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Benchmarking freely available
HLA typing algorithms across
varying genes, coverages and
typing resolutions

Nikolas Hallberg Thuesen1,2*, Michael Schantz Klausen1,
Shyam Gopalakrishnan3, Thomas Trolle1 and Gabriel Renaud2

1Evaxion Biotech, Copenhagen, Denmark, 2Department of Health Technology, Section for
Bioinformatics, Technical University of Denmark, Lyngby, Denmark, 3Section for Hologenomics,
Department of Biology, University of Copenhagen, Copenhagen, Denmark
Identifying the specific human leukocyte antigen (HLA) allele combination of an

individual is crucial in organ donation, risk assessment of autoimmune and

infectious diseases and cancer immunotherapy. However, due to the high

genetic polymorphism in this region, HLA typing requires specialized methods.

We investigated the performance of five next-generation sequencing (NGS)

based HLA typing tools with a non-restricted license namely HLA*LA, Optitype,

HISAT-genotype, Kourami and STC-Seq. This evaluation was done for the five

HLA loci, HLA-A, -B, -C, -DRB1 and -DQB1 using whole-exome sequencing

(WES) samples from 829 individuals. The robustness of the tools to lower depth

of coverage (DOC) was evaluated by subsampling and HLA typing 230 WES

samples at DOC ranging from 1X to 100X. The HLA typing accuracy was

measured across four typing resolutions. Among these, we present two

clinically-relevant typing resolutions (P group and pseudo-sequence), which

specifically focus on the peptide binding region. On average, across the five

HLA loci examined, HLA*LA was found to have the highest typing accuracy. For

the individual loci, HLA-A, -B and -C, Optitype’s typing accuracy was the

highest and HLA*LA had the highest typing accuracy for HLA-DRB1 and -DQB1.

The tools’ robustness to lower DOC data varied widely and further depended

on the specific HLA locus. For all Class I loci, Optitype had a typing accuracy

above 95% (according to themodification of the amino acids in the functionally

relevant portion of the HLA molecule) at 50X, but increasing the DOC beyond

even 100X could still improve the typing accuracy of HISAT-genotype,

Kourami, and STC-seq across all five HLA loci as well as HLA*LA’s typing

accuracy for HLA-DQB1. HLA typing is also used in studies of ancient DNA

(aDNA), which is often based on sequencing data with lower quality and DOC.

Interestingly, we found that Optitype’s typing accuracy is not notably impaired

by short read length or by DNA damage, which is typical of aDNA, as long as the

DOC is sufficiently high.

KEYWORDS

human leukycote antigen, next-generation sequencing (NGS), whole exome
sequencing, depth of coverage, algorithm, benchmark, typing resolution
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1 Introduction

Human leukocyte antigens (HLA) are a group of genes in the

Major Histocompatibility Complex (MHC) region. They encode

membrane-bound proteins involved with peptide presentation

to T-cells and are central to the adaptive immune system. HLA

Class I molecules are found on the surface of most somatic cells

and present peptides, originating from proteins produced within

the cell, to CD8+ cytotoxic T lymphocytes (CTLs), while HLA

Class II molecules are found on antigen-presenting cells (APCs)

and present exogenous peptides to CD4+ helper T-cells (see

Figure 1A) (2, 6, 7).

Cells can present peptides to T-cells both from pathogens

(non-self peptides), tumor mutations (neopeptides) and cells

native to the body (self-peptides). T-cells are however generally

able to recognise the difference between self and foreign

antigens. This means that a cell displaying a non-self peptide,

thereby indicating that it is infected by a virus or developing into

a tumor cell, can trigger an immune response that a healthy cell

would otherwise avoid (8, 9). The binding of a peptide to HLA

and subsequently the recognition of this complex by a T-cell
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receptor (TCR) is highly specific, and a given HLA molecule will

only bind and display a peptide if it matches the HLA molecule’s

binding cleft, which is also known as the peptide-binding groove

and as the antigen recognition domain (ARD) (10, 11). The

MHC region is highly polymorphic and the most diverse sites

are HLA Class I loci, HLA-A, -B and -C as well as the HLA Class

II loci HLA-DRB1, -DQB1 and -DPB1. The IPD-IMGT/HLA

database (Release 3.49.0) lists more than 31000 unique HLA

allotype sequences and more than 19000 unique proteins for

these six loci alone (2). HLA genes are, furthermore, co-

dominantly expressed, giving an enormous amount of possible

HLA profiles for an individual (12).

Due to the large number of alleles, the naming of specific

HLA alleles follows a special convention as illustrated in

Figures 1B, C (13, 14). HLA nomenclature is comprised of up

to four fields and each additional field describes a specific allele

with increasing precision.

The most important part of the HLA molecule is the ARD,

which is encoded by exons 2 and 3 in Class I molecules and by

exon 2 in HLA Class II molecules. The most important sequence

differences between alleles are therefore the ones affecting the
A C

DB

FIGURE 1

(A) Peptide presentation on APCs to (I) a CD4+ helper T-cell via an HLA Class II molecule and (II) to a CTL (CD8+ T cell) via an HLA Class I molecule.
Both Class I and Class II molecules are heterodimers but for Class II, the ARD is made up of one domain from each monomer and therefore encoded
by two different genes. Figure adapted from (1). (B) HLA nomenclature shown with full four field (8-digit) resolution. Adapted from http://hla.alleles.org/
nomenclature/naming.html. (C) The number of HLA alleles varies greatly with each typing resolution. In this figure, “pseudo-sequence” refers to the
amino acid residues directly involved with the binding of the peptide as shown in (D). Each of the typing resolutions shown in this figure are subgroups
of the higher typing resolutions, meaning that it is always possible to convert unambiguously from e.g. 2-field resolution to P group resolution. Note
that null alleles are disregarded at P group and pseudo-sequence resolution, as these do not correspond to an expressed protein. The data is acquired
from the IPD-IMGT/HLA database (2) release 3.48.0. (D) A binding pocket of an HLA Class II molecule (HLA-DR). The specific residues, which are
directly involved in binding a peptide to the HLA molecule, are highlighted in purple. These purple residues make up the pseudo-sequence. DRA is
shownin green and DRB1 in blue and a melanoma antigen in the binding pocket is shown in red. Protein data was obtained from the Protein Data Bank
(3, 4) and the figure was made using PyMOL (5) panels (A–D) were crated using https://www.diagrams.net/.
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nucleotides in this region (13). Two official ARD-based HLA

typing resolutions exist. G group resolution which clusters alleles

with identical nucleotide sequences in ARD coding exons and P

group resolution which groups alleles with identical ARD

protein sequences. An overview of these can be found at1. A

2019 article (15) argued that mismatches outside the ARD are

generally not important and that clinical decision-making

therefore should focus on the ARD sequence except for

common null alleles that are distinguished by variation outside

the ARD. This recommendation is followed by using P group

resolution and accounting for null alleles separately. Alleles can

be further grouped based on the residues that are directly

involved with the binding of the peptide to the HLA molecule

(see Figure 1D). This grouping method is used in tools

predicting peptide-HLA binding such as NetMHCpan (16).

