, T cell activation was determined by flow

cytometry. Splenocytes were stimulated for 4 hours with

peptides (10 mM) in the presence of GolgiStop and GolgiPlug

(BD-Biosciences) and antiCD107a-FITC (BD-Pharmingen).

Next, they were stained with anti-CD3ϵ-Percp-Cy5, CD4-FITC
and CD8-BV421 (BioLegend). Then, cells were fixed and

permeabilized with BD Cytofix/Cytoperm™ Fixation/

Permeablization Kit and intracellularly stained with IFNg-PE
and TNFa-BV510 antibodies (BioLegend). Dead cells were

excluded from the analysis using Maleimide (PromoKine).

Samples were acquired with a Cytoflex cytometer (Beckman

Coulter) and data analyzed using FlowJo software.
Analysis of human T cell responses

In vitro priming of T cell responses and evaluation of peptide

immunogenicity was carried out as described. Briefly, monocytes

were purified from PBMC obtained from HLA-A*02:01 healthy

donors by using CD14 microbeads (Miltenyi) and cultured for

one day in complete RPMI medium containing rhGM-CSF

(Miltenyi; 10 ng/ml) and rhIL-4 (Inmunotools; 2 ng/ml) for

their differentiation into dendritic cells (DC). Next, rhTNF

(Miltenyi; 10 ng/ml), IL-1b (Immunotools; 10 ng/ml) and
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PGE2 (Sigma-Aldrich; 1 µM) were added for DC maturation.

One day later, cells were collected, loaded with peptide (10 µg/

mL) for 1 hour and washed 3 times. DC were co-cultured (ratio

1:30) with CD8 T cells purified from the CD14- fraction using

CD8 microbeads (Miltenyi), in complete medium containing

anti-human CD28 mAb (Biolegend; 0.5 µg/mL). Cells were fed

on days 3, 7, 10, 14 and 17 with culture medium containing IL-2

(Proleukin, 20U/ml).

NeoAg-specific responses were evaluated at day 21 of co-

culture by using a human IFN-g ELISPOT set (BD-Biosciences)

following manufacturer’s instructions. Expanded CD8 T cells (5 x

104/well) were stimulated with peptides (10 µg/mL) and DC (104/

well) for 24 h. Next, wells were washed, incubated with conjugate

antibody and developed. Spot forming cells were counted as

described above.
Statistical analysis

Statistical analyses (Student’s t test and one-way ANOVA

with Bonferroni’s multiple comparison test) were performed

with GraphPad Prism (GraphPad) software version 7. P<0.05

was taken to represent statistical significance.
Results

Tumor mutational burden and neoAg
burden in TNBC patients

In order to define neoAgs in TNBC tumors we carried out

WES and RNAseq studies to identify mutations that could

originate non-synonymous SNVs (nsSNVs) and generate new

peptide sequences with a different antigenicity profile. WES

studies allowed us to identify a median of 60 mutations (range

19-103) that corresponded to a median TMB of 1.68 Muts/Mb

(Table 1 and Supplementary Table S1). For those patients with

material available for RNAseq we analyzed gene expression and

identified those mutated genes with demonstrated expression.

This narrowed the number to a median of 35 mutations (range

31-69) (Supplementary Table S2).

HLA class I molecules expressed by patients were identified

using sequencing data (Supplementary Table S3) and all

potential peptides containing mutated residues were selected

for prediction of peptide binding to HLA. By using a threshold of

500 nM in affinity and a % Rank <2%, a median of 98 potential

neoAgs were predicted (Table 1, Supplementary Table S4).

Although our main interest in this work was on HLA class I-

restricted neoAgs, in order to have a general neoAg profile we

also predicted putative neoAgs with binding capacity to HLA

class II molecules. Considering an affinity threshold of 250 nM

and a % Rank < 10%, predictions yielded a median of 146 HLA

class II-restricted neoAgs (Supplementary Table S5).
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HLA binding ability and
immunogenicity of HLA-A*02:01-
predicted neoAg peptides

