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Background: Developing prediction tools for immunotherapy approaches is a

clinically important and rapidly emerging field. The routinely used prediction

biomarker is inaccurate and may not adequately utilize large amounts of

medical data. Machine learning is a promising way to predict the benefit of

immunotherapy from individual data by individuating the most important

features from genomic data and clinical characteristics.

Methods:Machine learning was applied to identify a list of candidate genes that

may predict immunotherapy benefits using data from the published cohort of

853 patients with NSCLC. We used XGBoost to capture nonlinear relations

among many mutation genes and ICI benefits. The value of the derived

machine learning-based mutat ion signature (ML-signature) on

immunotherapy efficacy was evaluated and compared with the tumor

mutational burden (TMB) and other clinical characteristics. The predictive

power of ML-signature was also evaluated in independent cohorts of

patients with NSCLC treated with ICI.

Results: We constructed the ML-signature based on 429 (training/validation =

8/2) patients who received immunotherapy and extracted 88 eligible predictive

genes. Additionally, we conducted internal and external validation with the

utility of the OAK+POPLAR dataset and independent cohorts, respectively. This

ML-signature showed the enrichment in immune-related signaling pathways

and compared to TMB, ML-signature was equipped with favorable predictive

value and stratification.
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Conclusion: Previous studies proposed no predictive difference between

original TMB and modified TMB, and original TMB contains some genes with

no predictive value. To demonstrate that fewer genetic tests are sufficient to

predict immunotherapy efficacy, we used machine learning to screen out gene

panels, which are used to calculate TMB. Therefore, we obtained the 88-gene

panel, which showed the favorable prediction performance and stratification

effect compared to the original TMB.
KEYWORDS

non-small cell lung cancer (NSCLC), machine learning (ML), immunotherapy, gene,
tumor mutational burden (TMB)
Introduction

Immune checkpoint inhibitors (ICI) are an effective

treatment for patients with advanced non-small cell lung

cancer (NSCLC) (1, 2). The drugs were designed to target

programmed death-ligand 1 (PD-L1)/programmed death-1

(PD-1) and disrupt inhibition of the immune response,

leading to T-cell activation and restoring anti-tumor immunity

(3, 4). Nevertheless, only a minority of patients with advanced

NSCLC derive clinical benefits from this treatment (5).

Identifying biomarkers and/or prediction models can help

inform which patients would be the beneficial candidate for

immunotherapy. Emerging predictive biomarkers associated

with enhanced response to ICI include microsatellite

instability, tumor mutational burden (TMB), PD-L1

expression, and inflammatory gene expression (6, 7). Many

efforts are currently being undertaken toward improving the

predictive value of different gene mutations (8). However, the

routinely used prediction biomarker and/or prediction model is

still not accurate enough and may not adequately utilize large

amounts of medical data.

With the advent of “era of precision medicine”, the analyses

of large-scale molecular data are beneficial for many aspects of

oncology research, including the classification of possible

subtypes, stages, and treatment of cancer (9). Accurate

classification of cancers can greatly help physicians to choose

the optimal treatment strategies for patients. To this end,

classifying cancer into different groups is regarded as one of

the most important issues in cancer therapy (10). Following the

explosive growth of huge amounts of biological data, the shift

from traditional biostatistical methods to computer-aided means

has made machine-learning methods an integral part of today’s

cancer diagnostic and prognostic prediction (11). Machine

learning would certainly accelerate the progress of prediction

for ICI benefits as a data-driven approach by individuating the

most important features from genomic data and clinical

characteristics in the current practice (12).
02
In this study, we exploited the potential of machine learning

methods to address the issue of identifying NSCLC patients with

ICI benefits. With the hypothesis that mutations in certain genes

may better predict NSCLC response to ICB treatment, we aimed

to develop a machine learning based-mutation signature (ML-

signature) to predict ICI clinical benefits effectively.
Methods

Data source

This retrospective study was approved by our institutional

review board (IRB No.202070). The genomic alterations and

clinical data for POPLAR (NCT01903993) and OAK

(NCT02008227) trials were downloaded from publicly accessible

data reported by Gandara et al. (13). Both POPLAR (randomized

phase II trial) and OAK (randomized phase III trial) were designed

to compare single-agent atezolizumab with docetaxel as second/

third-line therapy for patients with advanced NSCLC, who were

unselected for PD-L1 status. In this open-label, phase 2/3

randomized controlled trial, patients with NSCLC who progressed

on post-chemotherapy, Eastern Cooperative Oncology Group

performance status 0 or 1 were recruited. Detailed characteristics

were reported in previous reports (14, 15). Relevant data of OAK

and POPLAR cohorts were provided in Tables S1 and S2.