HLA typing is the process of determining an individual’s

specific HLA alleles. HLA typing is used widely since the peptide

presentation is a crucial part of the adaptive immune system and

depends on the specific HLA allele. Some examples include the

study and prognosis of infectious diseases, autoimmune diseases

and cancer, as well as the discovery of neoantigens in cancer

treatment and for finding compatible donors for organ

transplants (10, 17, 18).

HLA typing is significantly more difficult than traditional

variant calling. This is mainly due to the extremely high degree

of variation in the MHC region and a high degree of sequence

homology between different HLA loci (12). Traditional HLA

typing uses lab-based methods which can be slow and expensive.

The rapid development of next-generation sequencing (NGS)

has, however, resulted in large amounts of easily available

sequencing data which can be used for HLA typing by

employing recently developed computational tools (19–23).

NGS-based HLA typing tools can be divided roughly into

two groups - those using de novo assembly-based methods and

those which directly align to a reference sequence. The

alignment-based methods either use a traditional linear

reference or a graph-based reference/graph-based alignment

algorithm (20, 24). The tools further differ on which HLA

genes they can type and on the sequencing data, which they

use for typing.

A 2019 review of NGS-based HLA typing noted the lack of

systematic benchmarking of the many available HLA typing

algorithms (24) and although several benchmarking studies have

been published, there is no specific tool that consistently

outperforms the others. Instead, the studies have shown that

the optimal choice of HLA typing tool differs between

sequencing data types and specific HLA loci (25–29). Some

tools, such as Optitype (19) and Polysolver (30) only offer typing

of Class I genes, while other tools have been developed
1 http://hla.alleles.org/.
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specifically for use with high-coverage whole-genome

sequencing (WGS) data (21).

New alleles are registered and named by a World Health

Organisation committee and stored in the IPD-IMGT/HLA

database. The database is continuously updated and errors are

corrected but the database is not complete. New alleles are still

being discovered and the full genomic sequence is not known for

all registered alleles. Some entries are still missing the non-ARD

coding exons and/or the introns (2).

The application of NGS-based HLA typing is not limited to

presently living individuals but has also been used in studies of

ancient genomes for example to find specific HLA alleles that

increase susceptibility or protection to a specific disease.

Sequencing of ancient DNA (aDNA) is often limited by a low

depth of coverage (DOC), short DNA sequence length and

chemical damage to the DNA (31). However, studies of aDNA

have still used modern HLA typing tools such as Optitype (32)

and an adaptation of HLAssign (33) to perform HLA typing on

ancient individuals. Optitype is designed for general, non-

enriched sequencing data (19) but has been used to type

aDNA samples due to its apparent reliability for sequencing

data with low DOC and/or read length. However, it has been

noted that Optitype has not yet been tested or validated on

aDNA and it is therefore also used along with non-automated,

aDNA specialised pipelines such as the TARGT pipeline (34).

In this study, we present a comprehensive review of the

performance of freely available HLA typing methods based on

NGS. Specifically, the five HLA loci HLA-A, -B, -C, -DRB1 and

-DQB1 are typed using whole-exome sequencing (WES) data.

WES data is widely used in clinical settings as it is an affordable

alternative to WGS while still providing a general genomic

profile of a patient. This data is therefore often readily

available for a patient (35, 36). This study is limited to these

five HLA loci as the chosen reference dataset only contains

sequence-based typing for those (see section 2.2). These loci are,

however, also the most important and often the main focus of

clinical HLA analyses (37).

This study demonstrates the first use of P group resolution

and pseudo-sequence resolution in a benchmarking study of

WES-based HLA typing. We find that HLA*LA had the highest

typing accuracy across the five HLA loci, and that the typing

resolution does not have an effect on which tool performed the

best. We show that the impact of the DOC on the HLA typing

accuracy depends heavily on both the tool and the HLA locus. A

DOC of at least 100X is advisable for accurate typing of all five

HLA genes - even for the best performing tools.

An understanding of the impact of the DOC on typing

accuracy is crucial in HLA studies based on aDNA. We,

therefore, expand upon the previous results by estimating

Optitype’s performance on simulated aDNA that mimics

aDNA samples in terms of DOC, read length and adding

simulated chemical damage. Interestingly, we find that read

length does not matter as much as the DOC however,
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Optitype requires a DOC between 10X and 20X to achieve a

typing accuracy above 90% which is often prohibitively high for

ancient DNA samples.
2 Materials and methods

2.1 Selection of HLA typing tools

There are numerous NGS-based HLA typing tools available.

This study focused on freely available tools which ran on WES

data and had shown promising results in previous

benchmarking or proof of concept studies. This means that

tools such as HLA-HD (38), Polysolver (30) and OncoHLA (39),

which require some form of license, were not included in this

study. The final selection of tools is listed in Table 1. STC-Seq

was included as a reference to illustrate how a simpler algorithm,

which is designed for HLA enriched data, performs onWES data

with lower DOC. Optitype was downloaded from2. CBC 2.9.5

was used as ILP solver as it was found to be more stable than

CPLEX 12.7 which often did not converge to a solution.

Kourami was downloaded from3, HLA*LA was downloaded

from4, HISAT-genotype was installed using its web-guide at5

and STC-Seq was downloaded from the BioCode website6.

All tools in the analysis were run with default parameters

and their own version of the IMGT database. This means, that

potential advantages of more advanced features of some tools

were not tested. Each tool was given 10 threads and as much

memory as needed.
2.2 Benchmarking dataset

To evaluate the performance of the HLA typing tools, we

used a reference dataset consisting of WES samples from 829

individuals taken from the 1000 genomes phase 3 dataset (41).