After in silico prediction of putative neoAgs, we analyzed

those presented by HLA class I molecules, to test their

immunogenicity and demonstrate their potential applicability

in vaccination strategies. As a proof of concept, and due to the

availability of appropriate experimental tools, we focused on

HLA-A*02:01-restricted peptides, choosing patients CAM69

and CAM73 as representative (Tables 2, 3). Moreover, to

reduce the number of neoAgs to be tested, we narrowed the

selection to those 9-mer peptide neoAgs potentially presented by

this HLA allele with a binding affinity < 250 nM and % Rank < 2,

since most 10- and 11-mer peptides contained these 9-mer

peptides. Although all mutated (MUT) peptides had a putative

HLA binding capacity, we distinguished a first group (GR1) with

predicted binding for the MUT but not for the WT version and a

second group (GR2) with predicted binding for both the MUT

and WT versions. After discarding those peptides that were

difficult to synthesize with the amount and purity required, 8

and 19 peptides for patients CAM69 and CAM73, respectively,

were selected. One third of the peptides belonged to GR1. In

vitro binding assays to HLA-A*02:01 demonstrated that 62 and

63% of MUT peptides selected in patients CAM69 and CAM73,

respectively, bound to this allele (Figure 1).

Immunogenicity experiments carried out in HHD-DR1

mice, transgenic for HLA-A*02:01, showed that 50% and 63%

of peptides from patients CAM69 and CAM73, respectively,

were immunogenic. For patient CAM69 all peptides with proven

experimental binding capacity (binder peptides as determined in

Figure 1), except peptide 69-5, were immunogenic (Figure 2A).

None of non-binder peptides elicited an immune response. For

patient CAM73, 10 out of 12 binder peptides induced an

immune response (Figure 3A). At the same time, we checked

recognition of WT peptides by T cells induced by neoAgs. We

observed that peptides WT69-6 and WT69-4 were not
TABLE 1 Mutational and neoAg load in TNBC patients.

Patient ID # mutations* TMB (Muts/Mb) NeoAgs Class I

CAM-69 48 1.34 106

CAM-73 103 2.89 155

CAM-75 60 1.68 35

CAM-76 78 2.18 65

CAM-82 19 0.53 38

CAM-83 79 2.21 158

CAM-85 60 1.68 141

CAM-88 47 1.32 90

Mean 61.75 1.73 98.50

Median 60 1.68 98.00
(*) non-synonymous single nucleotide variants.
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recognized when using the initial screening concentration (10

mM) (Figure 2A). Regarding peptide WT69-3, despite

recognition at this high concentration, it did not elicit IFN-g
secretion at lower concentrations (Figure 2B). Similar studies

with patient CAM73 demonstrated that, except peptide 73-14,

remaining immunogenic peptides induced T cells that, either at

the screening concentration or after titration experiments,
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preferentially recognized the MUT but not the WT version

(Figures 3A, B). We also demonstrated that, according to the

selection criteria, WT versions of immunogenic GR1 peptides

did not bind to HLA-A*02:01 molecules, whereas most GR2

peptides did bind (Supplementary Figure S1). Finally, we

observed that these immunogenic peptides induced

polyfunctional T cell responses, inducing not only IFN-g, as
TABLE 3 HLA-A*02:01-restricted neoAgs in patient CAM73.

