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A Novel hepatocellular
carcinoma specific hypoxic
related signature for
predicting prognosis and
therapeutic responses

Guangzhen Cai †, Jinghan Zhu †, Deng Ning †, Ganxun Li,
Yuxin Zhang, Yixiao Xiong, Junnan Liang, Chengpeng Yu,
Xiaoping Chen, Huifang Liang* and Zeyang Ding*

Hepatic Surgery Center, and Hubei Key Laboratory of Hepatic-Biliary-Pancreatic Diseases, Tongji
Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
Hypoxia is an important feature of the tumor microenvironment(TME) and is

closely associated with cancer metastasis, immune evasion, and drug

resistance. However, the precise role of hypoxia in hepatocellular carcinoma

(HCC), as well as its influence on the TME, and drug sensitivity remains unclear.

We found the excellent survival prediction value of Hypoxia_DEGs_Score

model. In hypoxic HCC, somatic mutation, copy number variation, and DNA

methylation were closely related to hypoxic changes and affected

tumorigenesis, progression, metastasis, and drug resistance. In HCC,

aggravated hypoxic stress was found to be accompanied by an immune

exclusion phenotype and increased infiltration of immunosuppressive cells.

In the validation cohort, patients with high Hypoxia_DEGs_Score were found

to have worse immunotherapeutic outcomes and prognoses, and may benefit

from drugs against cell cycle signaling pathways rather than those inhibiting the

PI3K/mTOR pathway. Hypoxia_DEGs_Score has an excellent predictive

capability of changes in the TME, the efficacy of immunotherapy, and the

response of drugs. Therefore, Hypoxia_DEGs_Score can help develop

personalized immunotherapy regimens and improve the prognosis of

HCC patients.
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Introduction

Hepatocellular carcinoma(HCC), an aggressive malignancy

with a dismal prognosis, is the fourth most common cause of

cancer-related deaths worldwide (1). Although the emerging

immunotherapy and targeted therapy approaches offer certain

benefits, the patients who benefit still account for only a small

subset of the total patient population (2, 3). Even if patients have

similar clinicopathological characteristics and treatment options,

they may still have a completely different prognosis because of

the heterogeneity of HCC (4). Therefore, it is imperative to find a

signature with high predictive value to guide treatment and

improve the prognosis.

Hypoxia is a status of imbalance between the tumor’s oxygen

demand and the circulating oxygen supply, mainly because the

growth rate of blood vessels cannot keep up with the oxygen

demand of the tumor (5–7). To adapt to this status, the tumor

will derive a new adaptive dynamic balance to ensure its survival

and development (8). Surprisingly, such extreme conditions

stimulate the formation of blood vessels, promote invasion

and metastasis, increase the instability of the genome, and

impair the antitumoral immune response (7, 9). Hypoxia is

often particularly obvious and common in advanced solid

tumors and is highly correlated with rapid tumor progression,

drug resistance, and poor prognosis (8).

The changes in the tumor microenvironment caused by

hypoxia involve multiple levels. Hypoxia activates the AKT

and ERK pathways through different mechanisms to induce

the epithelial-to-mesenchymal transition (EMT) and expression

of matrix metalloproteinases (MMPs), which promote the

invasion and metastasis of HCC (10). In patients with HCC,

the resistance of sorafenib is considered to be related to the

hypoxia caused by its anti-angiogenetic effect (11). After

reviewing recent research on the characteristics of hypoxia

across different cancer types (12–15), we selected 15 genes in

the study of Buffa et al. to represent the characteristic genes of

hypoxia (12). It is well known that hypoxic stress can drive

changes in multiple biological pathways, playing a key role in the

occurrence and development of HCC.

Although there have been many advances in HCC and

hypoxia research, there are still certain difficulties in the

evaluation of the hypoxic status. Direct and accurate

measurement of HCC hypoxic status and oxygen amount is still

difficult to implement, and hypoxia-inducible factor-1a(HIF-1a)
expression cannot accurately reflect all the phenotypes of hypoxia

(16). Therefore, it is crucial to find a robust signature that reflects

the hypoxic status of HCC to guide treatment decisions.

This study used four HCC datasets for research,

encompassing the TCGA-LIHC, ICGC-LIRI-JP, Fudan

Zhongshan, and Tongji cohorts, and investigated their hypoxia

status. We found that hypoxia was not only correlated with
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immune cell infiltration, but with genetic instability and

epigenetic modifications in HCC. We then constructed a

hypoxia score model based on significantly different genes to

quantify the hypoxic stress of each sample, which enabled us to

assess hypoxia-related changes of tumor biology. Finally, we

validated the survival prediction value of Hypoxia_DEGs_Score

and confirmed its ability to guide targeted therapy

and immunotherapy.
Materials and methods

Dataset collection and preprocessing

The workflow diagram of our study is shown in Figure S1A.

The RNA-seq and clinicopathological data of HCC samples were

obtained from four different institutions: TCGA (17), ICGC

(18), Zhongshan Hospital (19), and Tongji Hospital(this study).

The cohorts of immunotherapy interventions were further

included to evaluate the relat ionship between the

Hypoxia_DEGs_Score and the benefits of immunotherapy.

The patients in the IMvigor210 cohort had advanced urinary

tract transitional cell carcinoma and had received anti-PD-L1

therapy (20). GSE78220 is a dataset of an interventional regimen

in metastatic melanoma with anti-PD-1 antibodies (21). The

basic information of the datasets is summarized in Table S1.
Unsupervised clustering for 15
characteristic hypoxia-related genes

A total of 15 characteristic hypoxia-related genes (ACOT7,

ADM, ALDOA, CDKN3, ENO1, LDHA, MIF, MRPS17,

NDRG1, P4HA1, PGAM1, SLC2A1, TPI1, TUBB6, and

VEGFA) were selected based on the exploration of gene

function and co-expression patterns in vivo, after cross-

comparison of signature studies related to hypoxic stress (12–

15). Unsupervised clustering analysis was used to distinguish the

HCC samples according to their hypoxic status. The consensus

clustering algorithm in the ConsensusClusterPlus package was

used for unsupervised clustering (22, 23).
Gene set variation analysis

To evaluate signature level discrepancies between different

hypoxic statuses and states of diverse functions in individual

HCC samples, we applied the GSVA package to assess the

differences in various functional gene sets, including Kyoto

Encyclopedia of Genes and Genomes (KEGG), Gene ontology

(GO), HALLMARK, and the 15 hypoxia hallmark genes (24).
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Evaluation of immune function status
and immune cell infiltration