The dataset contained samples from across the world with 340

being European, 187 African, 201 Ad Mixed American, and 101

East Asian. The DOC of the samples (measured over the targeted

exons) ranged from 37X to 456X with the median being 86X.

819 of the 829 samples were typed by (42), who determined

the HLA types by PCR amplification and Sanger sequencing

followed by sequence comparison to the ARD coding exons

(IPD-IMGT/HLA version 2.26.0). This method resulted in
2 https://github.com/FRED-2/OptiType.

3 https://github.com/Kingsford-Group/kourami.

4 https://github.com/DiltheyLab/HLA-LA.

5 https://daehwankimlab.github.io/hisat-genotype/manual/.

6 https://bigd.big.ac.cn/biocode/tools/BT007068.
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ambiguous typing results for some samples e.g NA12287

which had the HLA-B typing: 15:01/15:03 for the first allele

and 15:01/15:26/15:12/15:19 for the second allele. The last 10

samples were typed by (43), who used a similar amplification

and sequencing method but compared the sequencing data to

both the ARD coding exons as well as exon 4 for Class I genes

and exon 3 for HLA-DQB1. For these 10 samples, ambiguities

were resolved using sequencing with sequence-specific primers

and the typing was further validated using sequence-specific

oligonucleotide probe hybridization.

All 829 samples were further investigated in a 2018 study

(44) (using IPD-IMGT/HLA version 3.28) who found some

disagreements between their own typing results and the findings

from (42). These disagreements were manually investigated and

some of the typing results by (42) were found to be typing errors.

In this study, we used the - occasionally ambiguous - typing

results of (42) and (43), but updated the typing for the specific

alleles in, which (44) had found to be mistyped. We further

found that this dataset contained some alleles, whose names

have changed since 2014. For both the gold standard dataset and

for the predictions made by the HLA typing tools, these alleles

were converted to their newest name. A full overview of all

deleted/renamed alleles can be found at 7. This gold standard

dataset is referred to as the 1000G dataset in the remainder of

the paper.

For the majority of the individuals in the 1000G dataset, the

HLA typing was only available in 2-field resolution and the tools

could therefore only be evaluated at 2-field resolution or lower.

In the cases, where the reference dataset contained ambiguous

typing, predictions by the tools were counted as correct if they

matched any combination of correct alleles. However, if a tool

returned multiple predictions, only the top prediction

was counted.

Some of the samples in this dataset were also used in the

development of the HLA typing tools or at least included in the

proof of concept study in the original articles introducing

the tools. Out of the 829 individuals, 31 were included in the

paper introducing Kourami, 28 for HLA*LA and 95 in the paper

introducing Optitype. The tools were, however, not specifically

designed to type these samples. Instead, the samples were

included in the papers as part of smaller benchmarking studies

that demonstrated the performance of each tool. We, therefore,

chose to keep these samples in this benchmarking study.
2.3 Performance evaluation

The five HLA typing tools were evaluated on several different

metrics with the most important being the typing accuracy,
7 http://hla.alleles.org/alleles/deleted.html.
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which is the number of correct predictions out of the total

amount of HLA alleles. The typing accuracy was found for the

resolutions: 1-field, pseudo-sequence, P group and 2-field (see

Figure 1). Some tools did not return a prediction for all alleles,

and the individual tools’ call rate (number of predictions a tool

returned as a fraction of the total number of alleles) was

therefore also noted. The time (CPU and real), as well as the

memory use of each HLA typing tool, was registered and the full

pipeline for running the tools is illustrated in Supplementary

Figure S1.
2.4 Conversion between typing
resolutions

The reference HLA alleles in the 1000G dataset are in 2-field

resolution which cannot be unambiguously converted to G

group resolution. This is because 2-field resolution separates

alleles based on differences in the full amino acid sequence while

G group resolution separates alleles based on genomic

differences in the ARD coding exons. 2-field typing is,

however, widely used in benchmarking studies and so to make

the best estimate of Kourami’s and HLA*LA’s 2-field accuracy,

their G group predictions were converted to 2-field resolution by

trimming the third field. We found this approach the fairest, as it

only allows each tool one guess per allele. The approach is,

however, still not perfect, as is discussed in section 4.1.
Frontiers in Immunology 05
The pseudosequence resolution, which for HLA-DRB and -

DRA is shown in Figure 1, was presented by (45) and we use the

same approach to constructing the pseudo-sequences as was

described in the original article. That is, a pseudo-sequence

consists of the 34 amino acids, which are within 4 Å of a peptide

bound to the HLA molecule. Alleles which share these 34 amino

acids belong to the same pseudo-sequence group.
2.5 Downsampling

The 230 samples in the 1000G dataset with a DOC of at least

100X were included in the downsampling study. Downsampling

was performed by first finding the full sequencing depth of the

CRAM files used in the 1000G dataset. This was done using

mosdepth (version 0.2.6) (46). Hereafter, alignment files

containing potential HLA reads were downsampled to 1X, 2X,

5X, 10X, 20X, 50X, 75X and 100X using samtools view -s (47).

The resulting files were then HLA-typed in the same way, as in

the main study (see Supplementary Figure S1).
2.6 Optitype’s performance on simulated
ancient DNA

The 50 WES samples with the highest DOC from the 1000G

dataset were used to simulate an aDNA dataset. Samples were
TABLE 1 Details of the five HLA typing algorithms included in this project.

Tool Version Resolution Approach Reason for inclusion in this study Known disadvantages

Kourami
(21)

0.9.6 G group Weighted graph structure from
alignment of input reads aligned
to reference sequences. Most
probable graph path is the inferred
type.

High typing accuracy in previous
studies (39). Can detect and
report new alleles, which are not
included in a database.

Build for WGS based and is
negatively affected by gaps in
the sequencing data.

HLA*LA
(23)

1.0.1 G group Linear alignments projected on
a population reference graph.
Likelihood functions to infer the
HLA type.

High typing accuracy in previous
studies (39).

HISAT-genotype
(20)

1.3.2 4-field Graph-based alignment
(HISAT2) and an expectation
maximisation algorithm.

High typing accuracy in previous
studies (40). Able to detect
novel alleles. Unique, as it does
not include some form of linear
alignment, but an extension of
BWT for graphs.

STC-Seq
(22)

1.0 3-field Dense chip-based probes that
capture the coding regions of
HLA. Linear alignment algorithm.

