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The innate immune response to viruses is critical for the correct establishment

of protective adaptive immunity. Amongst the many pathways involved, the

NLRP3 [nucleotide-binding oligomerisation domain (NOD)-like receptor

protein 3 (NLRP3)] inflammasome has received considerable attention,

particularly in the context of immunity and pathogenesis during infection

with influenza A (IAV) and SARS-CoV-2, the causative agent of COVID-19.

Activation of the NLRP3 inflammasome results in the secretion of the

proinflammatory cytokines IL-1b and IL-18, commonly coupled with

pyroptotic cell death. While this mechanism is protective and key to host

de fense , aber ran t NLRP3 inflammasome act i va t ion causes a

hyperinflammatory response and excessive release of cytokines, both locally

and systemically. Here, we discuss key molecules in the NLRP3 pathway that

have also been shown to have significant roles in innate and adaptive immunity

to viruses, including DEAD box helicase X-linked (DDX3X), vimentin and

macrophage migration inhibitory factor (MIF). We also discuss the clinical

opportunities to suppress NLRP3-mediated inflammation and reduce

disease severity.

KEYWORDS

NLRP3, inflammasome, influenza, COVID-19, DDX3X, MIF, vimentin
Entry of SARS-CoV-2 and influenza virus into the
host cell

SARS-CoV-2 and influenza A virus (IAV) infections have caused two major

pandemics in the past century, resulting in millions of deaths. SARS-CoV-2 is an

enveloped virus with a single stranded positive sense RNA genome of approximately

30,000 nucleotides. The SARS-CoV-2 genome encodes 4 structural proteins (spike,
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envelope, membrane, nucleocapsid), 16 non-structural proteins

(nsp1-16) and multiple accessory proteins that together have

proven masterful at entering host cells and manipulating host

machinery to replicate their genome. The SARS-CoV-2 spike

protein studs the viral envelope and facilitates entry into host

cells with the help of several host cellular proteases, including

furin and type II transmembrane serine protease (TMPRSS2)

(1–3). These host proteases cleave the spike protein into its two

subunits; the S1 domain, which interacts with the angiotensin

converting enzyme 2 (ACE2) receptor on the host cell surface,

and the S2 domain which mediates virus-host cell membrane

fusion (4). Besides ACE2, SARS-CoV-2 engages with alternate

entry receptors including heparan sulfate (5), cluster of

differentiation 147 (CD-147) (6), neuropilin-1 (7) and the C-

type lectin receptors DC-SIGN (8, 9), L-SIGN (10) and sialic

acid binding Ig like lectin 1 (SIGLEC1) (11). Together, these

enable the release of SARS-CoV-2 genomic RNA into the host

cell cytoplasm and/or induction of the innate immune response.

IAV, on the other hand, is a negative stranded RNA virus with a

genome approximately half that of SARS-CoV-2 that encodes 10

essential proteins, including matrix proteins 1 (M1) and 2 (M2),

three RNA polymerases, nucleoprotein (NP), non-structural

proteins 1 (NS1) and 2 (NS2) and the surface antigens

haemagglutinin (HA) and neuraminidase (NA) (12). The HA

protein mediates viral entry by preferentially binding to a2,6-
linked sialic acid receptors, typically on the surface of host

epithelial cells, and enters the cell by receptor-mediated

endocytosis (13). Upon entry of IAV and SARS-CoV-2, the

host translational machinery is hijacked to replicate viral RNA

and transcribe viral proteins required for the release of mature

virions from the host cell and to subvert immune defenses. Thus,

the clinical outcome of viral infection is a battle between viral

pathogenesis and the host immune response to infection.
Innate immune response to
viral infection

The innate immune system detects and responds to

infectious agents to provide rapid frontline defense. This

frontline defense is achieved using immune sentinels, or

pattern recognition receptors (PRRs), that recognize

exogenous pattern-associated molecular patterns (PAMPs) and

endogenous damage-associated molecular patterns (DAMPs). In

the case of viral infection, PAMPs may be associated with the

viral particle, such as the SARS-CoV-2 spike protein which

induces inflammation via the C-type lectin receptors (14) or

toll-like receptor (TLR) 2 (15), or intermediates of viral

replication, such as SARS-CoV-2 double-stranded RNA which

activates the retinoic acid-inducible gene I (RIG-I)-like receptors

(RLRs) or TLRs (16, 17) (Figure 1). Virus-induced cell lysis can

also lead to the release of host products or DAMPs, that similarly
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initiate innate immune responses. As a result, viral infection can

trigger multiple signaling cascades leading to the release of

multiple cytokines, including the IL-1 family cytokines IL-1b
and IL-18, and type I and type III interferons (IFNs) (Figure 1).

Type I IFNs, such as IFN-a and IFN-b, signal through the type

I IFN receptor (IFNAR) complex, whereas type III IFNs, termed

IFN-Ls, signal via the IFN lambda receptor 1 (IFNLR1) and

interleukin-10 receptor 2 (IL-10R2) complex (18). The

engagement of IFNs with their cognate receptors activates the

receptor-associated protein tyrosine kinases Janus kinase 1

(JAK1) and tyrosine kinase 2 (TYK2), which phosphorylate

signal transducer and activator of transcription 1 (STAT1) and

STAT2 (19). The dimerization and nuclear translocation of

STAT1 and STAT2 leads to the activation of hundreds of

interferon-stimulated genes (ISGs) to restrict viral replication

and limit viral spread (Figure 1). IL-1 family cytokines are potent

pro-inflammatory and pyrogenic immunomodulators whose

release in response to virus replication activates multiple

immune genes and recruits immune cells to the site of

infection. The processing and release of both IL-1b and IL-18

is typically dependent on the activation of an inflammasome, in

the case of viruses most commonly the absent in melanoma 2

(AIM2) and/or nucleotide-binding oligomerization domain

(NOD)-like receptor protein 3 (NLRP3) inflammazome (20).
The NLRP3 inflammasome

NLRP3 is a cytoplasmic PRR that is mainly expressed in

monocytes and macrophages. It consists of an N-terminal pyrin

domain followed by a central NACHT [NAIP (neuronal

apoptosis inhibitor protein), CIITA (MHC class II

t r a n s c r i p t i o n a c t i v a t o r ) , HET -E (h e t e r o k a r y on

incompatibility), TP1 (telomerase-associated protein 1)]

domain and C-terminal leucine-rich-repeats (LRRs) (21).