The TIDE algorithm was used to evaluate the immune

function status (25). The CIBERSORT algorithm and the

ssGSEA algorithm were used to quantify the abundance of

infiltrating immune cell (26–28). Immune cell infiltration

signatures from the study of Charoentong et al. were used to

estimate the infiltration of myeloid-derived suppressor cells

(MDSCs) in ssGSEA (26, 27).
Constructing the Hypoxia_DEGs_Score
scoring system to evaluate individual
HCC cases

To identify hypoxia-related differentially expressed genes

(DEGs) in HCC, we applied the Wilcoxon rank-sum test to

determine whether there was a difference in gene expression

between the two statuses. The criteria FDR < 0.05, absolute fold

change > 1.5, and the same direction of change among the

different hypoxia statuses based on TCGA-LIHC and ICGC-

LIRI-JP cohorts were used to identify the DEGs. A univariate

regression model was used to analyze the hazard ratio of each

DEG separately. Then, based on the survival risk of DEGs, a part

was selected to be used to construct a scoring system. Based on the

univariate survival regression analysis, we defined the

Hypoxia_DEGs_Score of each patient through a method

analogous to Gene expression grade index (GGI):

Hypoxia _DEGs _ Score =o
n

i=1
betai � Expið Þ,

where i is the selected hypoxia-related DEGs, and beta is the

prognostic value of each gene signature score (29). The

enrichment analysis and functional annotation of DEGs was

conducted using the clusterProfiler package (30).
Analysis of tumor-associated somatic
mutations and CNVs

Mutational landscapes of tumors with different hypoxia

statuses were exhibited in waterfall plots using the maftools

package (31). The tumor-associated mutated genes

demonstrated in the waterfall plot were downloaded from the

cBioPortal website (32). We performed enrichment analysis for

their corresponding genes for the 40 differential CNV loci that

satisfy FDR< 0.05 for differential expression, and the expression

changes were consistent with the changes of CNV.
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Changes of DNA methylation

The analysis of DNA methylation differences in tumors with

different hypoxia status was performed using the ChAMP

package (33). Before analysis, the low-quality probes were

removed and the missing values were imputed. The

transcriptional repression caused by DNA methylation is

mainly due to CpG methylation in the promoter region, after

which the binding of CPG-binding proteins in the promoter

region obstructs the binding of transcription factors to the

promoter (34). Therefore, we selected candidate sites based on

fluctuations in the beta value of individual promoter CpG

islands. Differentially methylated positions (DMPs) were

selected within 2000 bases upstream of the transcription start

site, based on the criteria FDR< 0.01 and |delta beta| >0.15.
Correlation of the Hypoxia_DEGs_Score
with drug response

We obtained transcriptome data of 1000 cancer cell lines and

the drug response data from Genomics of Drug Sensitivity in

Cancer (GDSC) (35). To further analyze the association between

hypoxia and drug sensitivity in HCC, we used the pRRophetic

package to predict drug effects in HCC patients (36). The

transcriptome data of 25 HCC cell lines from GDSC were

merged with HCC transcriptome data from TCGA-LIHC after

batch effects were removed using the SVA package (37), followed

by principal component analysis (PCA) to assess the hypoxic

status of different HCC cell lines.
Cell proliferation assay

The HCC cell lines Huh7 and HepG2 were obtained from

the China Center for Type Culture Collection (Wuhan, China).

Both cell lines were cultured in Dulbecco’s Modified Eagle

Medium (HyClone, USA) supplemented with 10% fetal bovine

serum (Gibco). HCC cell lines were seeded into 96-well plates at

4000 cells per well(4 replicates). On the 4next day, the medium

in the wells was replaced after diluting the drug in equal

proportions and placed into a normoxic incubator (37°C, 5%

CO2, and 21% O2) or anoxic incubator (37°C, 5% CO2 and 1%

O2). AKT_inhibitor_VIII, FH535, BI_2536, and RO_3306 were

purchased from MedChemExpress(USA). After 72 hours, the

medium was changed to 10% Cell Counting Kit 8 solution and

incubated for one hour, after which the absorbance at 450 nm

was recorded using an ELx 800 Universal Microplate Reader

(BIO-TEK, USA).
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Protein–protein interaction network of
hypoxia-related DEGs

STRING was used to evaluate the associations between 251

hypoxia-related DEGs (38), and the PPI network was visualized

using Cytoscape (39). The degree method in the CytoHubba

package was used to distinguish the hub-genes among 251

hypoxia-related DEGs, with a threshold of 12 (40).
RNA-sequencing data from the Tongji
Hospital cohort

Tumor samples were obtained from 30 HCC patients. All

patients underwent one-stage radical resection in Tongji

Hospital from May 2015 to November 2015, without prior

anticancer treatment. This study was approved by the

Research Ethics Committee of Tongji Hospital, and all patients

provided written informed consent forms. RNA library

construction and sequencing (Tables S8 and S9) were

performed by Novogene Corporation (China).
Results

Hypoxic status in HCC stratified based
on the hypoxia signature

We chose a 15-gene hypoxia signature, which exhibited the

best robustness in identifying hypoxic status in various cancers

in recent studies (12–14), to distinguish the hypoxic status of

HCC. The unsupervised clustering of TCGA-LIHC and ICGC-

LIRI-JP cohorts showed that the hypoxia status could be

distinguished among different HCC samples using the 15-gene

hypoxia signature (Figures 1A and S2A). Further PCA of the

clustering results showed that the hypoxia feature in the three-

dimensional plot also distinguishes the different hypoxia statuses

of the HCC samples (Figure 1D). The high hypoxia group

showed the shortest overall survival in the TCGA-LIHC and

ICGC-LIRI-JP cohorts (Figures 1B, C). We found that the 15

genes exhibited significant differences in expression between the

adjacent tissue and different groups of tumor samples (Figures

S2B, C). The hypoxia signature network delineated a

comprehensive landscape of hypoxia signature genes, hypoxia-

related pathways, and prognostic factors (Figures 1E and S3A).

We found a significant correlation between the expression of 15

genes in the hypoxia signature and a positive correlation

between the enrichment scores (ES) of the 15 gene hypoxia

signature with hallmark_hypoxia. In the TCGA-LIHC cohort,

CDKN3 and TUBB6 had two missense mutations, while

NDRG1 and P4HA1 had one missense mutation (Figure S3B).