Offers a perspective by showing
the performance of a simpler
bioinformatics approach, as it
is designed for HLA enriched
data.

Not designed for general sequencing
data.

Optitype
(19)

1.3.3 2-field Integer linear programming to
find the allele combination that
explains the highest number of
reads.

High typing accuracy in previous
studies (25, 26, 28).
Each of the original articles describing the tools contains some sort of benchmarking study, demonstrating the capabilities of the tool. For more a more extensive outline of these five HLA
typing tools, see Supplementary Table S1.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.987655
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Thuesen et al. 10.3389/fimmu.2022.987655
downsampled as described above. Gargammel (v. 1.1.2) (48) was

used to trim reads to specific read lengths and to add simulated

chemical damage. The added chemical damage was done in a

way to simulate the chemical damage in the samples from a 2021

study of medieval plague victims (49). Specifically, the added

damage was 20 base of C to T substitutions after the 5’ end, the

substitution rate for the base immediately after the 5’ end was 7%

and fell below 1% 3 bases after the 5’ end. There were also 20

bases before the 3’ end of G to A substitutions, the base right

before the 3’ end has a substitution rate of 6% and then fell below

1% 3 bases before the 3’ end. Reads were downsampled to a DOC

of 1X, 2X, 5X, 10X, 20X and 50X and read lengths were varied

over 10, 13, 15, 20, 25, 30, 35, 45, 55 and 65 base pairs. The WES

samples did not have enough reads to achieve a DOC of 50X for

the lower read lengths, so some read length/DOC combinations

could not be performed.

3 Results

This section will focus primarily on the clinically relevant P

group resolution and the typing results as well as the HLA types

noted in the 1000G dataset are available (in P group resolution)

in Supplementary Table S2. All results presented in this section

are, however, available both as raw typing output from the HLA

typing tools and converted to four typing resolutions on this

project’s GitHub8.
3.1 Overall performance of the tools

Figure 2 outlines the performance of the five HLA typing

tools on the full 1000G dataset across four different typing

resolutions. HLA*LA, Optitype and HISAT-genotype all have

a call rate of 100% across the genes that they offer predictions for.

Kourami fails to return a prediction for almost 9% of alleles and

STC-Seq for more than 30%. In Kourami’s case, a failure to

return a prediction often happens when there is not enough data

to sufficiently cover important regions leading to Kourami’s

graph structure being disconnected (21). Optitype is the best

performing of the tools for Class I genes and has a typing

accuracy close to 100% across all typing resolutions. These

results match the results of previous studies evaluating the

performance of Optitype (25, 26). HLA*LA is the best

performing tool for the two HLA Class II genes as well as

across all five HLA genes.

HLA*LA performs almost as well as Optitype at 1-field

resolution, while the difference in performance between the

two tools is larger at higher typing resolutions. In 2-field
8 https://github.com/nikolasthuesen/hla-typing-benchmark.
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resolution, HLA*LA mistypes 4.3% of Class I alleles while

Optitype only mistypes 1.5%.

For both HLA Class I and Class II genes, the typing

resolution does not change which tools perform the best.

Across all typing resolutions and Class I genes, Optitype has

the highest typing accuracy, HLA*LA has the second-highest

followed by HISAT-genotype, Kourami and STC-Seq in that

order. The order remains the same across the Class II genes for

the tools that offer Class II typing. Using P group resolution

instead of 2-field does however make some difference to the

typing accuracy. HLA*LA miscalls 141 out of 3316 Class II

alleles in 2-field resolution, but 36 of the 141 are correct calls in P

group resolution and 59 of the 141 are correct calls in pseudo-

sequence resolution.

Figure 3 shows the distribution of the peak memory usage

and real-time usage across the 829 samples in the 1000G dataset

for each of the five tools included in this study. Generally, STC-

seq, Optitype and Kourami use the least memory per sample,

with median usages of 0.38 GB, 1.1 GB and 1.7 GB respectively.

For a few of the samples, STC-Seq and Optitype use more than 8

GB of memory, while the most memory-demanding sample

takes 6.4 GB for Kourami. HISAT-genotype uses 8 GB of

memory for almost all samples, indicating that this is a built-

in restriction. Allowing HISAT-genotype to use more than 8 GB

of memory could perhaps reduce the runtime of the tool.

HLA*LA uses by far the most memory with a median of 31

GB per sample and the most memory-demanding sample

(NA18504) requiring over 600 GB of memory. The high

memory usage is due to HLA*LA’s expensive alignment step

that uses dynamic programming (21) and has been noted by the

HLA*LA developers9.

HLA*LA and HISAT-genotype spend the most time per

typed sample. HISAT-genotype’s median time (23 minutes) is

higher than HLA*LA’s median time usage (15 minutes) but

HLA*LA spends more than a day for a few samples, whereas

HISAT-genotype at most spends 172 minutes. STC-seq spends

more than an hour for some samples, but types most samples in

under 10 minutes. Kourami and Optitype type most samples in

less than 2 minutes. The CPU time usage of the tools can be

found in Supplementary Figure S3.

Kourami, Optitype, HISAT-genotype and STC-seq can all

run on a system with less than 16 GB of memory and run most

samples in less than an hour with Optitype and Kourami

generally requiring far less time. HLA*LA requires much more

memory than the other tools and spends more than an hour for

129 samples and more than 24 hours for 2 samples. These high

resource requirements should be kept in mind when choosing

this tool.
9 https://genomeinformatics.github.io/HLA-PRG-LA/.
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3.2 Systematic errors in the typing results
and in the 1000G dataset

Some HLA alleles are very common and others are so rare that

they have only been detected in one individual. Allele frequencies

further differ between ethnic groups and some alleles are common
Frontiers in Immunology 07
in one population group but rare in another (7). To assess whether

the 1000G dataset used in this study is a fair representation of a

global population, we compared the allele frequencies in the 1000G

dataset with that of the US donor registry dataset presented by (50),

which contains HLA typing data from 2.9 million individuals

distributed across 21 population subgroups.
A

B

FIGURE 2

The five HLA typing tools’ typing accuracy (number of correctly called alleles out of the total amount of alleles) and call rate (number of called
alleles out of all alleles) in 1-field, pseudo-sequence, P group and 2-field resolution for the three HLA Class I genes HLA-A, -B and -C (A) and
the two HLA Class II genes HLA-DRB1 and -DQB1 (B). Optitype does not offer Class II typing and is therefore not listed in (B). Note, that the
typing accuracy is not relative to the call rate, but to the total amount of alleles. The call rate is displayed alongside the typing accuracy to
depict the difference between an allele not being typed by a tool and a tool mistyping an allele. For example, Kourami offers correct 1-field
typing for 89.9% of Class I alleles, but only a smaller part of the missing 10.1% is due to Kourami returning a wrong prediction. Instead, the
majority of miscalls can be attributed to Kourami not returning any prediction at all. Supplementary Figure S2 shows these results stratified on
the five individual HLA genes.
A B