NLRP3 is normally maintained in an autoinhibited state (22),

however, it is activated upon sensing diverse stress signals and

signatures of infection, leading to the assembly of the NLRP3

inflammasome, which can elicit both inflammatory and antiviral

responses. Canonical activation of the NLRP3 inflammasome

generally requires a priming and then activation step (23),

although NLRP3 inflammasomes may also be formed in the

absence of priming (24). The priming signal, which can be

initiated by various PAMPs and DAMPs, activates nuclear

factor-kB (NF-kB), which upregulates the expression of pro-

IL-1b, pro-IL-18 and NLRP3, thus priming NLRP3 for

inflammasome formation. The second activating signal again

stems from diverse inducers/indicators of stress (e.g., pore

forming toxins such as nigericin), however, all have been

reported to induce potassium (K+) efflux, suggesting that this

is a unifying process required for inflammasome assembly (25).

The activating signal elicits a change in NLRP3 conformation
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that allows it to oligomerize and recruit ASC (apoptosis-

associated speck-like protein containing a CARD) via a pyrin-

pyrin domain interaction. ASC in turn, recruits pro-caspase 1

via a CARD-CARD interaction, together forming an assembled

NLRP3 inflammasome (Figure 1). Within this assembled

inflammasome, pro-caspase-1 undergoes autocatalytic

activation and cleaves pro-IL-1b, pro-IL-18 and the pore forming

protein gasdermin D, which prompts gasdermin D to oligomerize

and form pores in the cell membrane (26–29). These pores allow

release of the mature and active pro-inflammatory cytokines IL-1b
and IL-18, which is commonly coupled with cell death via

pyroptosis (30) (Figure 1). This process destroys infected cells,

which in the case of viral infection prevents them from fueling

further replication, and releases the cell contents, allowing further

amplification of the innate immune response.

Multiple RNA viruses, and some DNA viruses, are sensed by,

and activate, the NLRP3 inflammasome but precisely how is not

completely understood. Priming is most likely through

activation of TLR3 and/or TLR7, which recognize nucleic

acids. Activation of NLRP3, on the other hand, may occur

through multiple mechanisms. Some viruses, including

vesicular stomatitis virus (VSV) and encephalomyocarditis

virus (EMCV) may activate NLRP3 by increasing K+ efflux as

a result of lytic cell death (31). Alternatively, NLRP3 may
Frontiers in Immunology 03
recognize, directly or indirectly, viral nucleic acids (32) and/or

proteins, including the IAV M2 ion channel and/or PB1-F2

peptide aggregates (33, 34) and SARS-CoV-2 nucleocapsid

protein, nsp6 and spike protein (35, 36). Both IAV and SARS-

CoV-2 are also able to suppress NLRP3 inflammasome

activation via their non-structural protein 1 (NS1) and

envelope proteins, respectively. Interestingly, the IAV protein

PB1-F2, while an activator as an aggregate, can also inhibit

NLRP3 following translocation into the mitochondria (37, 38).
New players in NLRP3
inflammasome activation

Although it is well-established that the NLRP3

inflammasome is a multi-protein complex that requires

assembly for its activation, the events leading up to, and

regulating, NLRP3 inflammasome activation are unclear.

Identifying new players that regulate NLRP3 inflammasome

activation furthers our understanding of this critical process

and reveals new ways to block aberrant activation which occurs

in several disease states, including severe SARS-CoV-2 and IAV

infection. While new proteins undoubtedly remain to be

discovered, recent studies have highlighted critical roles for
FIGURE 1

Overview of host defense following viral infection and multiple roles of DDX3X, vimentin and MIF. The scissors symbol represents enzymatic
cleavage, and the upward arrow symbol indicates increased protein levels. RIG-I, retinoic acid-inducible gene I; MDA5, melanoma
differentiation-associated 5; TNF, tumor necrosis factor; TNFR, TNF receptor; TRAF, TNF receptor associated factor; MAVS, mitochondrial
antiviral signaling protein; TRIF, TIR domain–containing adapter-inducing interferon-b; TBK1, TANK-binding kinase 1; DDX3X, DEAD-box protein
3X; IKK, I-kappa-B kinase; IRF, interferon regulatory factor; NF-kB, nuclear factor-kB; NEMO, NF-kB essential modulator; TLR, toll-like receptor;
MyD88, myeloid differentiation primary response 88; MIF, macrophage migration inhibitory factor; NLRP, nucleotide-binding oligomerization
domain (NOD)-like receptor; IL, interleukin; ROS, reactive oxygen species.
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three proteins in NLRP3 inflammasome activation and

assembly: DEAD-box helicase 3X (DDX3X), vimentin and

macrophage migration inhibitory factor (MIF).
DEAD-box helicase 3X

The family of DEAD box helicase proteins, including

DDX3X, are comprised of ATP-dependent RNA helicases that

unwind RNA or remodel protein-RNA complexes. As a result,

they are involved in almost all stages of RNA metabolism in

eukaryotic cells, including transcription, splicing, nuclear export

and mRNA translation. DDX3X, which is encoded on the X-

chromosome, has a role to play in multiple biological functions

including innate immunity and the cellular stress response. We

and others have previously shown that DDX3X plays a

prominent role in enhancing the RLR-mediated type I

interferon (IFN) antiviral response by associating with various

RLR signaling molecules including TBK1 (TANK-binding

kinase I) and IKKe (I-kappa-B kinase-e) and direct interaction

with the IFNB1 promoter (39–43) (Figure 1). DDX3X also

participates in the formation of cytoplasmic stress granules,

membraneless cytosolic bodies that form during the cell stress

response, as well as during viral infection (44, 45). Stress

granules are highly dynamic structures that form when

translation initiation is stalled and they contain a diverse

proteome of RNA-binding and other proteins, along with

untranslated mRNAs (46, 47). The biological functions of

stress granules are not well understood, but by sequestering

specific cytosolic constituents, they modulate multiple signaling

pathways, including mechanistic target of rapamycin (mTOR),

receptor for activated C kinase 1 (RACK1) and tumor necrosis

factor (TNF) receptor-associated factor 2 (TRAF2) (47). DDX3X

dysfunction is associated with a wide range of diseases, including

cancer, inflammation, female intellectual disability and viral

infections (48–50).