Mut WT

Group Peptide Gene Name Mut Aa Sequence Aff (nM) % Rank Aff (nM) % Rank DAI*

GR1 CAM73-1 PDIA6 G309A VLPHILDTA 138 1.30 13530.7 17.91 98.0

CAM73-4 CTNNB1 P505R RLIKATVGL 29.5 0.40 1802 5.51 61.1

CAM73-9 ARHGEF28 G187A SQFFLCLPA 107.3 1.10 4771.4 9.22 44.5

CAM73-12 PLXNA4 D597Y YLSEMDGLV 7.8 0.08 6425.4 10.93 823.8

CAM73-14 LYZL2 M50V FSLGNWICV 151.9 1.39 1782.5 5.48 11.7

CAM73-17 SLC2A3 V16F LIFAITFAT 144.8 1.35 573.4 3.03 4.0

GR2 CAM73-2 SLC4A10 I775T VLTDYAIGI 15.3 0.19 5.3 0.04 0.3

CAM73-3 SLC4A10 I775T CMVLTDYAI 237.7 1.84 222.7 1.76 0.9

CAM73-5 OR5H15 P275T NMVETLFYT 11.5 0.14 18.9 0.25 1.6

CAM73-6 OR5H15 P275T MVETLFYTV 115.5 1.16 71.4 0.84 0.6

CAM73-7 CLRN1 F155L VMILLASEV 46.3 0.59 17.2 0.22 0.4

CAM73-8 CLRN1 F155L ILLASEVKI 67.3 0.80 44.4 0.57 0.7

CAM73-10 CDC23 S304F NMDTFFNLL 126.4 1.23 148.3 1.37 1.2

CAM73-11 SLC36A2 M102V FIACHCVHI 21.4 0.29 20.3 0.28 0.9

CAM73-13 WHRN Q325H KVGDHILEV 20.2 0.28 47.4 0.60 2.3

CAM73-15 LYZL2 M50V SLGNWICVA 65.5 0.79 30.4 0.41 0.5

CAM73-16 SLC2A3 V16F ALIFAITFA 29.8 0.40 164.1 1.46 5.5

CAM73-18 ACAD10 Q144H VMTEAITHI 35.7 0.47 46.4 0.59 1.3

CAM73-19 SETD4 Q181P SLPPLFAEA 42.2 0.55 52.1 0.65 1.2
frontier
(*) DAI: Differential aggretopicity index: Affinity of mutated sequence/affinity of WT sequence.
Bold residues correspond to mutated amino acids.
TABLE 2 HLA-A*02:01-restricted neoAgs in patient CAM69.

Mut WT

Group Peptide Gene Name Mut Aa Sequence Aff (nM) % Rank Aff (nM) % Rank DAI*

GR1 CAM69-6 DNAH8 S2680L ALIPTLLSL 19.5 0.26 2036.5 5.88 104.4

CAM69-7 PAX2 V224F HLFWTLRDV 87.6 0.97 336.3 2.27 3.8

CAM69-8 CATSPER1 L527F VLDFFLMQT 171.6 1.50 283.7 2.05 1.7

CAM69-ns2 CFAP69 S738F GLFAEDFVT 127.2 1.24 2435.9 6.45 19.2

CAM69-ns3 MUC3A I833L GLSGSLPMM 96.7 1.04 39787.1 70.10 411.4

GR2 CAM69-1 KLHL29 W663R SLLDNRNLV 54.9 0.68 8.9 0.10 0.2

CAM69-2 LYG2 R203Q FVNDIIAQA 33.5 0.45 50.2 0.63 1.5

CAM69-3 TTK N630I IMLEAVHTI 4.1 0.02 8.4 0.09 2.0

CAM69-4 CATSPER1 L527F AMAVLDFFL 7.7 0.08 11.2 0.13 1.5

CAM69-5 CATSPER1 L527F FLMQTHSFA 8.3 0.09 88.8 0.98 10.7

CAM69-ns1 RAD9A R146C HMLCAPARV 48.1 0.61 251.3 1.91 5.2
(*) DAI: Differential aggretopicity index: Affinity of WT sequence/affinity of mutated sequence.
Bold residues correspond to mutated amino acids.
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found in ELISPOT assays, but also TNF-a (Figure 4A) or the

cytotoxicity marker CD107a (Figure 4B). These results indicate

that these neoAgs induce T cell responses with the capacity to

discriminate between MUT and WT sequences, despite the

binding capacity of GR2 WT peptides, supporting their use as

tumor-specific vaccines.
Immunization with neoAg-containing
polyepitopic vaccines induces tumor-
specific T cell responses

After identification of immunogenic neoAgs, we designed

polyepitopic vaccines containing the most immunogenic

epitopes, and tested them using two vaccination strategies. For
Frontiers in Immunology 07
patient CAM69, peptides 69-3, 69-4 and 69-6 were selected,

whereas peptides 73-4, 73-7, 73-9, 73-12 and 73-18 were chosen

for patient CAM73. These vaccines included either peptide pools

adjuvanted with poly(I:C) and antiCD40 or pBK-T-SFV-b12A-

TMGP69 and pBK-T-SFV-b12A-TMGP73 DNA vectors,

encoding the Semliki Forest virus replicase followed by the

neoAgs in tandem, to generate autoreplicative RNAs that

would increase antigen expression. To mimic natural antigen

processing occurring in the original antigens, these vaccines

included elongated versions (15-mers) of each neoAg. In general,

peptide vaccines were more immunogenic than the DNA

constructs (Figures 5A, B). In the case of patient CAM69, both

vaccines induced responses against peptide 69-6, which

specifically recognized the MUT but not the WT version.