FIGURE 3

(A) The peak memory usage and (B) real-time usage of HLA typing for each sample in the full 1000G dataset. Note that this is only for the
tool-specific HLA typing step and does therefore not include any of the previous steps such as the extraction of HLA reads.
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Supplementary Figure S4 shows a comparison of the allele

frequency distribution of the 1000G dataset and that of the US

donor registry dataset by (50). There are some differences

between the allele frequencies in the two datasets; DRB1*15:02,

for example, has an allele frequency of almost 2.5% in (50) but

less than 0.5% in the 1000G dataset. On an overall scale,

however, the allele frequencies in the 1000G dataset are similar

to the allele frequencies in (50) and a paired t-test comparing the

two allele frequency distributions did not show that the two

datasets differed significantly (p=0.72). It has been noted that

allele frequency data for rare alleles is generally less robust than

that of common alleles and that, when working with reference

population data, focusing on the more common alleles may be a

better approach (7). The 1000G and US donor registry frequency

distributions are more alike for common alleles than rare alleles,

and this approach would therefore not change the

prior conclusion.

To get an overview of alleles, for which the individual HLA

typing tools had a particularly low typing accuracy, we calculated

the typing accuracy (P group resolution) for each tool for each

unique allele in the 1000G dataset. This is shown in

Supplementary Table S2, which for each entry also notes the

allele frequency in the 1000G dataset and the allele frequency for

individual population groups in the US donor registry. A notable

allele is A*11:01, which Optitype types correctly in 113 out of

113 cases but HLA*LA only correctly types in 79 cases. Another

is DRB1*03:02, which HLA*LA correctly types in all 33 cases,

Kourami correctly types in 32 cases, but HISAT-genotype only

correctly types in 6 cases.

Supplementary Figure S4 shows that the 1000G dataset

contains both rare and common alleles and it could be

hypothesised that the tools would perform better on frequent

alleles than on less frequent alleles. This is, however, not

generally the case as shown in Supplementary Figure S5. This

figure shows that for Kourami, HLA*LA and HISAT-genotype,

the mistyped alleles have a higher median allele frequency (as

defined by the US donor registry) than the median allele

frequency of the correctly typed alleles. For Optitype, the

median frequencies for correctly typed and mistyped alleles

are almost identical. Another way of looking at allele

frequency is to separate the alleles into rare and common

alleles and compare the performance of the tools on these two

groups. We defined an allele as “rare” if it had an overall

frequency of less than 1/2000 across all individuals in the US

donor registry dataset. Alleles with a higher frequency than 1/

2000 were defined as “common” alleles. This definition is similar

to the one made in (50). Supplementary Table S3 lists the overall

typing accuracy for each tool for rare and common alleles,

respectively. Kourami and HLA*LA have a higher typing

accuracy for the rare alleles (88.6% and 100%) than for the

common alleles (83.7% and 96.3%), while HISAT-genotype and

Optitype have a much higher typing accuracy for the common

alleles (89.1% and 98.8%) than for the rare alleles (61.4% and
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92.1%). Note that Optitype’s typing accuracy here is only

calculated for HLA Class I genes.

We expanded upon the analysis of rare alleles by looking

into whether the HLA typing tools performed better for alleles

common (>=0.0005%) to Caucasians compared to rare alleles

(<0.0005%) in Caucasians, but common in one of the other four

ethnic groups (African American, Asian/Pacific Islander,

Hispanic or Native American). If this was the case, it could

potentially be a result of the genomic reference dataset being

biased towards Caucasian data, as has been discussed in recent

studies (51). Supplementary Figure S6 shows that Kourami,

HLA-LA and HISAT-genotype actually performed worse on

the alleles common to Caucasians, whereas there was no notable

difference in typing accuracy between the two groups

for Optitype.

We also investigated whether there were any general

differences in typing accuracy between the four population

groups represented in the 1000G dataset (European, African,

Ad Mixed American, and East Asian). Supplementary Table S4

shows an overview of the typing accuracy for each tool across the

five HLA loci and the four population groups. For HLA Class I

loci and HLA-DRB1 there is no clear indication that the tools

favor or disfavor a specific population group. However,

Kourami, HLA*LA and HISAT-genotype are all remarkably

inadequate at typing HLA-DQB1 from East Asians compared

to their performance for the other three population groups.

HLA-LA has an error rate of more than 11% for East Asians

HLA-DQB1, and an average error rate of less than 3% for the

other three population groups. Kourami only has a typing

accuracy below 40% for East Asian HLA-DQB1, but an

average of above 80% for the three other population groups.

Note here, that a large part of Kourami’s miscalls for HLA-

DQB1 can be attributed to Kourami not converging to a solution

and not returning a result (see Supplementary Figure S2).

Supplementary Figure S7 shows a comparison of the DOC of

the four population groups across all sequenced exomes as well

as specifically the ARD coding region (exon 2) of HLA-DQB1.

The East Asian samples have a higher DOC across all sequenced

exomes than the samples from the other population groups but a

number of the East Asian samples have an especially low DOC

for the ARD coding region (exon 2) of at least one of their HLA-

DQB1 alleles.

As shown in the 2018 study, the dataset presented by (42)

likely contains some errors and, even with the adjustments to the

dataset described in section 2.2, the 1000G dataset may still

harbor some errors. Supplementary Table S5 lists the typing

results for 54 loci in the 1000G dataset, where a majority of the

well-performing HLA typing tools (Kourami, HLA*LA, HISAT-

genotype and Optitype) mistyped at least one of the alleles. For 5

of these samples (NA18507, NA19130, NA19131, HG00610 and

HG00625), a majority of the tools agreed on a typing, which

differed from the one noted in the 1000G dataset. The fact that a

majority of the tools mistype these samples could be due to
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difficulties in distinguishing between two very similar alleles, or

due to poor sequencing quality, poor primer design or a low

DOC specifically for HLA-DQB1, but it may also be due to

errors in the 1000G dataset. These samples could be investigated

in future studies and perhaps HLA typed using PCR-based

methods to improve upon the 1000 genomes HLA dataset.

