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Decidual macrophages in
recurrent spontaneous abortion

Qiu-Yan Zhao, Qing-Hui Li , Yao-Yao Fu, Chun-E Ren,
Ai-Fang Jiang and Yu-Han Meng*

Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang,
Shandong, China
Recurrent spontaneous abortion (RSA) is defined as two or more pregnancy

loss, affecting the happiness index of fertility couples. Themechanisms involved

in the occurrence of RSA are not clear to date. The primary problem for the

maternal immune system is how to establish and maintain the immune

tolerance to the semi-allogeneic fetuses. During the pregnancy, decidual

macrophages mainly play an important role in the immunologic dialogue.

The purpose of this study is to explore decidual macrophages, and to

understand whether there is a connection between these cells and RSA by

analyzing their phenotypes and functions. Pubmed, Web of Science and

Embase were searched. The eligibility criterion for this review was evaluating

the literature about the pregnancy and macrophages. Any disagreement

between the authors was resolved upon discussion and if required by the

judgment of the corresponding author. We summarized the latest views on the

phenotype, function and dysfunction of decidual macrophages to illuminate its

relationship with RSA.

KEYWORDS

decidual macrophages, recurrent spontaneous abortion (RSA), M1/M2 balance,
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Introduction

Recurrent spontaneous abortion (RSA) is an early pregnancy complication, which is

defined as two or more spontaneous pregnancy loss with the same couple (1). The

European Society of Human Reproduction and Embryology (ESHRE) considers it often

occur continuously prior to 24 gestational weeks (2). In recent years, RSA becomes one of

the formidable challenges for the doctors and infertile patients, as it may govern the fate

of the whole family. However, miscarriage is a relatively common problem, occurring in

12 to 15 percent of clinically recognized pregnancies. Its risk increases with maternal age

(3) and each previous prenancy losses stepwise. Patients suffered from recurrent abortion

account for 1-3% (4). Large amount of data shows that RSA patients are a high-risk

population for obstetrical and perinatal complications (5, 6). As the number of

miscarriages has increased, the more damage to the maternal endometrium and the
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emergence of pelvic inflammatory disease, lead to secondary

infertility. Equally, the risk of fetal growth restriction, placental

abruption, premature delivery and stillbirth in future

pregnancies are also raised. What can not be ignored are the

following issues, such as venous thromboembolism, mental

health and economic costs. Thus, closer surveillance of the

RSA patients in late pregnancy must be introduced in

clinical practice.

The causes of RSA are connected with anatomic

defects, chromosomal abnormalities, immune dysregulation,

thrombophilia, endocrine disease, infection, environmental

and psychological factors (7, 8). Until now, approximately 50%

of RSA cases remain elusive, leaving us away from an accurate

examination and treatment. Actually, the follow-up studies of

the exact etiology and pathogenesis are frequently difficult.

Because of practical feasibility and ethical limitations, mouse

models with higher conception rate and shorter gestation are

always used in the studies of RSA (9). However, the relationship

between unexplained RSA and immune system has increasingly

drawn more attention in clinical practice. The latest research

about a single-cell RNA sequencing showed macrophages have

been observed in human yolk sac both morphologically and

transcriptionally, which is essential for fetal development in

early pregnancy (10). And numerous immunomodulatory

therapies for RSA have been suggested.

Given the relationship with RSA, researches mostly support

that the immunological factor is a prerequisite for a successful

pregnancy (11). Compared to the more explicit role of NK cells in

pregnancy (12), the roles of decidual macrophages in pregnancy

have not been fully investigated. Macrophages are the second largest

group of immune cells and account for 20 percent of the total

leukocytes at thematernal-fetal interface (13). They participate in all

physiological events in the female reproductive system, such as

menstruation, implantation and deliver (14). On account of the

polarization and plasticity of macrophages, they differentiate into

specific phenotypes as a response to the microenvironmental

stimuli (15, 16). The number and function of macrophages in the

non-pregnant uterus are regulated by the estrogen and progesterone

during the menstrual cycle (17). When the endometrium falls off at

menstruation, macrophages with numbers peaking promote

“wound healing” through phagocytosis and tissue remodel (18).

