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Background: Aging is an influential risk factor for progression of both
degenerative and oncological diseases of the bone. Osteosarcoma,
considered the most common primary mesenchymal tumor of the bone, is a
worldwide disease with poor 5-year survival. This study investigated the role of
aging-/senescence-induced genes (ASIGs) in contributing to osteosarcoma
diagnosis, prognosis, and therapeutic agent prediction.

Methods: Therapeutically Applicable Research to Generate Effective
Treatments (TARGET), Gene Expression Omnibus (GEO), and The Cancer
Genome Atlas (TCGA) were used to collect relevant gene expression and
clinical data of osteosarcoma and paracancerous tissues. Patients were
clustered by consensus using prognosis-related ASIGs. ssGSEA, ESTIMATE,
and TIMER were used to determine the tumor immune microenvironment
(TIME) of subgroups. Functional analysis of differentially expressed genes
between subgroups, including Gene Ontology (GO), Kyoto Encyclopedia of
Genes and Genomes (KEGG), and gene set variation analyses (GSVAs), was
performed to clarify functional status. Prognostic risk models were constructed
by univariate Cox regression and least absolute shrinkage and selection
operator (LASSO) regression. SCISSOR was used to identify relevant cells in
osteosarcoma single-cell data for different risk groups. The effect of
immunotherapy was predicted based on TIDE scores and chemotherapy
drug sensitivity using CTRP and PRISM.
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Results: Three molecular subgroups were identified based on prognostic
differentially expressed ASIGs. Immunological infiltration levels of the three
groups differed significantly. Based on GO and KEGG analyses, differentially
expressed genes between the three subgroups mainly relate to immune and
aging regulation pathways; GSVA showed substantial variations in multiple
Hallmark pathways among the subgroups. The ASIG risk score built based on
differentially expressed genes can predict patient survival and immune status.
We also developed a nomogram graph to accurately predict prognosis in
combination with clinical characteristics. The correlation between the immune
activation profile of patients and the risk score is discussed. Through single-cell
analysis of the tumor microenvironment, we identified distinct risk-group-
associated cells with significant differences in immune signaling pathways.
Immunotherapeutic efficacy and chemotherapeutic agent screening were
evaluated based on risk score.

Conclusion: Aging-related prognostic genes can distinguish osteosarcoma
molecular subgroups. Our novel aging-associated gene signature risk score
can be used to predict the osteosarcoma immune landscape and prognosis.
Moreover, the risk score correlates with the TIME and provides a reference for

immunotherapy and chemotherapy in terms of osteosarcoma.

KEYWORDS

aging/senescence-induced genes, osteosarcoma, bioinformatic analyses, anticancer
immune cycle, immunotherapy and chemotherapy

Introduction

Osteosarcoma is considered the most common primary solid
malignant tumor of bone and is caused by malignant
mesenchymal cells producing osteoid or immature bone (1).
In the general population, the incidence of osteosarcoma is 2-3
per million per year, and this disease exhibits a predilection for
0-14 years and over 60 years. Men are 1.4 times as likely as
women to be afflicted (2). The etiology of osteosarcoma remains
unknown in most individuals. The connection of osteosarcoma
with the pubertal growth spurt age and maximal growth
locations shows the involvement of fast bone proliferation.
Additionally, radiation causes a small percentage of
osteosarcomas. Alkylating agents may also play some role in
osteosarcoma development. Osteosarcoma is more common in a
variety of well-defined hereditary illnesses linked to germline
mutations of tumor-suppressor genes (TSGs), such as hereditary
retinoblastoma (1) and Li-Fraumeni cancer family syndrome
(3), which are associated with an increased incidence of
osteosarcoma. The pathophysiology of osteosarcoma has not
been clearly elucidated, but many studies have shown that its
pathogenesis is closely related to genetic and hereditary factors,
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and most of the current main treatment modalities require drug
chemotherapy in addition to surgery. Based on the need to
elucidate the pathogenesis and find more effective
chemotherapeutic agents, the screening and identification of
osteosarcoma biomarkers have become a hot topic of research.

Cellular senescence is characterized by the accumulation of
senescence-associated galactosidase glycosidase (SA-f3-gal) and
the expression of the senescence-associated secretory phenotype
(SASP). Several variables, including oxidative stress and DNA
damage, have been associated with cellular senescence (4, 5). The
cellular senescence process is mediated by two well-known
mechanisms, namely, the p53/p21 and Rbl/pl6 pathways;
however, cells can also be regulated by pathways that are not
dependent on p53 (6). In addition, thioredoxin-interacting
protein (TXNIP) can act as another key regulator of cellular
senescence (7). Cellular senescence is connected to a range of
disorders, and the role of cellular senescence in tumor
suppression has become a hot topic of research in recent years
in the field of cancer prevention and treatment (8). Cellular
senescence has an influential function in different stages of
oncogenesis, establishment, and escape (9). A previous study
showed that cancer-associated fibroblast (CAF) senescence is
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closely associated with cancer metastasis (10). Due to the
surrounding inflammatory milieu, CAFs in ascites undergo
cellular senescence with the progression of gastric cancer to
the peritoneum. Furthermore, senescent CAFs continue to emit
senescence-associated proteins, which promote tumor growth by
activating genes that produce senescence-associated proteins
and thereby induce spreading of the cancer to the peritoneum
at a much faster pace. According to other studies, aging boosts
tumor invasion and recurrence (11).