We explored the association between CNV and the expression of
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15 signature genes, and found that ENO1, TPI1, ACOT7,

NDRG1, MIF, ADM, PGAM1, P4HA1, and VEGFA were

positively correlated with the high expression of the hypoxia-

related genes (Figure S3C). These results indicated that the 15-

gene hypoxia signature could distinguish different hypoxia

statuses of HCC samples at the transcriptomic level.
Distinct hypoxia clusters associated with
hypoxia-related biological processes and
the TME

To compare the biological behavior of tumors from high and

low hypoxia clusters, we performed GSVA enrichment analysis

of Hallmark and KEGG gene sets in the TCGALIHC and ICGC-

LIRI-JP cohorts (Figure 2A, Table S2). Under hypoxia, we found

that the glucose, fatty acid, and amino acid metabolism was

upregulated; upregulated MYC targets and mTORC1 signaling

pathway enhanced proliferation; downregulated PPAR

promoted tumor migration (41). In the GO term-based

enrichment analysis (Figure S4A, Table S3), we found that

upregulation of the Rho pathway changed the cell morphology

under hypoxia, thereby promoting the expansion and metastasis

of HCC (42). Hypoxia promoted HCC metastasis through the

WNT signaling pathway (43). Hypoxia also inhibited the

differentiation of immature B cells, while also downregulating

complement activation and apoptotic signaling.

We applied GSVA enrichment scoring to understand the

glycolysis and oxidative phosphorylation changes in HCC

tumors from different hypoxia groups (Figure 2B). The change

trend of hypoxia signature ES from Hallmark gene sets was

consistent with that of the hypoxia clustering results. We scored

ES for the 15-gene hypoxia signature and found that the results

were in excellent agreement with the hypoxia cluster groupings.

The ES of the hypoxia-related 15-gene set was significantly

positively correlated with tumor weight (Figure 2C).

We analyzed the differences of TME between the different

hypoxia statuses based on TIDE scoring (Figure 2D, Table S5).

TIDE and Exclusion scores increased significantly with higher

hypoxia leve l s . Analys i s o f tumor infi l t ra t ion by

immunosuppressive cells showed an increase of infiltration by

regulatory T cells (Tregs), tumor-associated neutrophils (TANs),

and MDSCs, which was correlated with aggravation of hypoxia.

The increased infiltration of M1 tumor-associated macrophages

(TAM) was meaningfully associated with a reduction of hypoxia

(Figures 2E, F, and S4B).
Construction of a specific hypoxic
signature of HCC

To further explore the changes brought about by hypoxia in

HCC, we identified 251 differentially expressed signature genes
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(Table S4). Considering the complexity and breadth of the

impact of hypoxia on tumor biology, we quantified the

hypoxia signature of individual HCC patients based on a

scoring model of these DEGs, called Hypoxia_DEGs_Score
Frontiers in Immunology 05
(Hypoxia Differential Expression Gene Score; see methods).

We performed an unsupervised clustering analysis based on

the expression of 251 DEGs. This analysis divided patients with

different hypoxia statuses into Hypoxia_DEGs_Cluster_1 and
A

B D

E

C

FIGURE 1

Unsupervised clustering analysis distinguishes hypoxic phenotypes of HCC. (A) Unsupervised clustering analysis of the 15-gene hypoxia
signature with a comparison of clinicopathological features between three distinct clusters for TCGA-LIHC (ICGC-LIRIJP in Figure S2A). (B, C)
Kaplan-Meier curves demonstrated that hypoxia phenotypes were highly associated with the overall survival of 366 patients in the TCGA-LIHC
cohort (B) and 232 patients in the ICGC-LIRI-JP cohort (C). (D) Principal component analysis for the expression profiles of three hypoxia
clusters in the TCGA-LIHC cohort exhibiting a remarkable difference in expression between different hypoxia clusters. (E) The interplay between
15 hypoxia signature genes and hypoxia-related signatures in hepatocellular carcinoma. Green dots in the circle, favorable prognostic factors;
yellow dots in the circle, risk factors. The lines linking the signature genes indicate their interplay, and thickness reflects the strength of
correlation between the signature genes.
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FIGURE 2

Biological characteristics and tumor immune microenvironment of distinct hypoxia groups. (A) Heatmap visualizing the GSVA enrichment
analysis based on KEGG and HALLMARK terms showing the activation states of biological pathways in hypoxia high and low groups. Red,
activated pathways; blue, inhibited pathways. KEGG, Kyoto Encyclopedia of Genes and Genomes (GO in Figure S4A). (B) Enrichment score of
hypoxia-related pathways across distinct hypoxia groups and normal tissue group in the TCGA-LIHC cohort. Upper panel, boxplot showing the
ES distribution and overall variance. Bottom panel, heatmap showed between-group differences for pairwise comparisons. P < 0.05 in the
Kruskal-Wallis (upper panel) and Wilcoxon tests (bottom panel) was considered statistically significant. ****P < 0.0001. (C) Scatter plots showing
the significant association between the hypoxia-related 15-gene signature (ES) and tumor weight according to Spearman’s rank correlation
analysis in the TCGA-LIHC cohort. Rs is the coefficient of rank correlation. (D) Box plots showing differences in the TIDE, Exclusion, and
Disfunction scores between distinct hypoxia groups in the TCGALIHC cohort. (E, F) Box plots showing differences in the infiltration of Tregs, M1
macrophages, M2 macrophages, TANs (E), and MDSCs (F) between distinct hypoxia groups in the TCGA-LIHC cohort. The infiltration of Tregs,
M1 macrophages, M2 macrophages, TANs, and MDSCs was estimated using CIBERSORT (E) and ssGSEA (F), respectively. The Kruskal-Wallis test
was used to determine the statistical significance of the difference.
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Hypoxia_DEGs_Cluster_2 (Figure 3A). We evaluated the

Hypoxia_DEGs_Score of the high, mid, and low hypoxia

groups. The Hypoxia_DEGs_Score in the hypoxia group also

s how ed an i n c r e a s i n g t r e n d ( F i g u r e 3B ) . Th e
Frontiers in Immunology 07
Hypoxia_DEGs_Score of Cluster_1 was remarkably higher

than that of Cluster_2 (Figure 3C). In the Sankey diagram, the

high and low grouping results of Hypoxia_DEGs_Score were

highly consistent with the results of the hypoxia-related DEG
A

B D

E

C

FIGURE 3

Construction of an HCC-specific hypoxia signature. (A) Unsupervised clustering of the hypoxia-related differentially expressed genes in the
TCGA-LIHC and ICGC-LIRI-JP cohorts. Red, high expression; blue, low expression. (B, C) Differences in the Hypoxia_DEGs_Score between
hypoxia clustered groups (B) and hypoxia DEG clusters (C) in the TCGA-LIHC cohort. (D) Sankey diagram exhibiting the shifts of 15-gene
hypoxia signature clusters, hypoxia DEG clusters, and Hypoxia_DEGs_Score groups based on the TCGA-LIHC cohort. The distinction between
high and low Hypoxia_DEGs_Score groups is based on the optimal cutoff value of the survival analysis. (E) Differences in the
Hypoxia_DEGs_Score between various clinicopathological features. The Wilcoxon test was used to determine the statistical significance of the
differences. **P < 0.01, ***P < 0.001, **** P < 0.0001.
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clustering (Figure 3D, Table S7). And Hypoxia_DEGs_Score

positively correlated with the transcript level of HIF1A (Figures

S4C, D).