Mutations were measured by FoundationOne CDx NGS

assay (16), which targets 1.1 Mb of the genomic coding

sequence. As per the study protocol of POPLAR and OAK,

progress-free survival (PFS) was defined as the time between the

date of randomization and the date of first documented disease

progression, as assessed by the investigator using RECIST v1.1,

or death from any cause, whichever occurs first. Overall survival

(OS) was defined as the time between the date of randomization

until death from any cause. Objective response was defined as

complete response and partial response according to RECIST

v1.1 (17).
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ML-signature development

The ICI dataset was used as a development dataset to

determine the gene signature of ICI benefits and consisted of

429 patients treated with ICI from the prospective POPLAR and

OAK trials. In the research, we estimated the importance of

features (mutation genes) for the ICI-benefit predictive

modeling problem using the XGBoost method, which is a

gradient boosting decision tree.

Using XGBoost, we developed immunotherapy benefit

prediction models based on mutation features (the ML-

signature) (18, 19). Gradient boosting decision tree (GBDT)

methods employ an ensemble of multiple decision trees to

strengthen the classification power. Each decision tree is

grown by selecting the most discriminative features from the

large feature candidate pool. This process relieves traditional

tree-based methods from the onerous feature selection process

and allows the classifier to interact directly with the features. The

feature selection process of the algorithm facilitates the analysis

of the features (mutation genes) that most impact the classifier

and thus provides us with a method of investigating the

biological mechanisms hidden within the genomic data. The

higher the feature importance score of XGBoost is, the more

important and effective the corresponding feature (gene) is. We

obtain the top-shared ranked features (genes) based on

descending order of feature importance to characterize the

ML-signature. Details about the XGBoost model and code are

shown in Supplemental methods and Supplemental code.
Performance evaluation of ML-signature
for immunotherapy

Functional enrichment and pathway analysis
For functional enrichment analysis, all genes in ML-

signature were mapped to terms in the Kyoto Encyclopedia of

Genes and Genomes database (KEGG) and P < 0.05 as the

threshold. KEGG links genomic information with biological

functions based on the online platform (https://www.genome.

jp/), and KEGG results was visualized by R package ggplot2.

Prediction benefits stratification
ML-signature was applied to evaluate risk stratification at

the individual level. The cut-off points for risk stratification of

ML-signature were calculated. The ICI-benefit score was

calculated as the number of mutations of the ML-signature

found in a patient. We further evaluated the cut-off value for

ICI-benefit score to stratify patients into ICI benefit and non-

benefit groups with optimal survival stratification. Using the

LOWESS smoother fi t t ing curves , we modeled the

relationship between PFS-HRs and ICI-benefit score cut-off

values (20).
Frontiers in Immunology 03
Predictive performance in comparison
with TMB

Survival analyses were conducted to compare the predictive

performance between ML-signature and TMB. PFS and OS were

regarded as endpoints.

External validation
To further validate the performance of ML-signature, we

evaluated its predictive power on another NSCLC dataset from

external cohorts, which can be downloaded from the cBioPortal

database (https://www.cbioportal.org).
Statistical analysis

All analyses were conducted with R software (version 3.5.3)

and SAS (version 9.4). A Cox proportional hazards model was

used to determine the HR for survival. Kaplan–Meier

methodology was used to construct the survival curves and the

significances of subgroups were estimated using the log-rank

test. A two-sided P <0.05 was considered a statistically

significant difference.

To derive the optimal cut-offs of the candidate gene

inclusion for ML-signature in the prediction of ICI-benefit/

non-benefit stratification, we performed Cox regression

analysis to assess the effect of inclusion criteria changes for

ML-signature (the number of gene mutations was analyzed as a

continuous variable) on PFS in the immunotherapy treatment

arm. The curves of Wald statistic of PFS HR of different ML-

signature stratification, which was determined at numbers of

mutations in ML-signature, were fitted using a locally estimated

scatterplot smoothing (LOESS) with a span of 0.80 (21); and

structural breakpoints were then determined by Chow test (22).