The 1000 genomes phase 3 dataset contains more WES

samples with PCR-validated HLA types, than the samples

included in the 1000G dataset used in this study. Due to

computational limitations we, however, chose to focus on a

subset of individuals. To ensure, that this choice did not impact

our results, we verified that that the tools showed similar

performances for a random selection of half (414) of the 829

chosen samples (Supplementary Figure S8) compared to that of

the full 1000G dataset (Figure 2).
3.3 Downsampling analysis

Previous studies have analysed how the typing accuracy of

various HLA typing tools depends on the DOC of the

sequencing data (21, 26, 40). Here, we present a more detailed

study of how the typing accuracy for each of the tools included in

this study depends on the DOC of the sequencing data.

The typing accuracies presented in this section are, unless

specified, all in P group resolution and therefore match the

results shown in Figure 4. This figure shows that the typing

accuracies of Kourami, HLA*LA, Optitype, HISAT-genotype

and STC-Seq depend highly on the DOC of the samples when

the DOC varies between 1X and 100X. A higher DOC correlates

with a higher typing accuracy but this correlation is not linear

and differs between the HLA typing tools. Some HLA typing

tools maintain a high typing accuracy when the DOC decreases,

while others require a high DOC for accurate typing. Optitype

performs the best on samples with low DOC and its typing

accuracy only drops below 90% when the DOC is below 20X.

HLA*LA, which performs almost as well as Optitype at 100X,

has a typing accuracy of 72.7% at 20X for the Class I genes. STC-

Seq and Kourami are both reported to have a typing accuracy

very close to 100% when typing from each tool’s preferred

sequencing data (HLA enriched data for STC-Seq and high

DOC WGS data for Kourami) (21, 22) but, as is shown in this

study, the tools do not perform well on WES data with a

low DOC.

Figures 4C–G show that the HLA typing accuracy not only

varies between tools and with DOC, but also between HLA

genes. HLA typing tools in this study achieve a higher typing

accuracy for HLA-DRB1 than they do for HLA-DQB1. At 100X,

HLA*LA has a higher typing accuracy than Optitype for HLA-B,

and HISAT-genotype is much better at typing HLA-B and -C

than HLA-A. The difference in performance between HLA-

DRB1 and HLA-DQB1 is especially prevalent for Kourami. At

a DOC of 100X, Kourami has a call rate of 100% and a typing
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accuracy of 97.8% for HLA-DRB1, while for DQB1 the tool only

has a call rate of 78.2% and a typing accuracy of 68.0%.

The gain in typing accuracy from increasing the DOC is, as

expected, generally larger when the DOC is low, and there are

diminishing returns from an increase in DOC when the DOC is

already high. This trend, however, depends on the HLA typing

tool and the HLA gene. For the HLA Class I genes, Optitype and

HLA*LA do not benefit much from an increase in DOC from 75X

to 100X, while the remaining three tools might even benefit from

increasing the DOC beyond 100X. For HLA-DRB1, HLA*LA and

HISAT-genotype’s perform almost equally well at 75X and at

100X but for HLA-DQB1, the tools perform notably better at

100X than 75X. HISAT-genotypes typing accuracy even increases

more from 75X to 100X than it does from 50X to 75X.

Supplementary Figure S9 shows how the memory usage,

runtime and CPU time usage depend on the DOC of the

samples. Generally, the DOC has little impact on the memory

usage whereas it greatly affects both the runtime and CPU time

usage of HLA*LA and HISAT-genotype, indicating that these

tools would require significantly more time to type a sample at

200X than what is shown in Figure 3.

The findings from the downsampling dataset generally agree

with those from the full dataset, but there are some notable

differences. For the full dataset, Optitype has the highest typing

accuracy for all three Class I genes (see Supplementary Figure

S2), but for the downsampling dataset, HLA*LA outperforms

Optitype for HLA-B and is as good as Optitype for HLA-C when

the DOC is above 75X. Kourami has a higher typing accuracy

than HISAT-genotype for HLA-A on the full dataset, but the

downsampling dataset shows that HISAT-genotype has a higher

typing accuracy when the DOC is below 50X. Kourami also

shows a large improvement with an increase in the DOC for

HLA-DRB1 and at 100X it performs almost as well as HLA*LA.
3.4 The impact of short fragments and
DNA damage

Figure 5 shows Optitype’s expected performance across

varying DOCs and read lengths, with/without damage added to

the reads. The figure only shows a selection of the combinations

between DOC/read length and added DNA damage. The full

results are available on this project’s GitHub. We found that

Optitype was unable to return any results when the read length

was 10, regardless of the DOC. As also shown in Figure 4,

Optitype’s typing accuracy depends largely on the DOC when

it varies between 1X and 20X. At lower DOCs, the read length

seems to have some influence on typing accuracy, but this effect

vanishes when the DOC increases. Between 1X and 10X,

Optitype performs the best when the read length is at 45, and

both lower and higher read lengths result in a drop in typing

accuracy. There is still a slight performance gain by increasing the

DOC from 20X to 50X, as shown in Supplementary Figure S10,
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but at this stage, an increase in read length does (as long as it is

above a minimum of around 25) not result in a higher

typing accuracy.

The addition of simulated DNA damage did not notably

impact the typing accuracy at any DOC or read length. The

typing accuracy in Figure 5 and Supplementary Figure S10 is

shown in 2-field resolution, as this resolution was used in (32).

Besides providing the HLA typing for a sample, Optitype

also returns the number of sequencing reads, which its optimal

solution explains. Supplementary Figure S11 shows how the

typing accuracy correlates with the median number of explained

reads for a selection of the combinations of read length and DOC

described in section 2.6. Unsurprisingly, the median number of

explained reads correlates well with the typing accuracy in a
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similar fashion to how the DOC correlates with the typing

accuracy. Additionally, for a set number of explained reads, a

higher read length gives a higher typing accuracy. This is also

expected since 100 reads with read length 45 contains more

information than 100 reads with read length 25.