DDX3X has a homologue encoded on the Y-chromosome

known as DDX3Y. With 92% sequence identity, DDX3X and

DDX3Y have functionally redundant roles in translation (51).

Despite this, Szappanos et al. recently showed that male and

female mice lacking DDX3X in the hematopoietic system differ

in their susceptibility to the intracellular bacterial pathogen,

Listeria monocytogenes (52). This is attributed to the distinct

expression profiles of DDX3X versus DDX3Y, with immune

cells exhibiting differential sex biased DDX3X/DDX3Y gene

expression (52, 53).

DDX3X and NLRP3
DDX3X has been attributed a role in NLRP3 inflammasome

activation as cultured cell lines deficient in Ddx3x (54, 55) and

bone marrow derived macrophages (BMDMs) that lack DDX3X

demonstrated impaired release of IL-1b and IL-18 (55). Based on
Frontiers in Immunology 04
co-immunoprecipitation analysis, it is proposed that DDX3X

binds the central NACHT domain of NLRP3 to facilitate NLRP3

oligomerization and inflammasome assembly, both of which are

key to NLRP3 inflammasome activation. However, a direct

interaction between NLRP3 and DDX3X has not yet been

confirmed using recombinant proteins.

Intriguingly, two independent studies have linked stress

granule assembly with inhibition of NLRP3 inflammasome

activation in response to various cellular stressors, including

viral infection (55, 56). Further, BMDMs derived from mice that

lacked DDX3X in the myeloid compartment were used to

establish DDX3X as a pivotal link between these two mutually

exclusive cellular responses to stress. Notably, when DDX3X is

incorporated into stress granules it is no longer available to

partake in NLRP3 inflammasome activation, thus favoring cell

survival (Figure 1) (55). Therefore, DDX3X availability

influences cell-fate decisions in stressed cells.

DDX3X also binds NLRP11, another member of the NOD-

like receptor family, but unlike NLRP3 NLRP11 does not form a

classical inflammasome and early studies on its function suggest

roles in regulating NF-kB and type I IFN (57–59). Further, and

as per stress granule formation, NLRP11 has been shown to

inhibit NLRP3 inflammasome activation, a phenomenon again

attributed to DDX3X sequestration, this time by NLRP11.

Perplexingly, NLRP11 was later identified as an essential

component required for NLRP3 inflammasome activation (60).

How NLRP11 differentiates between its inhibitory and activating

effects on NLRP3 inflammasome activation is currently unclear,

however it is possible that DDX3X influences this process.

Despite the conserved architecture of NLRP3 and NLRP11,

DDX3X binds the LRR domain of NLRP11 as opposed to the

NACHT domain of NLRP3. DDX3X might therefore

concomitantly bind both NLRP3 and NLRP11, a concept that

should be further investigated.

DDX3X and immunity to viruses
DDX3X plays multiple roles in host antiviral defense

following the detection of viral RNA, and binds to, or is

bound by, numerous viral proteins from diverse virus families,

the outcomes of which determine whether DDX3X plays a pro-

or antiviral role in infection. DDX3X plays antiviral roles in

vaccinia virus and IAV infection. As such, vaccinia virus and

IAV encode proteins to counteract DDX3X. The K7 protein

binds to DDX3X to block IFN-b production (61) (Table 1).

During IAV infection DDX3X regulates stress granule

formation, the type I IFN response and NLRP3 inflammasome

activation (Table 1) (56, 71). On the other hand, the IAV NS1

protein, which interacts with DDX3X in an RNA-independent

manner, inhibits both stress-granule formation and the type I

IFN response, however whether NS1 promotes or inhibits

NLRP3 inflammasome activation is contentious (39, 56, 71–

75). Despite the influence of NS1, DDX3X protects IAV-infected
frontiersin.org
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TABLE 1 DDX3X, vimentin and MIF are host proteins with roles in antiviral activity and NLRP3 activation.

NLRP3
inflammasome
mediator

Virus Role in infection References

DDX3X

Human
immunodeficiency
virus type I

DDX3X is required for nuclear export of incompletely spliced human immunodeficiency virus type I RNA
transcripts.
DDX3X inhibitors suppress human immunodeficiency virus type I replication.

(62, 63)

(64–68)

SARS-CoV-2 DDX3X catalytic inhibitor RK-33 suppresses viral load in Calu-3 cells.
DDX3X interacts with SARS-CoV-2 nucleoprotein in infected Vero cells and may subvert stress granule
machinery.

(69)
(70)

Influenza A virus DDX3X plays a role in NLRP3 inflammasome activation, stress granule assembly and production of type I
interferon; stress granule assembly and type I interferon production is blocked by influenza virus NS1
protein, whereas its effect on NLRP3 is contentious.

(39, 56, 71–
75)

Respiratory
syncytial virus

DDX3X binds to respiratory syncytial virus M2 mRNA to initiate translation which enables the onset of
genome replication.
DDX3X catalytic inhibitor RK-33 suppresses viral load in Vero cells.

(76)

(77)

Dengue virus DDX3X binds dengue virus capsid and NS5 proteins, but knockdown showed differential effects on virus
production.
DDX3X inhibitors suppress dengue virus infection in Huh-7 and Vero cells.
DDX3X is required for IFN-b release and inhibits virus replication in HEK-293 cells.

(78, 79)

(77, 80, 81)
(82)

Vaccinia virus Vaccinia virus K7 protein forms a complex with DDX3X and inhibits IFN-b. (61)

Zika virus DDX3X directly binds and unwinds in vitro transcribed Zika virus 5’ terminal regions.
DDX3X catalytic inhibitor RK-33 suppresses viral load in Vero cells.

(83)
(77)

West Nile virus DDX3X catalytic inhibitors have antiviral effects after the virus entry process in Huh-7, Vero and A549 cells.
DDX3X inhibitors suppresses viral load in Vero cells.