We analyzed the 251 DEGs using the STRING database, and

identified 19 hub genes with values greater than the threshold of

12 (Figure 4A). The enrichment analysis of 251 hypoxia DEGs

found that the main effects of the signature of hypoxia-related

DEGs were still in energy metabolism-related pathways

(Figure 4B). In addition, secretion of exosomes, complement

activation, and PPAR signaling were also found to be involved in

the biological effects of hypoxia in HCC.
Clinicopathological characteristics
associated with the
Hypoxia_DEGs_Score

We compared the changes of Hypoxia_DEGs_Score

stratified by different pathological features. A high

Hypoxia_DEGs_Score was found in patients with elevated

alpha-fetoprotein, higher tumor stage, worse pathological stage

and grade, as well as a higher tumor recurrence rate (Figure 3E).

Initially, we analyzed the survival predicted capability of the

Hypoxia_DEGs_Score model in the TCGA-LIHC and ICGC-

LIRI-JP cohorts. Patients with high Hypoxia_DEGs_Score had a

significantly poorer prognosis in both cohorts (Figures 4C, E, S5,

B). Hypoxia_DEGs_Score also had excellent survival prediction

capability in both cohorts in the ROC analysis (Figures 4D, F).

Since the TCGA-LIHC and ICGCLIRI-JP cohorts were

equivalent to the experimental dataset in our study, the

Zhongshan cohort and our cohort from Tongji Hospital were

selected as the validation datasets. Further analysis showed that

the Hypoxia_DEGs_Score model also had an outstanding

capability to predict the clinical outcomes in the Zhongshan

and Tongji cohorts (Figures 4G–K and S5C). Therefore, the

Hypoxia_DEGs_Score model exhibited excellent prognostic

robustness among the results from four different cohorts from

independent sources.

In multivariate Cox regression analysis, Hypoxia

_DEGs_Score was also a strong independent predictor of

clinical outcomes in both cohorts (Figure S5D). A nomogram

was constructed for readers to predict the survival probability

(Figure S5E). The 2- and 3-year calibration curves of the

nomogram showed a high consistency between predicted

survival probability and actual observation (Figures S6A, B).
Somatic mutations and CNVs under
distinct hypoxic circumstances

Somatic mutations not only contribute to the occurrence

and development of tumors, but can also change the state of

various biological functions of cells (44). We analyzed the
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mutational profiles and found that mutation probability was

lower in the low Hypoxia_DEGs_Score group (Figure 5A).

Further analysis showed that the mutation frequencies of

tumor suppressor genes (TP53, TSC2, CDH11, and SETD2) in

the high Hypoxia_DEGs_Score group representing severe

hypoxia were much higher than in the low-score group. At the

same time, the mutation frequency of the proto-oncogene

CTNNB1 was lower in the high-score group than in the low-

score group (Figures 5B, C). Mutations of TP53 lead to the rapid

proliferation of HCC and promote the progression toward

hypoxia (45). Similarly, TSC2 mutations weaken mTOR

regulation, leading to tumor cell proliferation and hypoxia

(46). The loss of SETD2 is involved in the occurrence and

development of HCC (47). The loss of CDH11 function will

change the adhesion status resulting in the invasion and

metastasis of HCC (48). The profiles of TP53, TSC2, CDH11,

SETD2, and CTNNB1 mutation sites are shown in Figure 5D.

In further exploration, patients with SETD2 mutations had a

significantly worse prognosis (Figure 5E). Notably, SETD2 gene

mutations accompanied by a high hypoxia status suggested a

very poor prognosis. By contrast, there was no difference in the

prognosis of patients bearing tumors with mutated and wild-

type SETD2 in the low hypoxia group (Figure 5F).

CNV is widely present in the human genome and plays a

pivotal role in the occurrence and development of tumors (49).

We further explored the association between hypoxia and CNV.

Figures S6C, D shows the landscape of CNVs in the high and low

Hypoxia_DEGs_Score groups. Hypoxia_DEGs_Score showed

an excellent positive correlation with the frequency of CNVs

of both loss and gain type (Figures 6A, B). Further analysis

identified 40 differential CNV loci between different hypoxia

cohorts. The CNV profiles of the top 20 and all loci are shown in

Figure 6C and Table S10, respectively. We performed an

enrichment analysis of possible target genes among 40

significantly different CNV loci (Figure 6D). The results

suggested that the drug resistance of HCC tumors under

hypoxia may be caused by a loss of genome stability, which

leads to an increased frequency of CNVs, thereby altering the

metabol i sm of cy tochrome P450s and promot ing

drug resistance.
General DNA methylation and N6-
methyl-adenosine modification of HCC
stratified by hypoxic status

Hypoxia can alter DNA methylation status, thereby

affecting the transcription and translation of functional

proteins, and altering downstream biological behaviors (50).

We analyzed differentially methylated positions(DMPs)

between high and low Hypoxia_DEGs_Score groups. A total

of 1104 DMPs were identified, including 552 upregulated and

552 downregulated DMPs (Figure S7A, Table S11). The
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landscape of the top 50 DMPs is shown in Figure S7B.