Regarding the other two neoAgs, they were immunogenic only
B

C D

A

FIGURE 1

Binding of predicted peptide epitopes to HLA-A*02:01 molecules. Peptides from patients CAM69 (A, B) and CAM73 (C, D) belonging to GR1 and
GR2 groups were tested at 100 mM in binding assays using T2 cells. Results are expressed as Fluorescence Index (FI) and correspond to the
mean of duplicate samples in two experiments. Positive binding was considered when FI > 0.5 (horizontal line) and binder peptides are shown
with black bars.
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as peptides, recognizing better the 15-mer than the 9-mer

mutated peptide. For patient CAM73, responses against

neoAgs 73-4 and 73-18 were induced by both vaccines.

NeoAgs 73-7 and 73-9, and more clearly 73-12, were only

immunogenic when used as peptides. In all cases, lymphocytes

showed specific recognition of the MUT vs the WT version of

immunogenic neoAgs.

Finally, to demonstrate recognition of processed antigens

in the context of tumor cells, we prepared transfectants of

MC703 cells expressing the neoAgs used for vaccination. We
Frontiers in Immunology 08
demonstrated that T cells induced by DNA vaccines, mainly

for those corresponding to patient CAM69, specifically

recognized tumor cells expressing the neoAgs but not

control cells (Figure 5C). Since responses induced by the

DNA construct encoding neoAgs derived from patient

CAM73 were of lower magnitude than those induced by the

corresponding peptide vaccines , we repeated these

experiments but using peptide-induced T cells. As shown in

Figure 5D, these T cells specifically recognized neoAg-

expressing tumor cells.
B

A

FIGURE 2

In vivo immunogenicity of predicted peptide epitopes from patient CAM69. HHD-DR1 mice (n=4/group) were immunized with peptide pools (4
peptides/pool; 100 nanomoles of each peptide/pool) plus poly(I:C) and antiCD40 adjuvants at days 0 and 7. One week after the boost they
were sacrificed and splenocytes were stimulated with individual peptides (either mutated or WT version at 10 mM) (A) and response evaluated by
using an IFN-gamma ELISPOT assay. Responses were considered positive when SFC > 50. Results correspond to the sum of 2-3 independent
experiments. Peptides experimentally proven as binders are underlined. (B) Lymphocytes showing positive recognition of the WT version were
titrated with lower peptide concentrations. (*P<0.05; MUT vs WT peptide).
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Neoantigen peptides induce human T
cell responses

After identification of HLA-A*02:01-restricted immunogenic

neoAgs in the murine system, we checked their immunogenicity in

humans. The lack of samples belonging to patients initially used for
Frontiers in Immunology 09
neoAg identification prompted us to use the peptides in in vitro

priming assays using T cells from four HLA-A*02:01+ healthy

donors. Peptide recognition assays by T cells obtained after peptide

priming and expansion with cytokines showed that two individuals

had responses against some of these neoAg peptides (Figure 6).

More precisely, donor #2 recognized peptides 69-3 and 69-4, and
B

A

FIGURE 3

In vivo immunogenicity of predicted peptide epitopes from patient CAM73. HHD-DR1 mice (n=4/group) were immunized with peptide pools (4-
5 peptides/pool; 100 nanomoles of each peptide/pool) plus poly(I:C) and antiCD40 adjuvants at days 0 and 7. One week after the boost they
were sacrificed and splenocytes were stimulated with individual peptides (either mutated or WT version at 10 mM) (A) and response evaluated by
using an IFN-gamma ELISPOT assay. Responses were considered positive when SFC > 50. Results correspond to the sum of 2-3 independent
experiments. Peptides experimentally proven as binders are underlined. (B) Lymphocytes showing positive recognition of the WT version were
titrated with lower peptide concentrations. (*P<0.05; **P<0.01; MUT vs WT peptide).
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donor #4 recognized peptide 73-4. These results demonstrate that