Bioinformatics methods have recently been used to predict
disease target genes and analyze their possible molecular
mechanisms and can thus provide more feasible ideas and
protocols for subsequent trials. The goals of related studies are
to obtain an understanding of the disease pathogenesis and
investigate new target drugs, particularly with the development
of gene chips and high-throughput sequencing technologies.
Researchers in the field of cancer are interested in using aging-/
senescence-induced genes (ASIGs) as diagnostic or prognostic
molecular biomarkers (12, 13). In contrast, the prognostic roles
of ASIGs and their biological functions in osteosarcoma are
unknown. Furthermore, an ASIG signature that can reliably
predict overall survival (OS)-related survival has not been
identified. The goal of this study was to determine whether
these ASIGs are linked to osteosarcoma using mRNA expression
and clinical data from public sources. We also created and
validated a predictive multigene signature.

Materials and methods
Data collection

The Genome Data Commons data portal (https://portal.gdc.
cancer.gov/) provided us with mRNA expression data from
osteosarcoma patients. The complete clinical information of
the patients was downloaded from the Therapeutically
Applicable Research to Generate Effective Treatments
(TARGET) database (https://ocg.cancer.gov/programs/target).
The mRNA expression data and clinical characteristics of
osteosarcoma samples in GSE21257, the mRNA expression
profiles of osteosarcoma and adjacent tissues in GSE99671,
and the single-cell RNA sequencing (scRNA-seq) data of
osteosarcoma in GSE152048 were obtained from the NCBI
Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/
). For the external public cohort, we obtained mRNA expression
data for 265 SARC tumor samples from The Cancer Genome
Atlas (TCGA) (https://portal.gdc.cancer.gov/). All of the clinical
data used in this study can be found in Supplementary Table S1.
Supplementary Table S2 contains the demographic information
and clinical characteristics of the training and validation cohorts.
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We integrated the MSigDB gene sets to establish the
expression patterns related to aging. Specifically, the following
gene sets were previously established experimentally: GOBP cell
aging (M14701), Tang senescence Tp53 targets up (M11850),
WP TCA cycle in senescence (M40058), WP senescence and
autophagy in cancer (M39619), GOBP regulating cellular
senescence (M16568), GOBP positively regulating cellular
aging (M24705), and GOBP replicative senescence (M14683)
(14). These genes are known as ASIGs because they are
upregulated during cellular senescence; they are all listed in
Supplementary Table S3.

scRNA-Seq data analysis

Gene expression data for individual samples were analyzed
using Readl0x() in the Seurat package (v4.1.1) of R software
(v4.2.0). Low-quality cells with <300 detected genes or >10%
mitochondrial genes were removed and normalized by
NormalizeData(), and the top 3,000 highly variable genes were
subsequently identified by FindVariableFeatures(). Batch effects
were removed from all samples using the Harmony package
(v1.0) (15). K-nearest neighbors were calculated using
Harmony-corrected data, and a shared nearest neighbor
(SNN) plot was created. A clustering algorithm was then used
to find the cell clusters. Using the unified manifold
approximation and project (UMAP) dimensionality reduction
technique, the identified clusters were visualized on a 2D map.
To identify the cell clusters, we first used the SingleR package
(v1.10.0) as an auxiliary tool to identify cells and identified
differentially expressed genes (DEGs) with high discriminatory
power between groups using the FindAllMarkers() function in
Seurat with a Wilcoxon rank sum test with Bonferroni
correction. DEGs and well-known cell markers in the
literature were used to annotate cell clusters. Details of the
cellular biomarkers are provided in Supplementary Table S4.
Based on the R package SCISSOR (v2.0.0) (16) developed by Sun
et al,, the key step is to quantify the similarity between single-cell
data and bulk data by measuring the Pearson correlation of each
pair of cells and bulk samples, then optimize the regression
model of the correlation matrix using the sample phenotype, and
select similar cells that are important for a given phenotype with
high confidence. We obtained relevant cells for high- and low-
risk grouping by integrating the expression data of patients in
TARGET-OS and the risk grouping information of patients.
Calculations were performed with default parameters using the
R package infercnv (v1.12.0) with annotated immune cells as a
reference, and clusters were reassigned via the CNV matrix. The
CNV score was calculated by the average of the CNV matrix in
each cluster. Using the R package CellChat (v1.1.3) (17), the
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communication network between cells in the tumor
microenvironment (TME) was analyzed and visualized.