The Spearman’s rank coefficient was used to compare ML-

signature (as a continuous variable) with TMB and SLD (sum

of the longest diameter of target lesions at baseline).
Results

This study contained two sections (schematic of study design

in Figure 1): 1.) ML-signature development, 2.) validation of the

performance of ML-signature for immunotherapy efficacy.
ML-signature construction

We hypothesized that gene mutations not only produced

neoantigens but also could functionally affect the efficacy of ICI.

Based on this hypothesis, we aimed to identify genes whose

mutations could positively influence ICI treatment efficacy by

investigating NSCLC patients from two large, published cohorts
frontiersin.org
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of patients treated with ICI and sequenced with FoundationOne

CDx (F1CDx): 391 genes known to be involved in

cancer development.

The ML-signature development is shown in Figure 2.

XGBoost classification method was used to capture the

importance of mutation genes for the ICI benefits. The

XGBoost algorithm generates a regression model based on

an ensemble of decision trees. The mutation genes are ranked

based on the permutation importance method in the XGboost

model. After 350 repetitions of modeling in this study, the
Frontiers in Immunology 04
top-ranked gene intersection between models stabilized at 88

genes. Applying these criteria to the targeted sequencing gene

panel used in the study, we obtained an 88-gene panel

(Table S3).
ML-signature characteristics

We examined the biological functions and signal

transduction pathway associated with the ICI-benefits related
FIGURE 1

Flowchart of this study.
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ML-signature. Functional enrichment (Figures S1A, S2)

showed the immune-related pathways were significantly

enriched in the ML-signature compared with those excluded

genes. This result is a biological reasonableness check for the

ICI-benefits gene identification using the gradient boosting

decision tree analysis. Among the 853 patients with NSCLC,

467 had mutations in at least one of the 88 genes, and 243 had

mutations in at least two of the 88 genes (Figure S1B). There

was no significant difference in the distribution of mutations in

88 genes between the immunotherapy and chemotherapy

groups (P>0.05).
Prediction benefit stratification using the
ML-signature

We conducted survival analyses to decide whether the ICI-

benefit score could be a predictor for immunotherapy. The ICI-
Frontiers in Immunology 05
benefit score based on 88 genes was significant associated with

favorable PFS (HR 0.755, 95%CI, 0.696-0.820, P<0.001) and OS

(HR 0.849, 95%CI, 0.778-0.926, P<0.001) in patients receiving

immunotherapy; while the tumor mutational burden (TMB)

score was not (PFS: HR 0.991, 95%CI, 0.982-1.0, P=0.056; OS:

HR 1.003, 95%CI, 0.993-1.013, P=0.572). In patients receiving

chemotherapy, the ICI-benefit score was associated with poor

PFS (HR, 1.061, 95%CI, 1.011-1.113, P=0.015) and OS (HR,

1.084, 95%CI, 1.030-1.140, P=0.002). These results confirmed

that the ICI-benefit score based on the ML-signature was a

specific predictor for immunotherapy. These data-driven results

suggested an “elbow” region between≥1 and ≥6, and the cut-

point analysis demonstrated that ICI-benefit score≥2 was the

break point with better survival stratification in patients treated

with immunotherapy (Figure S3). Compared to ICI-non-benefit

group, ICI-benefit group showed longer PFS (HR 0.47, 95%CI,

0.38-0.57, P<0.001) and OS (HR 0.61, 95%CI, 0.47-

0.78, P<0.001).
FIGURE 2

The identification of candidate mutation genes using XGBoost feature selection and the structural diagram of the machine learning model.
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Prediction performance of ML-signature

ML-signature stratified patients with favorable
efficacy from immunotherapy

The comparison of the predictive value of modified ML-

signature and TMB in immunotherapy or chemotherapy arms is

presented in Figure 3. In patients receiving immunotherapy

(Figures 3A, B), notably, both PFS and OS were significantly

greater in the ICI-benefit group vs. ICI-non-group [PFS HR: 0.47

(95%CI: 0.38-0.57, P<0.001) and OS HR: 0.61 (95%CI: 0.47-0.78,

P<0.001)], compared with those of TMB-high vs. TMB-low

stratification. In patients receiving chemotherapy (Figures 3C,

D), the ICI-benefit group was associated with poor PFS or OS

[PFS HR: 1.40 (95%CI: 1.12-1.75, P=0.002); OS HR: 1.56 (95%

CI: 1.22-2.0, P<0.001)], showing a greater risk stratification

compared with those of TMB-high vs. TMB-low.
Frontiers in Immunology 06
ML-signature associated with better predictive
value for immunotherapy vs. chemotherapy