Before implanting, macrophages are recruited to exhibit M1

phenotype to reply the inflammatory response resulting from

seminal fluid. As extravillous trophoblasts (EVTs) begin to invade

the decidua, decidual macrophages convert to a mixed profile of

M1/M2 macrophages (19). Then, for the establishment of fetal

immune tolerance, macrophages transform into an overwhelming

M2 phenotype (20). By releasing proangiogenic growth factors such

as interleukin 8 (IL-8), vascular endothelial growth factor (VEGF)-

A and VEGF-C, M2 macrophages act as ‘bridge cells’. They jointly

facilitate unique vascularization and immunosuppression in the

placental microenvironment (21, 22). In the process of tissue

remodeling, decidual macrophages protect embryos from
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phagocytosis and infection (23, 24). Therefore, decidual

macrophages are indispensable in pregnancy and its dysfunction

will lead to pregnancy loss.
Phenotypes of
decidual macrophages

Plasticity and polarization are landmarks of macrophages

(16, 25). At the maternal-fetal interface, notable changes have

occurred in the decidual macrophages. Next, we will brief the

classification and possible mechanisms of macrophage in terms

of its phenotype.
M1/M2

Based on their cytokines secretion, chemokines expression

and functional characteristics, decidual macrophages can be

classified into two subsets: classically activated macrophages

(M1 macrophages), and alternatively activated macrophages

(M2 macrophages) (26–28).

Bacterial lipopolysaccharide (LPS) recognition or induction

of Th1 cytokines, such as tumor necrosis factor a (TNF-a),
interferon-g (INF-g), can drive M1 polarization of macrophages.

These macrophages secrete pro-inflammatory cytokines and

chemokines IL-1a, IL-1b, IL-6, IL-12, TNF-a, CXCL9,

CXCL10 and express surface markers CD80, CD86, TLR-2,

TLR-4, and major histocompatibility complex (MHC) class II.

With the capacity of presenting antigen, M1 macrophages

produce T helper type 1 (Th1) responses. It is characterized by

maximizing the ability of immune cells to make cytotoxic or

inflammatory reaction to viral infections, tumors or grafts. In

early pregnancy, M1 macrophages promote embryo

implantation and protect the fetus from infection (29–33).

Moreover, IL-4 and IL-13 directly induce M2 macrophage

activation, IL-10 and transforming growth factor-b (TGF-b)
make macrophages polarized toward the M2 phenotype. As the

part of a polarized Th2 response, M2 macrophages are involved

in apoptotic cells clearance and tissue remodeling. The release of

a distinct set of chemokines, such as CCL17, CCL22 and CCL24

and their corresponding chemokine receptors CCR4 and CCR3,

can also cause the recruitment of Th2 cells and amplification of

polarized Th2 responses. They have immunosuppressive

properties with higher levels of CD206, CD209 and CD163

expression. M2 macrophages provide an immune-tolerant

environment for the fetus throughout pregnancy (29, 34–36).

Macrophages are typical plastic cells which can switch

phenotypes and be subject to environmental disturbances (37,

38). Therefore, it is necessary to ensure the balance of M1 and

M2 macrophages, so that the embryo can implant and develop

smoothly at the maternal-fetal interface (39–42).
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CD11chigh/CD11clow

Distinct from the traditional M1 and M2 macrophages,

Houser classified decidual macrophages into CD11c high and

CD11c low subpopulations on the basis of CD11c expression

(43, 44). Moreover, Jiang et al. subdivided macrophages into

three decidual subsets, CCR2-CD11cLO, CCR2-CD11cHI, and

CCR2+CD11cHI by flow cytometry analysis (45, 46). CD11c

low decidual macrophages and CCR2-CD11cLO subset expressed

highly phagocytic receptors, such as CD209 and CD206 (43, 47).