According to the enrichment analysis of DMP associated

genes, methylation altered bile acid metabolism and possibly

also inhibited the p53 signaling pathway, which significantly
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promoted tumor proliferation (Figure 6E). Alterations in the

tight junction protein complex affect junction assembly, barrier

regulation, and cell polarity, thereby promoting tumor

progression and metastasis (51).
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FIGURE 4

Validation of the Hypoxia_DEGs_Score survival prediction value. (A) Protein-protein interaction network of the hypoxia-related DEGs. The
thickness of the lines represents the strength of the association, yellow circles represent the hub gene in the PPI network, and blue represents
non-hub genes. DEGs with a Degree value greater than the threshold of 12 were considered hub genes. (B) Enrichment analysis for the 251
hypoxiarelated DEGs based on KEGG and GO term analysis. (C, E, G, I) Kaplan-Meier survival curves showing differences in overall survival
between high and low Hypoxia_DEGs_Score groups in the TCGA-LIHC (C), ICGC-LIRI-JP (E), Zhongshan (G), and Tongji (I) cohorts. (D, F, H, K)
ROC analysis of 0.5-, 1-,2- and 3-year OS demonstrating the outstanding prognostic value of Hypoxia_DEGs_Score in the TCGALIHC (D),
ICGC-LIRI-JP (F), Zhongshan (H), and Tongji (K) cohorts. (J) Scatterplots of survival status and risk curves sowing the prognosis and
Hypoxia_DEGs_Score values of patients in the Tongji cohort.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.997316
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cai et al. 10.3389/fimmu.2022.997316
A

B

D

E F

C

FIGURE 5

The somatic mutation landscape of tumor-associated genes in groups with different hypoxic statuses. (A) Waterfall plots showing the
distribution of mutation among the top 20 most frequently mutated tumor-associated genes in the two Hypoxia_DEGs_Score groups from the
TCGA-LIHC cohort. Each column represents an individual patient. The upper bar graph shows TMB; the number on the right indicates the
mutation frequency in each tumor-associated mutated gene. The right bar graph shows the proportion of each variant type. Mutation types are
indicated in the legend at the bottom. (B) The bar plot compares mutation rates for tumor-associated mutated genes in the two
Hypoxia_DEGs_Score groups. (C) Forest plot showing the top 5 most significantly differentially mutated genes between the two groups. The
Fisher test was used to determine the statistical significance of the differences. P values were corrected using the Benjamini-Hochberg method.
*FDR < 0.05. **FDR < 0.01. ***FDR < 0.001 (D) Lollipop plots showing the amino acid residues corresponding to the mutated sites of the top 5
mutated genes. (E) Kaplan-Meier survival curves showing differences in overall survival between patients with wild-type or mutant SETD2 in the
TCGA-LIHC cohort. (F) Kaplan-Meier survival curves demonstrating distinctions in overall survival stratified by both Hypoxia_DEGs_Score
grouping and SETD2 mutation status in the TCGA-LIHC cohort. Mut, mutant SETD2; WT, wild-type SETD2.
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FIGURE 6

Copy number variation, DNA methylation and N6-methyl-adenosine modification in groups with different hypoxic statuses. (A, B) Scatterplots
showing the robust correlation of the Hypoxia_DEGs_Score with loss (A) and gain (B) CNVs according to Spearman’s rank correlation analysis.
Rs is Spearman’s coefficient of rank correlation. (C) A heatmap exhibiting the top 20 most significantly different CNV loci in distinct
Hypoxia_DEGs_Score groups. The Fisher test was used to determine the statistical significance of the differences. Red, deletions; blue, gene
number amplifications. (D) Enrichment analysis for the associated genes of 40 significantly different CNV loci based on KEGG gene sets. (E)
Circle diagram showing the enrichment analysis for the targeted genes of DMPs based on KEGG gene sets. FDR< 0.05 for enriched pathways
was considered statistically significant and was shown. Red, increased level of DNA methylation in Hypoxia_DEGs_Score high group vs. low
group; Blue, decreased level of DNA methylation. (F) Boxplots showing the expression of 28 N6-methyl-adenosine regulators in groups with
different hypoxic statuses. The boxes indicate the median ± 1 quartile, with the whiskers extending from the hinge to the smallest or largest
value within 1.5× IQR from the box boundaries. *P < 0.05, **P < 0.01. ***P < 0.001. ****P < 0.0001.
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The N6-methyladenosine(m6A) DNA modification plays a

crucial role in many biological functions, and its dysregulation is

associated with cancer progression in HCC (52). We analyzed

differences in the transcript levels of 28 m6A regulators (53)

between high and low Hypoxia_DEGs_Score groups (Figure 6F).

Notably, 12 of the 14 m6A readers were significantly different.

The reader YTHDF1 promotes tumor progress by influencing

ATG2A, ATG14, and HIF-1a (54). At the same time, there were

large differences in 7 of the 11 m6A writers. High expression of

WTAP promotes tumor progression, by influencing HuR, p21/

27, and Ets−1 (55). Interestingly, the expression levels of the

FTO and ALKBH3 m6A erasers exhibited a sharp decrease

under hypoxia. In general, hypoxia promotes the occurrence

and progression of HCC by increasing the abundance of the

m6A DNA modification.
Potential predictive value of
Hypoxia_DEGs_Score for
immunotherapy response

Numerous studies have demonstrated that hypoxia can be

the core driver of transformation in the tumor immune

microenvironment (56). We applied the TIDE method (25) to

compare the TME of tumors with different hypoxia statuses

(Tables S5 and 6). TIDE and Exclusion scores were positively

correlated with the Hypoxia_DEGs_Score. Notably, Dysfunction

scores were not associated with hypoxia levels (Figures 7A

and S8A).

F u r t h e r a n a l y s i s o f i n fi l t r a t i o n b y t um o r

i mm u n o s u p p r e s s i v e c e l l s r e v e a l e d t h a t t h e

Hypoxia_DEGs_Score was significantly positively correlated

with infiltration by Tregs, TANs, and MDSCs (Figures 7A and

S8B). High infiltration levels of Tregs lead to attenuated tumor

cell killing (57). TANs can promote tumor proliferation and

metastasis by releasing elastase (58). The increased abundance

of MDSCs in TME increases immune evasion, angiogenesis,

and metastasis (59). Patients with high Hypoxia_DEGs_Score

had high tumor infiltration of immunosuppressive cells, which

promoted tumor progression and resulted in a poor prognosis.