Efficacy comparison evaluating immunotherapy vs.

chemotherapy was performed in the stratification groups

based on ML-signature and TMB. When classified as benefit

candidates for immunotherapy (Figures 4A, B), the PFS and OS

benefits of immunotherapy vs. chemotherapy for ICI-benefit

subgroup were relatively greater (HR: 0.38, 95%CI: 0.28-0.50 and

HR: 0.33, 95%CI: 0.24-0.46, respectively), compared with those

for TMB-high subgroup (HR: 0.63, 95%CI: 0.48-0.84; and HR:

0.58, 95%CI: 0.43-0.80, respectively). The absolute difference in

median PFS and OS of immunotherapy vs. chemotherapy in the

ICI-benefit subgroup was relatively greater (median PFS: 8.2 vs.

2.9 months and median OS: 20.1 vs. 6.9 months) compared with

those of the TMB-high subgroup (median PFS: 2.9 vs. 2.9

months and median OS: 13.5 vs. 6.9 months).
B

C D

A

FIGURE 3

Comparison of survival in immunotherapy or chemotherapy arms using ML-signature (ICI-benefit vs. ICI-non-benefit) and TMB (high vs. low).
(A, B) immunotherapy cohort, (C, D) chemotherapy cohort.
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Additionally, when classified as non-benefit candidates for

immunotherapy (Figures 4C, D), results showed that the ICI-

non-benefit patients benefited more from chemotherapy than

immunotherapy, suggesting that stratification based on ML-

signature could help to identify those who may benefit from

immunotherapy. However, TMB cannot provide sufficient

treatment-efficacy stratification. Overall, these results

suggested immunotherapy-benefits predictive performance of

the ML-signature.

ML-signature associated with higher objective
response rate of immunotherapy

Figure 5A shows the objective response rate (ORR) in

different ways of efficacy stratification. In patients classified as

ICI-benefit using the ML-signature, the ORR trended towards

significant benefit with immunotherapy (30.6%) vs .

chemotherapy (11.4%). The absolute ORR benefit of

immunotherapy vs. chemotherapy increased from 13.1%

(TMB-high) to 19.2% (ICI-benefit). In the immunotherapy

arm, a greater difference was observed in ORR between ICI-

benefit and ICI-non-benefit subgroups (30.6% vs. 8.8%)

compared with those of TMB-high and TMB-low subgroups

(22.3% vs. 12.0%). Additionally, in the chemotherapy arm, the

difference in ORR between ICI-benefit and ICI-non-benefit

subgroups was smaller (11.4% vs. 14.4%) compared with the

ORR between TMB-high and TMB-low subgroups (9.2% vs.
Frontiers in Immunology 07
15.1%). In patients treated with immunotherapy, the AUC for

ML-signature distinguishing between responder and non-

responder patients was 0.67 (95% CI: 0.59 to 0.75), which was

higher than that of TMB [0.58, 95% CI: 0.59 to 0.75)]

(Figure 5B). Overall, these findings suggest a role for an

immunotherapy efficacy-based ML-signature in promoting the

identification of patients with better predictive benefits

from immunotherapy.

Validation using external cohort
We next validate the predictive power of the ML-signature in

two external cohorts of NSCLC patients treated with ICI from

previously published studies (WES sequenced all patients were

sequenced for gene mutations). Survival analysis of patients with

different mutations in the 88-gene panel was performed. Results

(Figure 6) revealed that patients classified as ICI-benefit

candidates by our ML-signature had substantial survival

advantages, which were remarkably similar to the PFS results

obtained from the discovery cohort, thus validating the

predictive power of the ML-signature independently.