(84)
(77, 80, 85)

Human
parainfluenza virus
type 3

DDX3X catalytic inhibitor RK-33 suppresses viral load in Vero cells. (77)

Hepatitis B virus DDX3X binds hepatitis B virus polymerase and inhibits hepatitis B virus reverse transcription following
nucleocapsid assembly.
DDX3X knockdown or overexpression increased or decreased hepatitis B RNA, respectively.

(87)
(88)

Hepatitis C virus DDX3X interacts with hepatitis C virus 3’ untranslated regions and facilitates viral assembly/infection.
DDX3X interacts with hepatitis C virus core protein, but the importance for replication is contentious.

(89–92)
(89–91, 93–

97)

Japanese
encephalitis virus

Knockdown of DDX3X inhibits Japanese encephalitis virus replication. (86)

DDX3X binds and unwinds Japanese encephalitis virus 3’ and/or 5’ untranslated regions and positively
regulates viral protein expression.

(83, 86)

Vimentin

Human
immunodeficiency
virus type I

HIV-1 infectivity reduced in MT4 cells stably transfected with shRNA targeting vimentin. (98)

SARS-CoV/SARS-
CoV-2

Vimentin interacts with the SARS-CoV spike protein, possible role in virus entry in Vero cells.
Vimentin interacts with SARS-CoV-2 spike protein and facilitates virus entry via ACE2 in HEK-293 cells.
Vimentin, ACE2 and SARS-CoV-2 co-localize in structures consistent with primary cilia in multiple cell
types.
Vimentin-targeting compound ALD-R491 reduced ACE2-mediated infection of lentivirus pseudotyped with
SARS-CoV-2 spike protein in HEK-293 cells, increased anti-microbial activity of macrophages, activates T
regulatory cells and had therapeutic efficacy in a mouse adapted model of SARS-CoV-2 infection.

(99)
(100)
(101)

(102)

Influenza A virus Influenza A infection is reduced in Vim-/- mouse embryonic fibroblasts.
Vimentin affects the distribution of endosomes and their acidification during influenza A virus infection
impairing viral genome release from endosomes.
Vimentin interacts with the PB2 subunit of the influenza A virus polymerase to enhance its activity and virus
replication.

(103)
(103)

(104)

Dengue virus Viral load is increased in Vim-/- human brain microvascular endothelial cells and Vim-/- SV129 suckling mice
infected with Dengue virus had increased viral load and more severe brain damage.
Vimentin interacts with NS4A in Huh-7 cells to facilitate viral replication.

(105)

(106)

Vaccinia virus Intracellular vimentin is found around viral factories in HeLa cells and within viroplasm foci, where virus
assembly occurs.

(107)

(Continued)
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mice against severe lung pathology and viral spread, thus aiding

their survival (Table 1) (56).

Although many viruses inhibit stress granules, several

viruses interact with stress granule components to fulfil their

replication cycle. Hepatitis C virus (HCV) infection induces an

interaction between DDX3X and the HCV 3’ untranslated

region which prompts DDX3X and IKKa to associate with

stress granules (89, 90). These in turn bind to HCV protein

and RNA elements to form the HCV replication complex

(Table 1). Intriguingly, siRNA knockdown of DDX3X or key

stress granule proteins revealed a beneficial role for DDX3X and

stress granules in HCV infection (90–92). This role may serve to

prolong cell survival and favor persistent HCV infection (133).

DDX3X also binds to the HCV core protein which associates

with lipid droplets essential for infectious HCV production,

however the role of this interaction in infection is contentious

(89–91, 93–97).

In addition to HCV replication, DDX3X promotes the

replication of many other viruses as exemplified by DDX3X
Frontiers in Immunology 06
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immunodeficiency virus type I (HIV-1) (62, 63), hepatitis B

(HBV) (88), Japanese encephalitis virus (JEV) (86) and SARS-

CoV-2 (70) infectious virus production. Further, we and others

have also shown that inhibitors that suppress DDX3X activity in

vitro can limit infectious virus production by HCV (80),

respiratory syncytial virus (RSV) (76, 77), West Nile virus

(WNV) (77, 80, 85), Zika virus (77), SARS-CoV-2 (70), HIV-1

(64–67) and drug-resistant HIV-1 (68). Therefore, for these

many viruses, DDX3X plays a pro-viral role in replication. On

the other hand, it is worth noting that both pro- and anti-viral

roles have been attributed to DDX3X in dengue virus (DENV)

infection. While DDX3X inhibitors and knockdown suppress

the replication of DENV or a DENV replicon (77, 78, 80),

Kumar and colleagues (79) showed that DDX3X knockdown led

to an increase in DENV viral titer and conversely DDX3X

overexpression inhibited DENV replication. Likewise, DDX3X

was shown to suppress DENV infection by activating IFN (82).

Thus, DDX3X may have contrasting roles to play in the biology
TABLE 1 Continued

NLRP3
inflammasome
mediator

Virus Role in infection References

Cytomegalovirus Loss/disruption of vimentin in cells reduced viral entry and slowed intracellular capsid transport. (108)

Human
Enterovirus

Vimentin regulates the synthesis of human enterovirus non-structural proteins 2A, 3C, and 3D which
regulate host cell processes, including prolonged cell survival.

(109)

Human
papillomavirus

Cell surface expressed vimentin restricts binding to cell surface receptor and internalization into pgsD677,
HaCaT, HeLa, and NIKS cells.

(110)

Hepatitis C virus Vimentin binds the hepatitis C core protein and influences its proteasomal-mediated degradation to impact
virus replication in Huh-7 cells.

(111)

Foot and mouth
disease virus

Intracellular vimentin interacts with virus non-structural Protein 3A (NS3A) in foetal bovine kidney cells and
hinder viral replication in PK-15 cells.

(112)

MIF

Human
immunodeficiency
virus type I

Plasma MIF is increased in patients with human immunodeficiency virus type I and is released in greater
amounts by infected PBMC. MIF increases viral replication of CCR5- and CXCR4-trophic isolates, while
anti-MIF antibody inhibits human immunodeficiency virus type I replication in PBMC.

(113)

SARS-CoV-2 MIF is increased in patients with mild and severe SARS-CoV-2 and may be associated with impaired organ
function and increased pulmonary arterial hypertension.