M1 macrophages are not only capable of secreting pro-

inflammatory mediators, but can kill tumor cells by driving

type 1 T helper cell(Th1) responses to produce cytotoxic effects

(60). HCC samples with higher Hypoxia_DEGs_Score values

had significantly less M1 macrophage infiltration (Figures 7A

and S8B) , sugges t ing an at tenuated M1-media ted

inflammatory state under hypoxia. TGF-b can increase the

number of Tregs, suppress effector T cell activity and attenuate

dendritic cell function (61). A positive correlation of the

Hypoxia_DEGs_Score with the expression of TGFB1 and

TGFB2 (Figure 7A and S8C) suggests that the hypoxic status

of HCC results in a tumor immunosuppressive state with

increased infiltration of immunosuppressive cells.
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Immunotherapy based on PD-1 and PD-L1 blockade has

dramatically improved the prognosis of patients. Considering that

the Hypoxia_DEGs_Score can predict the TME phenotype of

HCC, we selected an anti-PD-L1 treated cohort(IMvigor210) (20)

and an anti-PD-1 treated cohort(GSE78220) (21) for further

analysis. The results showed that patients with low

Hypoxia_DEGs_Score values exhibited significant clinical

benefits and markedly prolonged overall survival compared with

those with a high Hypoxia_DEGs_Score (Figures 7B–D). In the

IMvigor210 cohort, we found that the Hypoxia_DEGs_Score of

the patients in the complete response (CR) group was lower than

that of other groups, and the scores in the progressive disease(PD)

group were higher than in the other groups (Figure 7D). Further

analysis revealed that patients with high Hypoxia_DEGs_Score

values and a low tumor neoantigen burden had the poorest

prognosis (Figure 7E). PD-L1 expression was significantly

elevated in patients with low Hypoxia_DEGs_Score values,

suggesting a potential benefit of anti-PD-1/L1 immunotherapy

(Figure 7F). In the Hypoxia_DEGs_Score analysis of different

immune subtypes, we found that the immune desert type had

higher scores than the immune excluded and inflammatory types

(Figure 7G). Consequently, the analysis indicates that the

Hypoxia_DEGs_Score model can guide ICIs drug selection and

predict the efficacy of anti-PD-1/PD-L1 immunotherapy.
The Hypoxia_DEGs_Score model
predicts drug responses

To further investigate the association between drug

resistance and hypoxic stress, we assessed the correlation

between the Hypoxia_DEGs_Score and drug responses in

various cancer cell lines based on the GDSC database (35).

The results revealed a significant correlation between the

responses to 39 drugs and the Hypoxia_DEGs_Score (Figure

S9A, Table S12). Among them, the sensitivity of the tumors to 14

drugs increased as hypoxia progressed, and conversely, tumor

resistance to 25 drugs increased as hypoxia progressed. In

addition, drug sensitivity in the high Hypoxia_DEGs_Score

tumors was mainly associated with drugs targeting the EGFR

signaling pathway. By contrast, drug tolerance was primarily

associated with drugs targeting the PI3K/Akt and histone

acetylation signaling pathways (Figure S9B, Table S12).

For HCC, we applied a ridge regression model to analyze the

correlation of Hypoxia_DEGs_Score with the drug response

based on the TCGA-LIHC and ICGC-LIRIJP datasets

(Figure 8A, Table S13). Further analysis identified 20 drugs

that were effective and 20 drugs to which the tumors were

resistant under hypoxia. In hypoxic HCC, most effective drugs

were found to target cell cycle-related signaling pathways. By

contrast, hypoxic HCC appears to be resistant to most drugs

targeting the PI3K/Akt signaling pathway. These results were

consistent with the analysis of various cancer types.
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To directly confirm the association between the

Hypoxia_DEGs_Score and the drug response, we conducted

a PCA analysis. The results showed that HepG2, Huh7, and

Huh1 were the HCC cell lines with the lowest hypoxia levels,

while HLF, JHH2, and SNU387 had the highest hypoxia levels
Frontiers in Immunology 13
(Figure 8B). Additionally, we cultured HepG2 and Huh7 cells

under hypoxic and normoxic conditions, and treated them

with representative drugs. The results indicated that under

hypoxic conditions, HCC exhibited higher drug sensitivity to

BI-2536 and RO-3306 but higher resistance to FH535 and
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FIGURE 7

The relationship between the Hypoxia_DEGs_Score and efficacy of immunotherapy. (A) Correlation of the Hypoxia_DEGs_Score with the TIDE
score, infiltration of immunosuppressive cells, and expression of TGF-b. Rs is the coefficient of rank correlation. (B, H) Kaplan-Meier survival
curves showing differences in overall survival between the high and low Hypoxia_DEGs_Score groups in the IMviogor210 (B) and GSE78220 (H)
cohorts. (C, I) The proportion of patients in the IMvigor210 (C) and GSE78220 (I) cohorts with different PD-L1 and PD-1 blockade
immunotherapy responses. (D, J) Difference in the Hypoxia_DEGs_Score between distinct clinical outcomes of anti-PD-L1 and PD-1 treatment
in the IMvigor210 (D) and GSE78220 (J) cohorts. (E) Kaplan-Meier survival curves demonstrating distinctions in overall survival stratified by both
the Hypoxia_DEGs_Score and tumor neoantigen burden. (F) Differences in PD-L1 expression between low and high Hypoxia_DEGs_Score
groups in the IMviogor210 cohort. (G) Differences in the Hypoxia_DEGs_Score among immune phenotypes, including the inflamed (yellow),
excluded (blue), and desert (red) immune types in the IMvigor210 cohort. CR, complete response; PR, partial response; SD, stable disease; PD,
progressive disease; NEO, tumor neoantigen burden; L, low; H, high.
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AKT inhibitor VIII (Figures 8C and S9C). These results were

consistent with our computational prediction. Thus, the

Hypoxia_DEGs_Score is a potential biomarker for

establishing appropriate therapeutic regimens.
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Discussion

Due to differences in organ function, metabolic background,

and blood supply, the hypoxia status varies significantly in
A

B

C

FIGURE 8

Relationship between the Hypoxia_DEGs_Score and drug response. (A) Correlation between the Hypoxia_DEGs_Score and drug sensitivity
assessed using Spearman correlation analysis in the TCGA-LIHC and ICGCLIRI-JP cohort. The upper left triangle shows the analysis of the
TCGA-LIHC cohort; the lower right triangle shows the analysis of the ICGC-LIRI-JP cohort. Red indicates ineffective drugs (tumor is resistant),
and blue indicates effective drugs (tumor is sensitive). Rs is the coefficient of rank correlation. Each small rectangle on the right represent the
targeted pathways corresponding to the drugs. *P < 1.0e-04; •P < 1.0e-12 (B) Principal component analysis for the transcriptome profiles of 251
hypoxia-related DEGs based on the combination between HCC cell lines and patient samples from the GDSC dataset and the TCGA-LIHC
cohort. Red represents HCC samples and cell lines with high Hypoxia_DEGs_Score values; blue Represents low Hypoxia_DEGs_Score. (C)
Dose-response curves for the the mean value of cell viability for BI-2536, RO-3306, FH535, and Akt inhibitor-VIII in the HCC cell lines Huh7 (C)
and HepG2 (Figure S12C) incubated under hypoxic (red, n = 4) and normoxic (blue, n = 4) conditions. Cell viability was normalized to that of
cells mock-treated with dimethyl sulfoxide (vehicle control). The error bars indicate the mean ± SD. The sigmoidal dose-response curves were
fitted to the data.
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different tumors. As a heterogeneous disease, HCC is subject to