immunogenic neoAgs identified by using the murine in vivo

vaccination studies are also immunogenic in the human setting.
Discussion

Vaccines can induce tumor-specific T cells that would generate

an enriched lymphocytic infiltrate, increasing thus the possibility of

responding to ICI. Infiltrating T cells have been found in TNBC

patients (4). However, heterogeneous results have been observed in

terms of T cell infiltration, suggesting a different potential benefit

after ICI therapies. It has been proposed that neoAg-specific T cells

play a prominent role in ICI efficacy, since TMB (as a surrogate

marker of potential neoAgs) correlates with the response rate to

these therapies (15). Although TNBC has been described as a tumor

with a mutational load higher than other breast tumors (4), it is well

known that, similar to tumor infiltrates, there is a wide spectrum of

mutational burden between patients (31). Thus, in order to develop

personalized vaccines in TNBC patients to increase T cell responses,

in a cohort of eight patients we have analyzed the mutational load,

the potential HLA class I-restricted neoAgs derived from these

mutations and finally, we tested their immunogenicity in a

humanized murine model. WES results obtained in our cohort,

considering only non-synonymous SNVs, yielded a median of 62

mutations/patient, which corresponds to a TMB value of 1.7 Muts/
Frontiers in Immunology 10
Mb, in the range of those reported in previous works (4, 32, 33),

which positions TNBC in the category of tumors with intermediate

TMB. Analyses of expression of mutated sequences revealed that

about 65% of mutations were located at expressed genes. A high

variability regarding expression of mutated genes with potential

neoAg-coding capacity has been reported in TNBC, ranging from

35-50% in some cases (4, 34), to more than 80% in others (35). The

sample size and the filtering criteria used to define expression in the

different studies may account for these discrepancies, as well as for

the differences with our results. By using these mutations, we

predicted HLA class I-restricted potential neoAgs encoded by

mutated genes, observing a median of 98 neoAgs. In general, the

number of predicted neoAgs was higher with respect the number of

mutations, presumably due to the prediction of peptides with

different length sharing the same binding core, the presence of

different binding cores containing the same mutation or even to

neoAgs potentially presented by different HLA alleles in the

same individual.

Different criteria have been used to select predicted peptides. In

our case, in addition to a binding threshold for all mutated peptides,

we distinguished two groups regarding the binding capacity of the

WT peptide. In the first group (GR1), where WT peptides were

poor or null binders, an important proportion of peptides contained

the mutation at HLA-anchoring residues (e.g. peptides CAM69-6,

CAM73-9). However, in the second group (GR2) all peptides

contained the mutation at non-anchor residues. In this group,
B

A

FIGURE 4

Induction of polyfunctional T cell responses by neoantigen vaccines. HHD-DR1 mice (n=3-4/group) were immunized with peptides (100
nanomoles) plus poly(I:C) and antiCD40 adjuvants at days 0 and 7. One week after the boost, they were sacrificed and splenocytes were
stimulated with or without peptides (10 mM) and response evaluated by flow cytometry measuring the percentage of CD8 T cells expressing
IFN-g and TNF-a (A) and IFN-g and CD107a (B). Representative examples of peptide 73-12 and 73-15 (left panels) and summarized results of all
peptides (right panels) are shown.
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B

C D

A

FIGURE 5

Polyepitopic vaccines induce responses recognizing neoantigen-expressing cells. HHD-DR1 mice (n=4/group) were immunized at days 0 and 7
with 15-mer peptide pools (3-5 peptides/pool) plus poly(I:C) and antiCD40 adjuvants (A) or at days 0 and 14 with a plasmid encoding the SFV
replicase plus the 15-mer neoAg epitopes from patients CAM69 or CAM73 designed in tandem (B). One week after the last immunization they
were sacrificed and splenocytes were stimulated with MUT (15- and 9-mer) peptides or with the WT 9-mer peptides and responses were
evaluated by ELISPOT. (C) Splenocytes from mice shown in B were stimulated with MC703 tumor cells transfected with a plasmid encoding the
neoAgs used in the vaccine or the control Thy1.1 gene and responses were measured as above. (D) Splenocytes from HHD-DR1 mice (n=4/
group) immunized with peptides CAM69-3, CAM69-4 and CAM69-6, or peptides CAM73-4, CAM73-9, CAM73-12, CAM73-7 and CAM73-18,
were stimulated as in C and responses were determined by ELISPOT. (*P<0.05; pNeo vs pControl).
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some mutations increased HLA binding (peptides CAM73-4,

CAM73-12), whereas others did not increase HLA binding, but

presumably generated a different contact site with the TCR

(peptides CAM69-4, CAM73-7, CAM73-15 and CAM73-18). In

both groups, we have been able to identify immunogenic peptides

with capacity to induce T cells discriminating between MUT and

WT peptides, indicating that not only the binding capacity, but also

the position of the mutation may help to identify neoAgs. Indeed, it

has been recently shown the relevance of the position of the

mutated amino acid in neoAg selection (36, 37).