The figure additionally shows how a higher number of

explained reads can make up for a lower read length. At a

DOC of 10X, Optitype’s median number of explained reads was

465 at a read length of 25, 257 for a read of 45, and 139 for a read

length of 65. The typing accuracy was between 86 and 88% for all

these three cases. However, if the read length is too low the

typing accuracy is affected. At a DOC of 10X and a read length of

13, Optitype’s median number of explained reads was 1081, but

the typing accuracy for this group was only 75%.
G
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C

FIGURE 4

The typing accuracy of Kourami, HLA*LA, Optitype, HISAT-genotype and STC-Seq in P group resolution for 230 WES samples across DOCs
ranging from 1X to 100X. The top two panels (A, B) show the overall typing accuracy for HLA Class I and II, while figures (C–G) show the
performance for each individual HLA gene.
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4 Discussion

This study investigated the performance of five NGS-based

HLA typing tools: Kourami, HLA*LA, HISAT-genotype,

Optitype and STC-Seq, for the five HLA genes: HLA-A, -B, -

C, -DRB1 and DQB1. The tools were evaluated on 829 WES

samples from the 1000 genomes dataset as well as on a

downsampled subset of these to evaluate the impact of the

DOC on typing accuracy. The typing accuracy was evaluated

at four different typing resolutions: 1-field, 2-field, P group and

pseudo-sequence, with the two latter not explored in previous

studies of the performance of HLA typing algorithms.

HLA*LA was found to have the highest overall typing

accuracy (96.3% in P group resolution for the full dataset) and

the highest typing resolution for the two HLA Class II genes

(96.8% in P group resolution), while Optitype was found to have

the highest typing accuracy for the three HLA Class I genes

(98.7% in P group resolution). The tools varied greatly in

computational resource consumption with HLA*LA requiring

30 GB of memory and often more than an hour per typed

sample, whereas Optitype only required 1 GB of memory and

rarely more than a couple of minutes.

Evaluating the HLA typing on samples across varying DOCs

showed that the typing accuracy of all the tools depended greatly

on the DOC, although this dependency differed between both

the HLA typing tools and across the five HLA genes. A DOC of
Frontiers in Immunology 11
50X was satisfactory for Class I typing using Optitype, while

accurate typing of HLA-DQB1 required at least a DOC 100X

even for the best performing tool, HLA*LA.
4.1 Issues related to allele conversion
between G group and 2-field resolution

In this study, we converted predictions from HLA*LA and

Kourami in G group resolution to 2-field resolution by simply

removing the third field. However, converting predictions from

G group to 2-field and vice versa is ambiguous, as G group

resolution focuses on the DNA sequence of the ARD coding

exons, while 2-field resolution focuses on the amino acid

sequence of the full HLA molecule.

There are examples of HLA molecules (specific alleles in 2-

field resolution) which are part of two G groups that differ on the

second field. An example is HLA-C*02:02, as this could both be

C*02:02:02:01 (which belongs to the C*02:02:02G), C*02:02:01

(which is not part of a G group) or even C*02:02:37 (which is

part of the C02:10:01G group that differs from C*02:02 at the

second field).

Conversely, there are examples of G groups containing

alleles which differ in 2-field resolution. The G group HLA-

A*01:01:01G contains A*01:01, but also A*01:32 and 78 other

alleles that differ in 2-field resolution. This ambiguity poses a
FIGURE 5

Optitype’s typing accuracy for HLA-A, -B and -C across 50 samples and across varying read lengths, DOCs and with/without artificially added
chemical damage. The typing accuracy depends primarily on the DOC. Note that the downsampling, read cutting and addition of DNA damage
was done after an extraction of HLA reads. This figure therefore represents a best case scenario, where assigning reads to the HLA region is as
accurate for short reads as it is for the full length reads.
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problem when using typing methods such as HLA*LA and

Kourami, which return the results in G group resolution, but

also when evaluating their performance on the 1000G dataset in

2-field resolution. For example, if the correct allele was HLA-

A*01:32, the correct prediction in G group resolution would be

A*01:01:01G. Should A*01:01:01G be counted as correct in 2-

field resolution even though the prediction, besides A*01:32,

could refer to more than 70 individual alleles in 2-field

resolution? One approach to this ambiguity is to convert both

the reference alleles and all predictions to G group (e.g. HLA-

A*01:01:01G) and then trim to 2-field resolution (HLA-

A*01:01), but this cannot be done unambiguously for alleles

such as C*02:02, as described previously. A similar approach

which partly solves the ambiguity issue is to convert predictions

to P group resolution. 2-field and G group resolution can, except

for null alleles, both unambiguously be converted to P

group resolution.

The approach used in this study to convert G group predictions

to 2-field resolution allows for a somewhat fair tool comparison in

2-field resolution, despite the aforementioned ambiguity.

Another factor impacting the accuracy of the results in 2-

field resolution is that the experimental method for discovering

the gold standard HLA types of the 1000G dataset used by (42)

only focuses on the ARD coding exons. Therefore, the

experimental method cannot be used to distinguish between

alleles which differ in 2-field resolution because of differences in

non-ARD coding exons. If e.g., an allele is typed as C*07:01 in

the 1000G dataset and a tool predicts the allele to be C*07:18,

this will count as a wrong prediction. C*07:01 and C*07:18,

however, share identical ARD coding exons and the typing

method used by (42) can therefore not be used to distinguish

between them, which means that the correct 2-field resolution

actually could be C*07:18. For some samples, this is partly

mitigated by noting an ambiguous typing. The example

mentioned in section 2.2 is NA12287 with the HLA-B typing:

15:01/15:03 and 15:01/15:26/15:12/15:19. As with the problem

with G group/2-field conversion, this problem can also be solved

by converting both the 1000G dataset and the predictions to P

group resolution.
4.2 Sufficient depth of coverage is crucial
for accurate HLA typing

A 2013 study (52) stated that the DOC of many of the

samples in the 1000 genomes dataset was too low for HLA

typing. Another article from 2018 disputed this statement and

stated that they found no correlation between typing accuracy

and DOC, although noting that a minimal DOC was required

(26). The results outlined in Figures 2, 4 clearly show that even

the samples with the lowest DOC in the dataset (between 35X

and 40X) can be typed accurately if a tool suited for low DOC

sequencing data is used. This is in contrast to the results found
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by (52). The results also show that the typing accuracy depends

on the DOC of the sample, but to a lower degree when the DOC

is high. Furthermore, the required minimal DOC for accurate

HLA typing depends on both the HLA typing tool and the

HLA gene.