We also explored the predictive performance of the ML-

signature in a cohort of 350 NSCLC patients treated with ICI

from the MSK-IMPACT cohort (a large panel of targeted NGS

sequenced all patients). There are 58 genes of the ML-signature

(88 genes) that can be detected in the MSK-IMPACT panel (410

genes~468genes). Results also revealed that patients classified as
B

C D

A

FIGURE 4

Comparison of the survival benefits from immunotherapy vs. chemotherapy between ML-signature and TMB stratification. (A, B) Predicting
benefit cohort, (C, D) Predicting non-benefit cohort.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.989275
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2022.989275
ICI-benefit candidates by our ML-signature had better survival

stratification, thus further validating the predictive power of the

ML-signature (Figure 7).
Discussion

The heterogeneity of cancer patients results in various

therapy efficacies and deciding whether to receive ICI is

momentous (23). Previous studies reported that high

expression levels of PD-L1 were related to better response to

ICI for NSCLC populations (24, 25). However, gene mutation

also plays a crucial role in ICI for malignant cancers (26).

Prediction models involving genetic mutation information are

more suitable for patients with mutations. Precedented
Frontiers in Immunology 08
prediction models were produced based on clinical

characteristics or pathological information of tumors (27), and

small sample sizes restrain their generalization performance.

Therefore, we constructed a mutation signature-based

prediction model using machine learning to estimate the

prognosis of patients treated with ICI. We demonstrated that

identifying immunotherapy efficacy-based mutations could

improve prediction accuracy. Our results provided a rationale

for using machine learning to develop ICI-specific mutation

signatures in predicting patients suitable for immunotherapy.

In this study, we identified 88 ML-signature from almost 400

genes associated with cancer progression. These ICI-benefits

related ML-signature primarily enriched in immune-related

signaling pathways. Immune cells and immune cytokines in

the tumor microenvironment are important during cancer
BA

FIGURE 6

Comparing the predictive powers of ML-signature vs. TMB in patients treated with immunotherapy in external cohorts. (A) Cancer cell (WES)
validation cohort, (B) Science (WES) validation cohort.
BA

FIGURE 5

ML-signature associated with higher ORR of immunotherapy. (A) Difference in the ORR between ML-signature and TMB subgroups. (B) Receiver
operating characteristic curves to predict ORR.
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development, and their biological functions change dynamically

with tumor progression. In addition, these ML-signature also

show decreasing transduction-related signaling pathways. Signal

transduction pathways involve each stage of cancer cells, from

stem cells to advanced cancer cells, including proliferation,

metabolism, cell cycle, DNA repair, apoptosis, differentiation,

tumor extracellular matrix remodeling, angiogenesis and

metastasis (28, 29). Notably, there was no significance in

metabolism, DNA repair, apoptosis or other inflammatory

signaling pathways. Generally, inflammation-related signaling

pathways show the transduction from pro-inflammation to anti-

inflammation along with tumor evolution (30). Therefore, the

complex transformation of these 88 ICI-benefits related ML-

signature needs further exploration. We also observed that the

distributions of more than one mutation population were similar

in both immunotherapy and chemotherapy groups, which

indicated that patients in the chemotherapy cohort also have

potential benefits from ML-signature.

Recent evidence has shown high TMB to be associated with

improved clinical outcomes from ICI in multiple cancer types

(31). However, TMB as a predictive biomarker for

immunotherapy remains difficult to implement because tumor

heterogeneity may add to the complexity of TMB analysis and

lead to misestimation of the reliability of TMB prediction for

immunotherapy. In this study, we hypothesized that mutations

in certain genes associated with immunotherapy efficacy rather

than serving as sources of roughly TMB estimation might better

predict NSCLC response to ICI therapy. With the utility of ICI-

benefit score developed by machine learning, we demonstrated

that ML-signature provides better efficacy prediction than TMB
Frontiers in Immunology 09
in patients treated with immunotherapy. More mutations

represent favorable survival in the immunotherapy cohort,

which is consistent with the consensus that the increasing

number of mutations were processed to neo-antigens and

presented by major histocompatibility complex (MHC)

proteins to T lymphocytes, immune-system eliminated neo-

antigens (32–34). However, cancer cells impaired the activities

of T lymphocytes and achieved immune escape (35).

Immunotherapies blocked immune checkpoints in a targeted

manner and reduced and/or re-activated T lymphocytes (36, 37).