(114–116)

Influenza A virus MIF is involved in influenza virus replication, contributes to an overactive inflammatory cytokine response
and aggravated disease.
Antisense oligodeoxyribonucleotide targeting MIF inhibits propagation of influenza virus (H1N1) in A549
cells.
MIF interacts with influenza virus protein PB1-F2 protein.
MIF is released from necrotic lung epithelial cells infected with influenza virus.

(117)

(118)

(119)
(120)

Respiratory
syncytial virus

Respiratory syncytial virus infection increases Mif MRNA expression in mouse macrophages and inhibition
of MIF with ISO-1 (small molecule inhibitor) inhibits RSV-induced release of TNF, MCP-1 and IL-10.

(121)

Dengue virus MIF inhibits migration of dengue virus-infected macrophages to limit virus spread but is also involved in
pathogenesis of dengue virus infection, including an overactive inflammatory cytokine response, viral
replication, vascular permeability and leakage.

(122–128)

Zika virus MIF inhibits migration of Zika virus-infected macrophages to limit virus spread; Zika virus blocks NF-kB
signaling to reduce MIF expression and its role in inhibiting macrophage migration.

(129)

West Nile virus MIF facilitates West Nile virus neuroinvasion and replication and causes an overactive inflammatory
response.
High expression MIF polymorphisms associated with West Nile virus neuroinvasion/encephalitis in North
American patients.

(130–132)
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of the infected cell, with differing implications for the host

response to DENV.

DDX3X appears the subject of a complex ‘tug of war’, where

its involvement in stress granule formation, or binding to

NLRP11, prevents its role in NLRP3 inflammasome activation.

These findings highlight that DDX3X plays a pivotal role in the

‘cross-talk’ been various arms of innate immune defense and

therefore its role might be expected to alter during the course of

a viral infection. Further influencing DDX3Xs role in innate

immune defense is the host/virus interplay, which is particularly

pertinent given the vast number of viruses that block or hijack

DDX3X function during infection (Table 1). It is tempting to

speculate that multiple viruses that hijack DDX3X not only

utilize its helicase activity to service their replication, but in

binding to DDX3X may concomitantly influence cell fate

decisions, evidence for which is now mounting (56, 90). Thus,

rather than capturing snapshots of DDX3X’s function during

viral invasion, it should instead be systematically explored at

multiple time points during viral infection.
Vimentin

Vimentin is a type III intermediate filament cytoskeletal

protein expressed mostly in mesenchymal cells, including cells of

the immune system. Vimentin filaments modulate a wide variety

of cellular functions, including cytoskeletal stabilization,

migration, adhesion, division, organelle homeostasis, signaling,

aggresome formation, lipid metabolism and gene regulation.

Vimentin has important roles to play in immune responses,

including inflammation, wound healing, fibrosis and the host

response to infectious pathogens, including viruses (134).

Phosphorylated vimentin can also be expressed at the surface

of cells, including macrophages and neutrophils and is secreted

in response to various cellular processes, including cell

activation, apoptosis, senescence and stress (135–138).

Vimentin and NLRP3
Vimentin filaments have been found to play an important

role in several signaling pathways, potentially acting as a protein

scaffold that stabilizes signaling complexes. Moreover, vimentin

has been shown to interact with signaling molecules, including

phosphorylated extracellular-regulated kinase 1/2 (pERK1/2)

and NOD2, which it binds via the LRR, a protein binding

domain shared by multiple NLRs, including NLRP3 (139,

140). Based on this, dos Santos and colleagues investigated

whether vimentin had a role to play in NLRP3 inflammasome

activation (141). In response to intraperitoneal injection of

lipopolysaccharide (LPS) or intratracheal administration of

asbestos or bleomycin, measures of acute lung injury (ALI),

including histopathology and levels of caspase-1 and IL-1b, were
attenuated in Vim-/- mice, compared to wild type (WT) controls.
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Similarly, NLRP3 inflammasome activation, measured by

caspase-1 activation and release of mature IL-1b, was

significantly reduced in primary alveolar macrophages from

Vim-/- mice treated with LPS and ATP ex vivo, as well as in

human THP-1 macrophages transfected with siRNA against

VIM and treated with LPS and asbestos or monosodium urate

(MSU) crystals (141). Likewise, mouse immortalized BMDMs

treated with the vimentin-binding anti-angiogenic compound

withaferin A show significantly reduced NLRP3 activation in

response to LPS and the bacterial toxin nigericin (122).

Moreover, vimentin was found to co-localize and interact with

NLRP3 in THP-1 cells by confocal microscopy, co-

immunoprecipitation and using a bio-layer interferometer

(141). Similarly, super resolution microscopy has shown

NLRP3 to co-localize with to filamentous vimentin (122)

(Figure 1). Nonetheless, whether intermediate filaments are

involved in NLRP3 activation, or whether vimentin acts

independently of them, is not yet clear. Vimentin is also

present on particles which are converted into short motile

intermediate filaments, or ‘squiggles’, the movement of which

depends on microtubules (142). In this context, it is interesting

that tubulin inhibitors, including colchicine, have been shown to

inhibit NLRP3 activation (143, 144). Colchicine is an anti-

inflammatory drug that is currently approved for treatment of

acute flares of gout and familial Mediterranean fever, as well as

off-label for multiple inflammatory and autoimmune conditions

(145). More recently, it has been looked at as a potential

treatment for SARS-CoV-2 (146).

Vimentin and immunity to viruses
Studies have highlighted a role for vimentin in the entry,

replication and release of many different viruses (Table 1).

Extracellular/cell surface vimentin has been implicated in the

entry of SARS-CoV, SARS-CoV-2, DENV, foot-and-mouth

disease virus (FMDV) and human papillomavirus 16

pseudovirions (99, 100, 110, 112, 147). Intracellular vimentin,

on the other hand, has been shown to regulate the activity,

transport and/or replication of IAV, DENV and HCV (103, 106,

111). Conversely, some viruses target and modify vimentin to

aid their replication, including DENV, FMDV and group B

human enteroviruses (106, 109, 148). In the case of IAV

infection, vimentin appears to be critical for host cell

responses, as levels of virus mRNA and protein, along with

virus titres, were significantly reduced in infected Vim-/- mouse

embryonic fibroblasts (103). Interestingly, these Vim-/- cells also

demonstrated impaired endosomal distribution and

acidification, leading to the accumulation of virions in late

endosomes. It is proposed that this may, in turn, block the

release of the viral genome (103). For SARS-CoV-2, surface

vimentin appears to be critical for virus entry. Vimentin binds to

the SARS-CoV-2 spike protein and facilitates the entry of

pseudotyped viruses expressing the spike protein into HEK-
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293 and A549 cells expressing ACE2 (100). Specifically, vimentin

binds to the receptor binding domain (RBD) of the spike

protein, but at a different site to ACE2 (100).