CCR2-CD11cLO macrophages also specifically exhibits heme

oxygenase-1 (HMOX1) (48, 49), which may be in favor of

protecting the fetus from being affected by possible infections

during the early pregnancy (42). While CCR2+CD11cHI and

CCR2-CD11cHI subsets posses pro-inflammatory and anti-

inflammatory characteristics respectively (46, 50). They

maintain an immnue balance to facilitate the clearance of

pathogen infection and keep the homeostasis of the maternal-

fetal interface (Table 1).
Functions of decidual macrophages
in normal pregnancy

Decidual macrophages have drawn remarkable attention for

their functional characteristics of plasticity and polarization (16).

Throughout the maternal adaptations to pregnancy, decidual

macrophages also play critical roles (56). Decidual macrophages

coordinate tissue remodeling and angiogenesis, induce apoptosis
Frontiers in Immunology 03
of damaged cells, facilitate trophoblasts invasion and suppress

inflammation (57–62). Consequently, they are indispensable in

contributing to the maternal-fetal immune tolerance.

As we all know, endometrial macrophages act as

determinants of uterine receptivi ty . Owing to the

characteristics of immune tolerance, they became the research

focus in the medical community (63). Gorczynski pointed out

that CD200 and MD-1 have immune regulatory activity toward

macrophages, which is beneficial to successful pregnancy (64). If

the expression of CD200R in macrophages increases, it can

stimulate the activity of indoleamine2,3-dioxygenase (IDO) (65).

Thus, establishing an immunosuppressive environment is

necessary for successful implantation (66). Furthermore, there

are many kinds of Toll receptors on decidual macrophages, such

as TLR2, TLR3 and TLR4. In response to TLRs activation,

decidual macrophages facilitated the secretion of pro-

inflammatory cytokines IL-1b, TNF-a, IL-6, IL-8 and the

production of the anti-inflammatory cytokines IL-1RA and IL-

10. Among these cytokines, IL-10 was the most easily induced.

Along with the higher secretion of IL-10 increased by TLRs

activation, it might help sustain immune tolerance by curbing

the action of pro-inflammatory cytokines (67). In addition, the

inhibitory receptors expressed on invading extravillous

trophoblasts, such as immunoglobulin-like transcript 2 (ILT2)

and ILT4 for human leukocyte antigen (HLA)-G (68, 69), can be

combined with the decidual macrophages. As a negative signal

that be delivered to the decidual macrophages, they are in favor

of the production of anti-inflammatory cytokines and tolerance

to the trophoblast (70).
TABLE 1 Different phenotypes of macrophages during pregnancy.

Macrophage type Characteristics Function References

M1 macrophages CD80,CD86,TNF-a,INF-g,
IL-1a,IL-1b,IL-6,IL-12,NO,
CXCL9,CXCL10,CCR7

Pro-inflammatory;
Th1 responses;
Present antigen;
Promote embryo implantation;
Protect the fetus from infection

(20, 29–33, 39, 40, 51, 52)

M2 macrophages CD206,CD209,CD163,IL-10
TGF-b,VEGF,CCL17,
CCL22,CCL24,CCR3,CCR4

Anti-inflammatory;Th2 responses;
Immunosuppressive properties;
Tissue remodeling

(20, 29, 34–36, 39, 51–54)

CD11clow(67%) CD206hi,CD209hi,
expressed genes involved in
regulating growth and
development, as well as
Extracellular matrix formation

Homeostatic function during
placental growth

(43, 44)

CD11chigh(33%) CD206low,CD209low,
Upregulates CD1a,CD1c,CD1d;
Expressed genes associated with lipid metabolism and inflammation

Antigen processing and presentation (43, 44)

CCR2-CD11cLO (CD11clow,
~80%)

Exhibit the fewest inflammatory properties;
highly express CD209 and MHCII.

Antigen presentation (45, 46, 55)

CCR2+CD11cHI (CD11chigh,
10-15%)

Facilitate the clearance of pathogen infection;
maintain the homeostasis of the maternal-fatal interface.