Optitype and HLA*LA’s overall performances do not

notably improve when the DOC is increased from 75X to

100X. However, the three other tools do improve, and may

even see an improvement if the DOC is increased beyond 100X.

Achieving a typing accuracy above 90% for HLA-DQB1 from

WES data also requires DOC of at least 100X, even for the best

performing tool, HLA*LA. These results align roughly with

minimal DOC recommendations for clinical WES of 120X

(53) and WES-based HLA typing of 100X (40). The results

from this study are however more detailed and indicate that for

some genes, e.g. HLA-DQB1, or tools, e.g. Kourami, it is even

beneficial with DOCs above 100X.

The DOC of the samples in the 1000G dataset varies between

37X and 456X, with many samples having a lower DOC than

what is required for optimal typing. The tools’ performances on

this dataset might therefore not be an accurate estimate of the

performances on clinical WES with a DOC above 100X. A better

estimate of this could be the downsampling results, specifically

the performance of the samples at 100X. This is a redeeming

factor for e.g. Kourami, which had a mediocre performance on

the full dataset, but where the results of the downsampling study

show that the lower DOC of the full dataset likely impaired

Kourami’s performance much more than it did Optitype’s.

HLA*LA is the best performing tool on average, across the

five HLA alleles but the tool does require an extensive amount of

memory and is relatively slow. Mistypings/mismatches at HLA-

DQB1 are less critical than mistypings at HLA-A, -B, -C or

-DQB1 (54), hence Optitype is a lighter and faster alternative to

HLA*LA for Class I typing and, assuming a DOC of at least

100X, Kourami as an alternative for Class II typing. For the 230

samples in the downsampling study at a DOC of 100X, Optitype

had a P group typing accuracy of 98.3% across the three Class I

genes (HLA*LA had 96.4%) and Kourami had a P group typing

accuracy of 97.8% for HLA-DRB1 (HLA*LA had 98.0%).
4.3 Systematic errors with DQB1
typing for East Asians in the 1000
genomes dataset

As discussed in section 3.2, the HLA typing tools are

suboptimal at typing HLA-DQB1 for the East Asian samples.

The outline of the DOC of HLA-DQB1 presented in

Supplementary Figure S7 indicates that at least part of the

reason for the low typing accuracy for HLA-DQB1 for the

East Asian samples could be the lower DOC for HLA-DQB1

for these samples. This could be a result of poor primer design in

the exome sequencing. The low typing accuracy could, however,
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also be due to poor probe design in the sequencing to obtain the

reference genotype in the 1000G dataset, resulting in errors in

reference dataset used in this study.

Regardless, if the reason for the poor performance for HLA-

DQB1 is specifically due to some errors in the 1000G dataset and

not a fault of the HLA typing tools then the findings of this study

regarding typing of HLA-DQB1 could be re-evaluated. Future

studies of HLA-DQB1 relying on the 1000 genomes database

would likely benefit from omitting the East Asian samples until

the cause of the problem has been identified.
4.4 Optiype’s performance on ancient
DNA samples with varying read length
and sequencing coverage

In Figure 5, we present the first benchmarking of HLA

typing tools on aDNA. The figure shows that the DOC is the

most determining factor for high typing accuracy but, at low

DOC, both a too high or a too low read length can impair typing

accuracy. It is expected that a low read length negatively affects

allele typing - especially for a highly polymorphic region, such as

the HLA region. However, it is surprising that the typing

accuracy for the samples with a read length of 65 is lower than

when the read length is 45. One reason for this might be that

Optitype’s typing algorithm creates a binary hit matrix where the

predicted HLA alleles explain the highest number of reads.

When the read length is increased, and the DOC is kept

constant, the number of reads decreases. The sample with

reads of length 45, therefore, contains more reads than the one

with a read length of 65 at the same DOC as is illustrated in

Supplementary Figure S12. The difference in performance,

which can be attributed to read length, decreases at higher

DOC and the typing accuracy is almost the same at a DOC

of 10X.

The addition of DNA damage did not impair the

performance notably. However, the DNA damage applied in

this study corresponded to that of specific samples from the 16th

century and older samples or samples from individuals stored in

different conditions can have a larger degree of DNA damage,

which could have a bigger effect on the accuracy of the

HLA typing.

Studies of aDNA often use methods designed for

contemporary data for variant calling, which can lead to

inaccurate results (55). (32) performed a genomic analysis of

individuals who lived around 3200 BCE and part of this was an

HLA analysis of 23 individuals where they observed notable

shifts in allele frequencies. The study used Optitype for HLA

typing in combination with another method but did so without

investigating Optitype’s expected performance at the DOC
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found in their aDNA dataset. The median DOC of the

samples, which were HLA typed in the study, ranged from

0.07X to 18.2X with a median of 4.3X. The average read length

spanned from 51.8 to 67.6 with a median of 58.2. Our results

outlined in Figure 5 show that most of the samples included in

(32) had such low DOC that Optitype likely only returned a

correct prediction for little over half of the alleles. The study did

not rely solely upon Optitype for HLA typing, but our findings

show that Optitype’s typing results are not reliable unless the

aDNA samples have sufficiently high read length and sufficiently

high DOC.
4.5 Summary of findings

This study presents the first analysis of the performance of

NGS based HLA typing tools in P group and pseudo-sequence

resolution. It further compares these results to the performances

of the tools in 2-field and 1-field resolution and offers a

discussion on the benefits of P group resolution compared to

the commonly used 2-field resolution.

Additionally, the current study offers a detailed outline of

how each individual HLA typing tools’ performance is affected

by the DOC of the WES sample for each of the five HLA loci

HLA-A, -B, -C, -DRB1 and -DQB1. Previous studies have

recommended a minimal DOC of 100X-120X for WES

samples for clinical use. The findings of this study generally

supports the previous recommendations, but also outlines the

consequences of usingWES data with a lower DOC and provides

examples of tools/loci, where sequencing data with a lower DOC

could be sufficient and tools/loci where a higher depth of

coverage is advisable.

Interestingly, we further found, that all tools were not

accurately typing HLA-DQB1 for East Asian samples

compared to any other population group. These samples could

be investigated in a future study to find the cause of this

difference in performance.

Lastly, this study offers the first structured analysis of Optitype’s

performance on aDNA across varying DOC and with/without

artificially added chemical damage. This tool has been used in

previous aDNA studies and will likely also be used in future studies.
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