In addition to cytoskeletal rearrangement and intracellular

trafficking, vimentin can potentially modulate host cell immune/

inflammatory responses to viruses. The role of vimentin in NLRP3

assembly and activation may underlie the observation that Vim-/-

mice infected with a lethal dose of IAV show decreased mortality

and measures of alveolar and lung capillary damage compared to

WTanimals (149).Viral replication andclearancewerenot affected

by loss of vimentin, suggesting that protection was against the

damaging inflammation, rather than viral titres. This is further

exemplified by reduced levels of pro-inflammatory cytokines in

Vim-/- mice infected with IAV, including IL-1b, TNF, RANTES
(regulated upon activation, normal T cell expressed and

presumably secreted), MIP2a (macrophage inflammatory

protein 2 alpha), monocyte chemoattractant protein-1 (MCP-1/

CCL2), IFN-a and IFN-b (149). This same study also identified

three distinct populations of monocyte-derived alveolar

macrophages (MoAMs) involved in infiltrating, early and late

inflammatory responses to IAV. Compared to WT cells,

expression of core pro-inflammatory genes in early phase Vim-/-

MoAMs was reduced, while late-stage cells were unaffected by loss

of vimentin. Interestingly, 3 distinct clusters of MoAMs were

identified in brochoalveolar lavage fluid from patients with severe

SARS-CoV-2 pneumonia, the most inflammatory of which also

had the highest expression of VIM (149).

In addition to its role in NLRP3 inflammasome assembly

and activation, vimentin has been shown to interact directly with

the LRR domain of NOD2 at the plasma membrane of HEK293

cells (140). Inhibition of this interaction with withaferin A

induced relocation of NOD2 from the plasma membrane to

the cytosol and abrogated NOD2-dependent NF-kB activation

and autophagy in response to treatment of cells with muramyl

dipeptide (MDP), a component common to all bacteria (140).

This is of potential significance to virus infection, as NOD2 is

activated by infection with IAV and promotes IRF3-dependent

transactivation of IFN-b (150). Moreover, MDP induces the

NOD2-dependent recruitment of inflammatory (Ly6Chigh)

monocytes to the lungs of IAV infected mice, coupled with

increased type I IFN and MCP-1/CCL2. In both Nod2-/- and

Ccl2-/- mice, recruitment of Ly6Chigh monocytes was impaired

and survival of the animals reduced (151).
Macrophage migration inhibitory factor

Macrophage migration inhibitory factor (MIF) is a

pleiotropic pro-inflammatory molecule with multiple proposed

roles in immune and non-immune cells. Originally discovered as

a lymphokine that inhibits macrophage movement in vitro, MIF

is now known to be released by most cells and has chemokine
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function, able to direct the recruitment of lymphocytes,

monocytes and neutrophils to sites of inflammation (152).

MIF also regulates the release of other cytokines and

chemokines, including TNF, MCP-1, IL-8 and IL-1 family

members (122, 153, 154) and regulates p53-dependent

apoptosis and transcriptional activity (155). However, MIF is

an unusual cytokine, possessing tautomerize and thiol-protein

oxidoreductase enzymatic activities, although in vivo targets for

these activities have not yet been found (156). Moreover,

precisely how MIF, which does not carry an N-terminal signal

peptide required for conventional secretion, is released from

cells is not clear. Studies have suggested an unconventional

pathway, involving the Golgi complex associated protein p115

and proteins of the ATP binding cassette transporter subfamily 1

(ABCA1) (157, 158), as well as release by dying/necrotic cells

(159, 160). Moreover, MIF is induced by, and counteracts the

effects of, glucocorticoids, steroid hormones that regulate

immune cell function and suppress inflammation (161, 162).

MIF inhibitors also have steroid-sparing effects (154). A second

MIF family member, D-dopachrome tautomerase (D-DT or

MIF-2) has also been characterized, showing structural

homology to MIF and similar enzymatic activity, with initial

work suggesting that there may be some functional redundancy

(163, 164). However, while MIF and D-DT appear to share

similar pathogenic roles in multiple sclerosis, they seem to have

diverging roles in other diseases, including systemic

sclerosis (165).

MIF and NLRP3
Studies have demonstrated that Mif-/- mice and their cells

secrete less IL-1b and IL-18 in response to infectious organisms

than WT controls (166, 167). Moreover, MIF has been shown to

drive IL-1b release and disease severity in a mouse model of gout

(168). More recently, two studies have highlighted a specific role

for MIF in the activation of the NLRP3 inflammasome (122,

169). In one study, inhibition of MIF in macrophages inhibits

the release of IL-1b and IL-18 in response to NLRP3-specific

stimuli, including the IAV peptide PB1-F2 (122). MIF was

required for inflammasome activation and the interaction

between NLRP3 and vimentin. Moreover, MIF was found to

interact directly, or in complex with, NLRP3, suggesting a direct

intracellular role for MIF in NLRP3 inflammasome activation/

assembly (122) (Figure 1). A second study identified a link

between MIF and NLRP3 activation in the response of human

monocytes to RNA-conta in ing U1 smal l nuc l ear

ribonucleoprotein (snRNP) immune complexes (169). Release

of MIF by monocytes was increased in response to U1 snRNP

immune complexes and concomitant release of IL-1b was

inhibited by a small molecule MIF inhibitor, which reduced

activation and inhibited the expression of NLRP3 protein and

mRNA (169). U1 snRNP immune complexes increased the

expression of the cognate MIF receptors CD74 and CD44
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(169), which, combined with the previous study, may indicate

that MIF can regulate NLRP3-dependent IL-1b release through

both intracellular and extracellular activities (122, 169).