comprehensive and diverse biological processes, resulting in a

variable and inconsistent prognosis. The existing biomarkers

used to guide diagnosis and treatment cannot fully meet the

clinical needs. Therefore, establishing new biomarkers with

higher predictive value is critical for maximizing the clinical

benefits of a personalized regimen and accurate prognostic

assessment. We distinguished three HCC hypoxia phenotypes

based on 15 hypoxia signature genes and constructed the HCC-

specific hypoxia scoring model Hypoxia_DEGs_Score. The

robustness of the Hypoxia_DEGs_Score model was validated

in four independent HCC cohorts from different sources

(Figures 4C–K, S5A–C, and Table S1). Encouragingly, the

Zhongshan and Tongji cohorts used as validation datasets also

had a prominent area under curve (AUC) of the ROC, and

patients with low Hypoxia_DEGs_Score values had a

significantly better prognosis.

Hypoxia is a powerful driving force that promotes the

heterogenization and genomic evolution of cancer. However,

the understanding its association with specific mutational

processes and CNVs remains limited (62). In our analysis, the

mutation frequency of tumor driver genes generally increased

under hypoxia (Figure 5A), and the frequency of CNVs also

surged with rising Hypoxia_DEGs_Score values (Figures 6A, B).

These results are consistent with the widespread elevation of the

mutational burden across all mutational types related to hypoxia

in pan-cancer studies (62). TP53 mutations prevent apoptosis

and lead tumors into the dynamic cycle of hypoxia (63, 64). The

high mutation rate of TP53 in the high hypoxia group indicated

that TP53 mutations play a pivotal role in the development of

HCC under hypoxia (Figures 5B, C). It has been reported that

SETD2 mutations were more frequently found in the hypoxic

group of kidney tumors (65, 66), and the hypoxic group of HCC

also had more patients with mutant SETD2 in our study

(Figures 5B, C). It is worth noting that patients with both

mutant SETD2 and a hyper-hypoxic status had the worst

prognoses (Figures 5E, F). An enriched drug metabolism-

cytochrome P450 gene set based on the target genes of

hypoxic differential CNV loci indicated that CNVs of

cytochrome P450 genes may enhance drug resistance in

hypoxic HCC, in agreement with previous literature (67). In

our study, the PPAR signaling pathway was enriched in three

analyses, respectively in the GSVA of high and low clustering

groups, 251 DEG enrichment analysis, and CNV loci-related

genes enrichment analysis (Figures 2A, 4B, and 6D).

Downregulation of the PPAR signaling pathway has been

reported to promote tumor growth and the EMT resulting in

metastasis. Therefore, CNVs may promote the tumor growth

and metastasis of HCC by downregulating the PPAR signaling

pathway under hypoxia.

Aberrant methylation of genes affects multiple biological

functions of tumors, such as cell cycle, DNA repair, toxin

catabolism, cell adherence, apoptosis, and angiogenesis (68). In
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our study, hypoxia inhibited or promoted the expression of

various genes through methylation modification of DNA,

including genes related to cholesterol metabolism, p53

signaling, tight junction protein function and ATP-binding

cassette (ABC) transporters, thereby altering tumor

metabolism, cell cycle, DNA repair, cell adherence, and drug

catabolism (Figure 6E). Previous reports indicate that increased

expression of ABCA1 and ABCC1 is positively correlated with

chemotherapy resistance (69–72). In our analysis, ABCA1 and

ABCC1 were methylated under hypoxia, suggesting that hypoxia

increases the number of ABC transporters and promotes drug

resistance in HCC by downregulating the methylation of ABCA1

and ABCC1.

Hypoxia is an essential feature of the TME and is closely

linked to cell proliferation, angiogenesis, metabolism, and tumor

immun i t y ( 73 ) . Our s tudy showed tha t a h i gh

Hypoxia_DEGs_Score was positively correlated with the TIDE

score (Figures 7A and S8A). A high TIDE score indicates that the

patient’s tumor is immunosuppressed, which predicts a poor

response to ICIs treatment (25). The positive correlation

between the Hypoxia_DEGs_Score and the Exclusion score

indicated that hypoxic immunosuppression in HCC was

dominated by immune cell reduction rather than immune

dysfunction (Figures 7A and S8A). The increased infiltration of

TAN, MDSC, and Treg cells indicates the suppression of immune

function and promotion of tumor progression in HCC under

hypoxia (Figures 7A and S8B). Furthermore, TGFB1 and TGFB2

were positively correlated with the Hypoxia_DEGs_Score, further

illustrating the immunosuppressive state induced by hypoxia. We

evaluated the predictive power of Hypoxia_DEGs_Score for

responses to anti-PD-L1 and anti-PD-1 immunotherapy.

Although the data for these assessments were not derive from

HCC cohorts, the results showed that predicting survival time and

treatment response was significantly associated with the

Hypoxia_DEGs_Score (Figures 7B–J). Consistently, patients

with high scores had a poor prognosis in four independent

cohorts (Figures 4C–K, S5A–C). At the same time, the

immunotherapy outcome was also compatible with the TIDE

score and TME status of HCC under aggravated hypoxia

(Figures 7A and S8). These results indicated that patients with

high Hypoxia_DEGs_Score values have a poorer prognosis and

may not benefit from ICIs therapy.

Hypoxia promotes drug resistance through apoptosis,

autophagy, DNA damage, mitochondrial activity, p53, drug efflux,

and an acidic microenvironment (56). Therefore, it is vital to find a

regime that can effectively eliminate tumors in a hypoxic

environment. The pan-cancer analysis was not limited to HCC,

so we analyzed the drug response of HCC under hypoxic stress

based on TCGA-LIHC and ICGC-LIRI-JP. The primary targeted

pathway of effective drugs was cell cycle-related, and the main

targeted pathway of drugs to which the tumors were resistant was

PI3K/Akt signalling (Figure 8A). To confirm these findings, we

placed HCC cell lines in hypoxic and normoxic environments to
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assess their drug sensitivity (Figures 8C and S9C), and the results

were consistent with the predictions. Notably, the response to AKT

inhibitor VIII and RO-3306, which respectively target the PI3K/

mTOR and cell cycle pathways, was consistent with the pan-cancer

drug prediction results, but FH535 and BI-2536 did not appear in

the results. These analyses suggest that patients with higher

Hypoxia_DEGs_Score values may benefit from drugs against cell

cycle signaling pathways rather than those inhibiting the PI3K/

mTOR pathway. It is suggested that Hypoxia_DEGs_Score could

serve as a potential biomarker to guide drug selection for patients.