Pro-inflammatory (45, 46, 55)

CCR2-CD11cHI (CD11chigh,
~5%)

Anti- inflammatory (45, 46, 55)
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Human decidual MMP-9+ macrophages can degrade the

extracellular matrix (ECM) and promote endovascular

trophoblast invasion, and they are enriched in the vicinity of the

trophoblast invasion during early pregnancy (71). IL-33, as a

cytokine of the IL-1 family, is found to be associated with Th2 and

M2 polarization (72, 73). It can accelerate the development of

primary trophoblasts, villous cytotrophoblast (74). Granulocyte

macrophage colony-stimulating factor (GM-CSF) and

macrophages colony-stimulating factor (M-CSF) are secreted

from first trimester decidual cells. These activated cells can

promote macrophages activation, and induce extravillous

trophoblasts (EVTs) apoptosis through the caspase 3/7

dependent pathway (75). Conversely, trophoblasts-derived IL-6

(76), CXCL16 (77), and hyaluronan (HA) (78) could induce M2

macrophages polarization. In addition, macrophages could also

secrete exosomes or extracellular vesicles and deliver miRNAs to

affect the invasion and migration capabilities of trophoblasts,

thereby participating in the occurrence of RSA (51, 79).

Placental macrophages are a special M2-like polarized

phenotype, which don’t possess all properties of M2 cells.

However, the expression intensity of CD163, CD80, CD11c,

CCR5, CXCR4 on M2-like macrophages are lower than M2

macrophages. They were shown to regulate gap junction

communication and promote decidualization (80).

Decidual macrophages may be the major APCs in the

decidua (81). It is thought to be the sentinels of the immune

system that initiate and regulate the immune response (82). M2

macrophages can wipe out infection by switching gene

expression toward anti-inflammatory cytokines including IL-

10, TGF-b and IL-1Ra (83). It also express high levels of

scavenger receptors CD163, Stabilin-1 and c-type lectins

receptors CD206 and CD209 (84). Phagocytosis of damaged

and apoptotic cells are fundamental M2 macrophage functions,

which also apply to decidual macrophages at the maternal-

fetal interface.
The relationship between decidual
macrophages and RSA

It has been fully elaborated that RSA have an immune

background. What’s the relationship between decidual

macrophages and the aetiology of RSA? How do dysfunction

of decidual macrophages lead to RSA (Figure 1)?
M1/M2 macrophages balance

As it was mentioned above, the disturbed M1/M2

macrophages balance came to light at the maternal-fetal

interface of RSA (40). It seems that the M1 subtype
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predominates over the M2 subtype in those cases,

accompanied by pregnancy complications (85, 86). M1

macrophages can suppress epithelial-mesenchymal transition

(EMT), migration, and invasion of trophoblasts by

transporting miR-146b-5p to directly inhibit TRAF6

expression, thereby participating in the pathogenesis of RSA

(87). ChunYan Wei have tested that JAK2 inhibitor adjusted the

proportion of M1/M2 macrophages, further affecting the

pregnancy outcome through the CCL2/CCR2/JAK2 pathway

(88). Decreased programmed death-1 (PD-1) protein

expression on decidual macrophages, accompanied with

reduced programmed cell death ligand-1 (PD-L1) expression

on placental villi, was observed in RSA. Meanwhile, the

disturbed PD-1/PD-L1 axis induced M1 differentiation (89).