Extracellular MIF has been proposed to drive NF-kB
activation through direct interaction with thioredoxin-

interacting protein (TXNIP) (170), which in turn inhibits NF-

kB activity. This might be expected to subsequently increase the

production of pro-IL-1b, pro-IL-18 and NLRP3, suggesting that

MIF inhibitors may abrogate NLRP3 activation through

regulation of both NF-kB and NLRP3. However, in our own

study, we found no effect of MIF inhibitors on NF-kB activity

nor on LPS-induced IL-1b or NLRP3 production (122).

Nonetheless, given that MIF is released by necrotic neutrophils

and macrophages (159, 160), we can speculate that activation of

the NLRP3 inflammasome and subsequent cell death via

pyroptosis might drive a positive-feedback loop leading to

further activation of the NLRP3 inflammasome.

MIF and immunity to viruses
While MIF has protective roles to play in immunity against

pathogens, including Salmonella typhimurium, Aspergillus

fumigatus, Trypanosoma cruzi and Klebsiella pneumoniae (167,

171–173), it has pathological, pro-inflammatory roles in animal

models of disease, including systemic lupus erythematosus

(SLE), multiple sclerosis (MS) and rheumatoid arthritis (RA)

(152). MIF has also been implicated in pathological and

inflammatory responses to a number of different human

viruses, including RSV (121), Ross River virus (174), DENV

(123, 124), WNV (130) and IAV (117) (Table 1). MIF release by

mouse macrophages is increased by replicating RSV in vitro and

this appears to drive the release of other cytokines including

TNF, MCP-1 and IL-10 (121). In the case of DENV, MIF is

elevated in infected patients, but there is conflicting data on its

correlation with disease severity (125, 126). Nonetheless,

inhibition or genetic deletion of MIF has been shown to

decrease inflammation and reduce virus replication (123, 175),

with one report indicating that increased extracellular MIF

might promote DENV replication in vitro, by enhancing

autophagic flux in Huh-7 cells (175). Serum levels of MIF are

raised in patients infected with West Nile virus and patients with

high expression MIF polymorphisms were more likely to

develop virus associated encephalitis (130).

Serum MIF is similarly increased in patients with IAV, has

been associated with disease severity and may have utility as a

predictor of disease outcome (176, 177). Intracellular levels of

MIF are also raised in human lung epithelial cells infected with

IAV (118) and intracellular stores of MIF are released from

infected cells when infected cells become necrotic (120). In

mouse models of IAV infection, Mif-/- animals have been

shown to have reduced lung inflammation, including 10-fold

lower levels of IL-1b, reduced viral load and lower mortality

(117). Likewise, treatment of infected mice with the MIF
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inhibitor ISO-1 has been shown to reduce levels of pro-

inflammatory cytokine and chemokine mRNA, including IL-

1b , in the lungs (178). Conversely, transgenic mice

overexpressing MIF in alveolar epithelial cells had more

inflammation, higher viral loads and higher mortality (117).

Early studies have also hinted at a pathologic role for MIF in

patients infected with SARS-CoV-2. Serum MIF levels were

found to be higher in patients with SARS-CoV-2, compared to

healthy controls and higher in patients with severe versus

moderate disease (114). Similarly, in a study of mechanically

ventilated SARS-CoV-2 patients, higher levels of MIF were

associated with impaired organ function, increased arterial

hypertension and lower 28-day survival (115). In another

study in which 65 serum proteins were measured in patients

with severe/critical and mild/moderate SARS-CoV-2, along with

healthy controls, MIF was the only cytokine raised in both the

mild/moderate and severe/critical patients, along with a number

of chemokines, growth factors and soluble receptors (116).

Interestingly, in this study no difference was observed in MIF

levels between the two groups of SARS-CoV-2-infected patients.

Levels of IL-18 were significantly higher in critical/hospitalized

patients, compared to healthy controls, while IL-1b was not

detected in enough patients for analysis (116).

To what extent, if any, MIF regulates host-virus responses

through modulation of the NLRP3 inflammasome is not yet

understood, although the fact that inhibition or deletion of MIF

is almost universally anti-inflammatory, commonly reducing the

release of IL-1b, would certainly point to it as a likely pathway of
significance. Likewise, the fact that inhibiting MIF abrogates IL-

1b and IL-18 release in response to the IAV peptide PB1-F2

(122), further points to regulation of NLRP3 being key to MIFs

role in virus-induced hyperinflammation. Thus, targeting MIF,

as well as DDX3X and vimentin, potentially offers a novel way of

inhibiting NLRP3 clinically.
Clinical efforts to suppress NLRP3-
mediated inflammation

Given NLRP3-mediated inflammation and cytokine storm

are associated with disease severity in IAV and SARS-CoV-2

infect ion (179), suppressing NLRP3 inflammasome

hyperactivation and cytokine storm may alleviate acute

respiratory distress syndrome (ARDS). As proof-of-principal,

MCC950 treatment in a human ACE2 transgenic mouse model

(hACE2-tg) quenched levels of inflammatory cytokines and

alleviated lung pathology compared to phosphate-buffered

saline (PBS)-treated mice (180). Young mice intraperitoneally

treated with MCC950 three days post IAV virus infection

showed reduced NLRP3 and activated caspase-1, regained

weight 8-9 days post-infection and improved survival

compared to their PBS-treated IAV-infected counterparts.
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However, both cohorts exhibited similar lung pathology,

suggesting the NLRP3 inflammasome plays a role in recovery

from IAV infection (181). A similar study in MCC950-treated

IAV-infected adult mice showed that those treated 7 days post-

infection had improved survival, however enhanced lethality was

observed in mice treated sooner post-infection (182). Therefore,

the timing of treatment administration should be considered.

MCC950 has been used in phase II clinical trials in patients with

RA, in which the activation of the NLRP3 inflammasome plays a

role (183), however MCC950 caused liver toxicity (184),

sparking the pursuit of NLRP3 inhibitors with enhanced

pharmacokinetic properties. To our knowledge only the

NLRP3 inhibitor DFV890 (Novartis Pharmaceuticals

NCT04382053) has completed phase II clinical trials for

efficacy against SARS-CoV-2-induced pneumonia, however

DFV890 treatment did not influence disease severity, nor

reduce the inflammatory marker serum C-reactive protein.