The advancement of sequencing technology and

understanding of the tumor microenvironment, as well as the

combination of molecular and genetic features, and

clinicopathological factors, offer new hope for precise

prediction and personalized therapy. Therefore, genetic

signatures bridging hypoxia and prognosis offer promising

guidelines for exploring and treating HCC. Our study provides

new possibilities for improving therapy outcomes in

hepatocellular carcinoma by identifying distinguishing hypoxic

states and enabling personalized regimes.

In conclusion, we performed a systematic, comprehensive

analysis of the effects of hypoxia on multiple HCC cohorts based

on the hypoxia signature. The Hypoxia_DEGs_Score prediction

model was constructed, and exhibited an excellent survival

prediction value. It was revealed that hypoxia not only has a

complex effect on the TME, but also has an extensive impact on

genome instability and DNA methylation. A comprehensive

evaluation of the hypoxia status of individual HCC cases will help

us deepen our understanding of the altered biological functions of

HCC and reveal the key role of hypoxia in targeted therapy and

immunotherapy. Hypoxia_DEGs_Score can greatly aid the

development of optimal personalized immunotherapy regimens for

HCC patients, with the potential to greatly improve the prognosis.
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SUPPLEMENTARY FIGURE 1

Overview of study des ign. F lowchart of the steps in the
performed analyses.

SUPPLEMENTARY FIGURE 2

Unsupervised clustering and expression of 15 hypoxia signature genes. (A)
Unsupervised clustering analysis of the 15 genes hypoxia signature with

the comparison of clinicopathological features between three distinct
clusters for ICGC-LIRI-JP. (B, C) The expression of 15 hypoxia signature

genes across distinct hypoxia groups and normal tissue group in TCGA-

LIHC (B) and ICGC-LIRI-JP (C) cohorts. *, P< 0.05; **, P< 0.01; ***, P<
0.001; ****, P< 0.0001.

SUPPLEMENTARY FIGURE 3

Correlation analysis andmutation status of 15 hypoxia signature genes. (A)
Heatmap displays the correlation between 15 hypoxia signature genes

and hypoxia-related signatures. Exhibited values represent correlation

coefficients and were satisfied with FDR< 0.05. (B) The mutation
frequency of 15 hypoxia signature genes in 364 patients with HCC from

TCGA-LIHC cohort. Each column represented individual patients. (C) The
expression of 15 hypoxia signature genes between normal, gain, and loss

of CNV. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.

SUPPLEMENTARY FIGURE 4

Biological characteristics and immune cell infiltration of distinct hypoxia
groups. (A) Heatmap visualizing the GSVA enrichment analysis based on

GO terms shows the activation states of biological pathways in hypoxia
high and low groups. (B) The infiltration of 22 immune cells between

distinct hypoxia groups in TCGA-LIHC cohorts. * P < 0.05; ** P < 0.01; ***
P < 0.001; **** P < 0.0001. Correlation analysis of Hypoxia_DEGs_Score

with HIF1A transcript levels in TCGA (C) and ICGC cohorts (D).

SUPPLEMENTARY FIGURE 5

Survival status in the different hypoxic statuses and multivariate Cox
regression analys is and comprehensive nomogram for the

Hypoxia_DEGs_Score. (A–C) Scatter plots of survival status and risk
curves exhibited prognosis and Hypoxia_DEGs_Score in patients from

TCGA-LIHC (A), ICGC-LIRI-JP (B), and Zhongshan (C) cohorts. (D) Forest
plots showing multivariate Cox regression model analysis in the TCGA-
LIHC and ICGC-LIRI-JP cohorts. The horizontal line represents the 95%

confidence interval (CI) for each group. The vertical dotted line represents
all patients’ hazard ratios (HR). (E) The comprehensive nomogram
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predicting the clinical outcomes of HCC patients with 2- and 3-year OS
based on the TCGA-LIHC cohort.

SUPPLEMENTARY FIGURE 6

Calibration of comprehensive nomogram and landscape of CNV of
different hypoxic statuses. (A, B) Calibration plots for predicting the 2-

year (A) and 3-year (B) OS of HCC patients in the TCGA-LIHC cohort.
Nomogram-predicted probability of survival was plotted on the x-axis,

and actual survival was plotted on the y-axis. (C, D) The landscape of CNV

in high (A) and low (B) Hypoxia_DEGs_Score groups.

SUPPLEMENTARY FIGURE 7

The beta value of DNA methylation differential sites in the different hypoxic

statuses. (A) Heatmap exhibiting the beta value of 1104 DNA methylation
differential sites in high and low Hyposia_DEGs_Score groups. (B) Heatmap

displayed the beta value of top 50 DNAmethylation differential sites in high

and low Hyposia_DEGs_Score groups.

SUPPLEMENTARY FIGURE 8

Changes of the tumor immunemicroenvironment in groups with different

hypoxic statuses. (A–C) Scatterplots showing the correlation of the
Hypoxia_DEGs_Score with the TIDE score (A) , infi ltration of

immunosuppressive cells (B), and expression of TGF-b (C) according to

Spearman’s rank correlation analysis in the TCGA-LIHC and ICGCLIRI-JP
cohorts. Rs is the coefficient of rank correlation.

SUPPLEMENTARY FIGURE 9

Relationship between the Hypoxia_DEGs_Score and drug response. (A)
Correlation between the Hypoxia_DEGs_Score and drug sensitivity based

on Spearman correlation analysis in GDSC. Each column represents a

drug. The brightness of the column indicates the significance of the
correlation. Rs is the coefficient of rank correlation. The height of the

column indicates the correlation between Hypoxia_DEGs_Score and
drug resistance (Rs > 0) or drug sensitivity (Rs< 0). (B) Signaling

pathways targeted by ineffective (red) or effective (blue) drugs
according to the Hypoxia_DEGs_Score. Drug names were listed on the

horizontal axis and the signaling pathway targeted by the drug on the

vertical axis. The bar graph on the right shows the number of drugs
targeting each signaling pathway. (C) Dose-response curves for the the

mean value of cell viability for BI-2536, RO-3306, FH535, and Akt
inhibitor-VIII in the HCC cell lines HepG2 under hypoxic (red, n = 4)

and normoxic (blue, n = 4) conditions.
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