Knockdown of CYP26A1 in mice uterine can decrease the

number of embryo implantation. It can be also discovered that

the protein levels of M1 markers TNF-a, IL-6 and CD86 were

significantly decreased, thus leading to the insufficient M1

polarization (90). Additionally, in the immune atlas of RSA

without chromosomal aberrations, pro-inflammatory subsets of

CD11chigh macrophages increased remarkably (91). The present

research illustrated that the abnormally increased MNSFb
expression can promote the secretion of TNF-a, inducing the

polarization of decidual macrophages toward a pro-

inflammatory phenotype (92). More intuitive studies on

mouse experiments confirmed that Cathepsin E-deficient mice

displayed compromised immune reactions with higher

susceptibility to bacterial infection (93).
Cytokines

Several studies have demonstrated that the expression of

CD80, CD86 and HLA-DR, but not CD163 on decidual

macrophages were higher in RSA patients compared to normal

pregnancies, accompanied with higher production of TNF-a
and lower secretion of IL-10 and IL-33 (40, 73, 94). In LPS-

induced mice abortion model, the expression IL-1, IL-6, TNF-a,
IFN-g, IL-17a was significantly raised (95). Macrophage

depletion was also proved to prevent CpG-induced embryonic

resorption in an abortion mice model and in IL-10-/- mice (96,

97). The experiment as early as the 18th century has confirmed

that the depletion of macrophags results in the loss of pregnancy

and recurrent abortion (57). CSF-1-deficient mice displayed few

decidual macrophages, with lower implantation at day 7 and 8,

and always had aberrant fertility with smaller size (98). On day

0.5 or day 3.5 post-coitum, injection of diphtheria toxin (DT) to

Cd11b-Dtr mouse model caused implantation failure and

infertility. But implantation failure can be alleviated by

administration of bone marrow-derived CD11b+F4/80+

monocytes/macrophages (99). And injection on day 14 and 16
frontiersin.org

https://doi.org/10.3389/fimmu.2022.994888
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2022.994888
led to fetal mortality without cervix ripening (100). However, it

could be alleviated by administration of RANK+ macrophages

(101). RANKL derived from trophoblasts could make

macrophage polarization to M2 by activating AKT/STAT6-

Jmjd3/IRF4 signaling pathway. The knockout model of

RANK−/− mice can lead to the decreased expression of TGF-b
and the increased pregnancy loss (102). Mice with uterine

deficiency of high-mobility group box-1 (HMGB1) protein,

showed impaired implantation and severe subfertility (103).

But highly expressed HMGB1 was actively secreted by

macrophages and then activated pyroptosis, leading to the

occurrence and development of RSA (104).Therefore,

restricting macrophages accumulation is also needed.

T-cell immunoglobulin and mucin domain containing

protein 3 (Tim-3) blockade down-regulated the phagocytosis

of decidual macrophages, leading to accumulation of

inflammatory granulocytes and macrophages at the maternal-

fetal interface (105). Therefore, high level of pro-inflammatory

cytokines establishes a pro-inflammatory microenvironment

and impairs normal pregnancy. It also has been indicated that

dysregulation of decidual macrophages activation by regulatory

T cells (Treg cells) may lead to RSA. When Treg cells regulate

aberrant cell-cell contact, there will be a problem with decidual

macrophages. The abnormity of decidual macrophages was

indicated to be regulated by Treg cells through aberrant cell-

cell contact and TGF-b secretion (106). Moreover, Jiayu Wang’s

studies showed that abnormally expressed USP2a may be found

in the placental villous samples of RSA patients. Further studies

have confirmed that TGF-b could collaborate with USP2a to

promote trophoblasts migration and invasion via its interaction

with TGFBR1 (107). Thrombospondin1 (TSP1) needs to interact

with CD36, CD47 and heparin sulphate proteoglycanto enhance

the ability of macrophages (108). They are engaged in regulating

IL-10 secretion and boost the tolerance of the immune system at

the maternal-fetal interface (109). Thus, low expression of TSP1

along with decreased IL-10 could appear in RSA.
Therapies

Owing to the uncertainty of the pathogenesis, the

likelihood of recurrence, recent studies suggest that various

treatment of RSA may work (110, 111). Clinicians often use

progesterone to support or supplement the pregnancy, by oral,

vaginal, intramuscular, or other ways. It is considered to be

essential for successful embryo implantation. But now, it is

increasingly becoming the psychological support to patients

(112). Besides, all treatments for RSA are almost based on

immunomodulation for their effects (2, 113). A meta-analysis

of the treament of APS-related RSA showed that aspirin plus

low-molecular-weight heparin (LMWH) can significantly
Frontiers in Immunology 05
reduce the rate of repeated pregnancy loss (114). Another

study proved the combination of anticoagulant and anti-

inflammatory could contribute to a better pregnancy

outcome (115). Prednisone, hydroxychloroquine (116) and

cyclosporine A (117) are also part of the clinical therapy

regimen of RSA.