Nonetheless, pharmacological inhibitors of the NLRP3

inflammasome are being avidly pursued, although none are

currently FDA-approved.

Quenching the hyperinflammatory response via NLRP3

inflammasome inhibitors may be advantageous compared to

glucocorticoids, such as dexamethasone, to treat SARS-CoV-2

and IAV infections. While both approaches reduce

inflammation, glucocorticoids negatively impact the type I IFN

response, which is necessary to restrict viral replication in

infected cells and limit viral spread to non-infected cells (185).

For this reason, early-stage treatment of glucocorticoids, when

the viral load is high, is not recommended. Corticosteroids are

also immunosuppressive and have been linked to a rise in life-

threatening infections (186–188) and hyperglycemia (189).
Modulating the NLRP3 modulators

Because it is linked to somany different pathologies, the NLRP3

inflammasome has been a bona fide target for drug development for

several years, with multiple companies running programs to

develop drugs that target this critical inflammatory pathway.

Thus, modulators of NLRP3 inflammasome activation, such as

DDX3X, vimentin and MIF, may themselves be viable targets for

developing agents that block NLRP3-mediated inflammation.
DDX3X

With its role in NLRP3 inflammasome activation and its

conflicting roles in viral replication and suppression, DDX3X is a

potentially interesting therapeutic target. For viruses, such as

SARS-CoV-2, which utilize DDX3X to service their replication

and where infection can progress to life-threatening ARDS, the

strategic targeting of DDX3X may combat both viral load and

virus-induced inflammation. Intriguingly however, while the
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DDX3X catalytic inhibitor RK-33 can limit SARS-CoV-2

replication in Vero E6 and Calu-3 cells (70), it did not prevent

the cleavage of pro-caspase-1 into the mature p20 subunit

following the stimulation of BMDMs with LPS and nigericin

(55). Therefore, DDX3X appears to play a protein scaffolding,

rather than catalytic role in NLRP3 inflammasome activation.

The detailed characterization of the DDX3X-NLRP3 interaction

interface may therefore reveal opportunities to disrupt NLRP3

inflammasome activation. Likewise, post-translational modifiers

of DDX3X may also prove viable targets. AKT is proposed to

phosphorylate DDX3X and in doing so disrupt the DDX3X-

NLRP3 interaction (190). The determination of the DDX3X

AKT-phosphorylation site/s would validate these results and

potentially highlight a unique DDX3X-targeting site. Likewise,

other post-translational modifiers of DDX3X, including

tripartite motif protein 25 (TRIM25) (39) and TANK binding

kinase 1 (TBK1) (43), may influence NLRP3 inflammasome

activation but these remain to be explored.
Vimentin

Given its broad roles in both inflammatory and host-virus

responses, vimentin is an attractive target for the development of

novel therapeutics. Moreover, because intracellular and

extracellular/surface vimentin appear to contribute differently

to these roles, the possibility of targeting specific effects is of

potential interest. In particular, extracellular vimentin, which

can be targeted with anti-vimentin antibodies, has potential for

the development of drugs that inhibit virus entry into cells.

Targeting of surface vimentin has been shown to inhibit the

uptake of SARS-CoV virus-like particles and spike protein by

permissive Vero cells (99). Alternatively, small molecule

inhibitors, which can enter the cell and access the cytosol,

have the potential to disrupt intermediate filament networks,

interfering with the intracellular trafficking of viruses, as well as

interactions between vimentin and immune signaling pathways,

including NLRP3. Withaferin A, a natural withanolide, for

example, has been shown to inhibit NLRP3 activation in

mouse macrophages (122), as well interfering with the

vimentin-NOD interaction. Future strategies to target these

specific interactions could lead to the discovery of potent

NLRP3-inhibiting drugs.
MIF

Similar to vimentin, MIF has both intracellular and

extracellular functions that are potentially relevant to its role

in virus entry and replication, as well as in NLRP3 activation. In

a mouse model of IAV infection, treatment of mice with an anti-

MIF neutralizing antibody significantly increased survival (117),

although whether this is due to effects on NLRP3 activation is
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unclear. However, treatment of mouse macrophages with the

small molecule MIF inhibitor COR123625, has been shown to

inhibit IL-1b and IL-18 release in response to the IAV peptide

PB1-F2 (122), which is known to activate NLRP3 (34). Of

significance, a clinical trial is currently underway to test the

efficacy of ibudilast (MN-166) in patients infected with SARS-

CoV-2 and at risk of developing ARDS (NCT04429555).

Ibudilast is a phosphodiesterase inhibitor approved for the

treatment of asthma in Japan that has also been shown to also

inhibit MIF tautomerase activity (191). Given that MIF has been

shown to interact, either directly or in a complex, with NLRP3

(122), future studies to identify the critical residue/s on the MIF

molecule for this interaction could lead to highly specific and

potent NLRP3-targeting compounds.
Conclusions

In the early stages of infection, viral replication is restricted

by the type I IFN response and can be aided by treatment with

antiviral inhibitors that block viral replication. However, severe

viral infections, caused for example by SARS-CoV-2 and IAV,

can cause excessive inflammation and develop into life-

threatening ARDS. ARDS is currently managed by supportive

treatment, such as mechanical ventilation to improve oxygen

levels in the blood, however the root cause, hyperinflammation,

is typically not pharmacologically treated. In patients with severe

SARS-CoV-2, generically quenching the hyperinflammatory

response using corticosteroids has shown benefit (192), but

may have serious side-effects (193). Alternatively, treating

NLRP3-mediated inflammation with specific inhibitors has

also shown promise in both SARS-CoV-2- and IAV-infected

mouse models and are being pursued by pharmacological

companies with great enthusiasm. The identification of new

NLRP3 components and accessory molecules, such as DDX3X,

vimentin and MIF, which themselves have other regulatory roles
Frontiers in Immunology 11
in antiviral immunity, reveal the growing complexity of NLRP3

inflammasome regulation. Importantly, it also reveals new

opportunities for the development of novel therapeutic

strategies to suppress NLRP3-induced inflammation with the

potent ia l to reduce disease sever i ty and improve

patient outcomes.
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