Our ML-signature recognized the patients most likely to

benefit (longer survival time and higher objective response rate)

from immunotherapy. We demonstrated that immunotherapy is

not suitable for all patients. Compared with immunotherapy,

ICI-non-benefit patients can gain a longer survival time from

chemotherapy, which can be interpreted as immune-related

adverse events (irAEs). The detailed mechanisms of irAEs are

still unclear. Presented mechanisms include activated T

lymphocytes attacking health issues, increasing levels of

autoantibodies, and inflammatory cytokines (38, 39). Although

the immune checkpoint blockade is generally regarded as a

tolerable treatment (40), the long-term influence of

immunotherapy should be further explored.

To further validate the value of our ML-signature, we

conducted survival analyses with two external NSCLC cohorts

with WES data covering the overall 88 genes of ML-signature.

This result validates the consistency of the internal cohort of our

main result, notably the predictive effect of theML-signature having

better survival stratification than TMB, indicating that the

prediction model was steady and accurate as the predictive tool
frontiersin.
BA

FIGURE 7

Comparing the predictive powers of ML-signature vs. TMB in patients treated with immunotherapy in the MSK-IMPACT cohort. (A) Overall
survival of MSK-TMB patients with between ML-signature and TMB subgroups. (B) Overall survival of MSK-IMPACT patients with TMB-high and
TMB-low further stratified according to groups stratified by ML-signature.
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for patient selection for immunotherapy. Additionally, we used the

MSK-IMPACT dataset to authenticate the ML-signature, which

involved more than four hundred genes and possessed the highest

degree of dissemination (41). Only 58/88 genes from our ML-

signature can be detected in the MSK-IMPACT dataset; similar to

the above-mentioned external validation, and these 58 genes also

displayed favorable stratified performance, and ML-signature can

further divide into TMB high and low subgroups. To sum up, the

application of these 88 genes from our ML-signature covered large-

scale commercial targeted panels.

Gene mutations have also shown a crucial role in tumor

heterogeneity, and the distribution of mutations represents sub-

clonal status, which may compromise the efficacy of

immunotherapy. The ratio of allele frequency to maximum

somatic allele frequency (AF/MSAF) has also been used to

represent allele frequency heterogeneity (AFH), and AFH was

recognized as the negative factor of prognosis (42). To address

the problems of traditional TMB in advanced patients, including

insufficient tumor tissues and substandard specimens, blood-based

tumor mutational burden (bTMB) emerged for clinical

requirements. Dong P et al. filtered 52 candidate genes based on

the Cox proportional-hazards model and demonstrated that the 52-

gene panel was superior to original TMB-H (TMB ≥10) in

estimating clinical benefits for ICI therapy in NSCLC patients

(43). Our teams previously reported that modified bTMB had

favorable performances in estimating clinical benefits from

immunotherapy (44). The special characteristics of ML-signature

and modified bTMB should be compared through an additional

cohort. These TMB-related studies have attempted to filter genes

that predict immunotherapy benefits to calculate precise TMB, and

the performance of precedent models needs further improvement.

Though the performance of ML-signature does not work perfectly,

it showed significant progress compared to existing models (Figure

S4) and showed sound stratification capacity. In addition, the

expression level of PD-L1 is also considered to be an impartial

factor in the clinical decision. We also compared ML-signature and

PD-L1 level, and ML-signature showed a favorable predictive

performance. We observed that only high levels of PD-L1

(TC>50% or IC>10%) had predictive value, and the ROC curves

plot indicated high values for ML-signature (AUC = 0.711) but low

values for PD-L1 (AUC = 0.667). Other details are shown in

Figure S5.

There are also some limitations in our models. As a

retrospective study, datasets are incomplete inevitably and

information biased. Moreover, this model excluded routine

clinical information, such as patients’ characteristics,

pathological data, specific therapy options and surgery status.

Furthermore, the partially detected genes also suggested that our

model includes some genes with low predictive value and the

number of eligible genes can be further refined. The ratios of

eligible genes have not been tested in real-world patients. The

enrichment of genes is generally shown in immune-related
Frontiers in Immunology 10
signaling pathways and needs further study according to their

proportion in ML-signature.
Conclusion

We provided an accurate ML-signature for NSCLC patients

and demonstrated its feasibility with certain verified

measurements. And our study supports the possibility and

potential of using machine learning to screen for predictive

molecular markers of immunotherapy efficacy or other

treatments. In the ear of big data, further research can

excavate novel biomarkers with the assistance of computing

science and accelerate the process of translational medicine and

precision medicine.
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