When a semi-allogeneic fetus appears at maternal-fetal

interface, maternal tolerance is required to avoid the

miscarriage. Patients with RSA may lack this capacity.

Therefore, alloimmunization was born in response to the

condition. It has been suggested that the effect of lymphocyte

immunotherapy (LIT) was probably positive. And a higher

success rate was likely observed in those immunized with

paternal lymphocytes (118). Some experts recommend

immunotherapy before and during pregnancy with low dose of

lymphocytes. It can break the balance between Th1 and Th2

cytokines, reducing the level of Th1 cytokines (IL-2, INF-g,
TNF-a, and IL-6), while increasing the level of Th2 cytokines

(IL-4, IL-10) (119). As opposed to “active immunization” with

allogenic lymphocytes which was introduced previously,

intravenous immunoglobulin (IVIg) was termed as “passive

immunization”. The effect of IVIg on Treg/Th17 cells ratio

enhances Treg cells function, and thereby improve the live

birth rate in pregnancy to some extent (120). The RSA mice

models with intraperitoneally administration of G-CSF certified

that the absence of G-CSF weakened the inhibitory effects on

macrophages, leading to more M1-type differentiation and

overexpressing NLRP3 inflammasomes at the maternal-fetal

interface. It implies that G-CSF may improve pregnancy

success rate by modulating the inflammatory state (121).

It is worth noting that immunotherapy is not a panacea for

treating all patients with RSA. The choice of therapeutic plans

should have certain indications (122). For unexplained RSA, we

should make efforts to seek the pathogenesis. Testing for

inherited thrombophilia and hyperhomocysteinemia should be

performed. If necessary, screening for immunological factors

such as Human Leukocyte Antigen (HLA), cytokines,

antinuclear antibodies (ANA), Natural Killer (NK) cells, anti-

HLA antibodies and antisperm antibodies, Lupus anticoagulant

(LAC), Anticardiolipin antibodies (ACL) and anti-b2
glycoprotein-I antibodies (b2-GPI). So, further research in

personalised treatment options is warranted.
Conclusion

Take together, polarized macrophages can influence the

reception of maternal to embryo through the secretion of

various cytokines and chemokines. The specific etiology and

pathogenesis among them is very complicated, which is an

emerging field that needs to be explored urgently. How to
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maintain M1/M2 macrophages balance? Even we know the

correlation of decidual macrophages with RSA, what can we do

to help them? Collectively, there are a large number of

challenges to be overcome, and further efforts are needed.
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FIGURE 1

The polarization of macrophages and their characteristics. The figure displays a general principle of polarized M1 and M2 macrophage. M1 and M2
phenotypes represent two extremes of macrophage polarization and display distinct functions, thereby result in different pregnancy outcomes. In
response to different stimuli, decidual macrophages undergo M1-like, or M2-like activation. M1 macrophages are stimulated by LPS, TGF-a, or IFN-g.
They express CD80, CD86, and TLR-4, secrete IL-1, IL-6, IL-12, NO, CCL2 and CXCL10, and produce Th1 responses, exert pro-inflammatory effects. In
contrast, M2 macrophages are activated by IL-4 or IL-10. They express CD163, CD206, and CD209, secrete IL-10, VEGF, TGF-b and CCL17, and
promote Th2 responses, provide an immune-tolerant environment for the fetus. Thus, if M2 macrophages play the major role at the maternal-fetal
interface, pregnancy would continue. When M1 macrophages are absolutely dominant, it will ultimately lead to miscarriage. (Created by Figdraw).
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