Recent studies have analyzed the presence of neoAgs in TNBC

tumors (4, 35) and in some cases, their immunogenicity has been

demonstrated by using T cells from patients (34, 38, 39). In all cases,

and in agreement with our results, the number of neoAgs and the

proportion of them with confirmed immunogenicity indicates that

the mutational load found in TNBC patients would be sufficient to

generate a neoAg-based vaccine. Indeed, in our case, in the two
Frontiers in Immunology 12
patients whose potential neoAgs have been tested for

immunogenicity, positive results have been obtained. Moreover,

in addition to considering a single HLA class I allele, our studies are

focused on SNVs, without including INDELs and other mutations,

which have also shown to encode neoAgs (40). Indeed, for these two

patients, 55% of initially predicted neoAgs for HLA-A*02:01 turned

out to be immunogenic. Nevertheless, we have demonstrated that

some neoAgs identified in murine vaccination experiments were

immunogenic in vitro using human cells from healthy donors. We

have recently reported equivalent results for immunogenicity of

neoAgs identified in hepatocellular carcinoma patients (41),

demonstrating not only the activity of HLA class I-restricted

neoAgs but also for class II binding peptides. Thus, our current

results obtained in TNBC patients suggest that the TMB found may

originate a sufficient number of neoAgs for vaccination. In fact, it

has been recently reported the results of a phase I clinical trial of a

neoAg-based DNA vaccine in 18 TNBC patients, where authors
FIGURE 6

In vitro immunogenicity of TNBC neoAgs with human T cells. CD8 T cells obtained from four healthy HLA-A*02:01+ donors were stimulated in vitro
with peptide-pulsed dendritic cells and expanded with IL-2. Three weeks later, T cells were harvested and peptide recognition was measured in
ELISPOT assays using peptides and autologous DC. Results show recognition of peptides pools and individual peptides. Values obtained in negative
control wells without antigen have been subtracted. The dotted line corresponds to the 20 SFC threshold defining positive responses.
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vaccinated with an average of 11 neoAgs per patient (42),

confirming the feasibility of this approach.

As mentioned above, neoAg-based vaccines could be a

promising strategy to prime immunity against target antigens

relevant in ICI-based therapies. Indeed, among the group of

combined immunotherapies for TNBC that include vaccines and

ICI [reviewed in (43)], a few of them are based on neoAgs

(NCT03199040, NCT03606967 and NCT03289962). Different

approaches are being tested in these protocols, according to the

type of ICI (anti-PD-L1 with or without anti-CTLA-4), the

combination with chemotherapy (gemcitabine, nab-paclitaxel) or

the type of vaccine (DNA vaccine, RNA vaccine or long peptides).

In our case, we have evaluated the immunogenicity of two

vaccination modalities, including peptides and a DNA vaccine

encoding an autoreplicative RNA. Although both were

immunogenic, stronger results were obtained with peptides, a

strategy successfully used in neoAg vaccines in other tumors (20,

21). We do not know the reasons behind these differences, whether

they are specific for the particular neoAgs used in this work or

whether it is a consequence of the strong adjuvants (poly(I:C) and

antiCD40 mAb) used in combination with peptide vaccines.

Immunodominance or competition between epitopes after

processing may restrict the repertoire of responses when using a

single polypeptide construct as opposed to the use of individual

peptides, as we demonstrated (44). Since strong T cell responses

have been obtained in neoAg-based clinical trials in patients using

peptides or RNA, further experiments are required to elucidate the

relative potency of our vaccination strategies.

In summary, our sequencing and immunogenicity studies

carried out in a cohort of TNBC patients demonstrate that these

patients harbor a sufficient number of immunogenic neoAgs

suitable for vaccine development, setting the basis for future

combinatorial therapies containing vaccines and ICI.
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