Identification of ASIGs in different cluster
subgroups

In order to evaluate the prognosis-related genes among
ASIGs in osteosarcoma, a combination of univariate Cox
regression analysis and single-gene Kaplan-Meier (KM)
analysis was used, and genes satisfying p< 0.05 were screened.
The results of KM analysis and univariate Cox regression of the
prognosis-related genes in ASIGs are listed in Supplementary
Table S5. Using the STRING database, the protein-protein
interaction (PPI) network was constructed with a confidence
of 0.18 for the above prognostic genes and analyzed in Cytoscape
software. Differential analysis was performed to determine
prognosis-related differentially expressed genes among the
ASIGs. The program “ConsensusClusterPlus” was then used to
perform 500 iterations of consensus clustering using the “pam”
method and Pearson distance based on the expression matrix of
these 22 genes.

TME assessment and immune infiltration
analysis

Tracking the Tumor Immune Phenotype (TIP) (http://biocc.
hrbmu.edu.cn/TIP/) (18), a web-based analysis platform was
used to obtain the activation levels of the seven-step anticancer
immune cycle. The stromal status, immune status, and tumor
purity were assessed for each sample by the ESTIMATE
algorithm (19). This algorithm calculates the stromal and
immune score of the tumor tissue based on specific
characteristics related to stromal and immune cell infiltration
in the tumor tissue to predict the level of infiltrating stromal and
immune cells and infer the purity of tumor. The single sample
gene set enrichment analysis (ssGSEA) approach was then used
to calculate the particular immune cells in the TME.
Supplementary Table S6 lists the genes of immune cells (20)
used by the ssGSEA algorithm. For immune infiltration analysis,
the TIMER and MCPCOUNTER algorithms were used, and the
abundance of APC cells was calculated.

Functional enrichment analysis

The “ClusterProfiler” R package was used to identify
enhanced relevant pathways through Gene Ontology (GO)
analysis and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analysis. The “GSVA” R software package was used
to perform gene set variation analysis (GSVA). The alterations in
signal pathways among the three clusters were investigated using

Frontiers in Immunology

04

10.3389/fimmu.2022.997765

the “Hallmark” gene set collected from the Molecular
Signature Database.

Construction of a prognostic ASIG
signature

We used the R package “survival” to perform univariate Cox
analysis of DEGs to identify ASIGs with prognostic value. We
then utilized the “glmnet” R package to perform least absolute
shrinkage and selection operator (LASSO) regression of the
prognostic genes. Four genes were then discovered and used to
create a risk score. The risk score was calculated using the
following formula: Risk score = (-0.1913) * EVI2B +
(-0.1043) * AIMI + (-0.1502) * PRKACB + (0.2488) *
TCEA3. To define the threshold values, we used cutoff values
for receiver operating characteristic (ROC) curves based on the
ASIG risk scores and split the patients into two different risk
score groups. The survival curves were created by Kaplan-Meier
(KM) analysis and the log rank test using the “survival” R
package to assess the accuracy of the prediction, and ROC
curves for the risk scores were constructed using the
“timeROC” R package.

Osteosarcoma cell lines and cell culture

The osteoblast cell line (hFOB1.19) and osteosarcoma cell
lines (Saos-2, U20S, and HOS) were obtained from the
American Type Culture Collection (ATCC, Manassas, VA,
USA). The cell lines were cultured in Dulbecco’s modified
Eagle’s medium (DMEM) containing 10% fetal bovine serum
(FBS) and 1% penicillin/streptomycin. All of the cell lines were
grown in an incubator at 37°C with 5% CO,.

RNA extraction and quantitative real-
time polymerase chain reaction

Total RNA was extracted from the cell lines using TRIzol
reagent. Reverse transcription was performed using the
Revertaid First-Strand cDNA Synthesis Kit (Thermo Scientific,
Cat. No. k1622). The RNA concentration was adjusted using an
UltraSYBR mixture, and the samples were then reacted in a
Roche real-time quantitative PCR instrument. The primers and
their sequences were as follows:

EVI2B-F, 5-AAGCAGTCACAGCCTACCTTA-3’; EVI2B-R,
5-TGAATTGTGTTGGTTGACCCAAA-3’; AIMI-F, 5-GACAG
TGACCACTAAAGTGACC-3’; AIM1-R, 5-GTGGCAGTGTTGC
CTTTGT-3; PRKACB-F, 5-CCATGCACGGTTCTATGCAG-3};
PRKACB-R, 5-GTCTGTGACCTGGATATAGCCTT-3% TCEA3-
F, 5-AAGAGCACGGACATGAAGTACC-3’; TCEA3-R, 5-CTC
TGCCGTCATCTTGGCTA-3’; GAPDH-F, 5 -ACAACTTTG
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GTATCGTGGAAGG-3" and GAPDH-R, 5-GCCATCACGCC
ACAGTTTC-3.

We used GAPDH as an internal reference and calculated the
relative mRNA expression level using the 27" method. This
part of the experiment was repeated three times.

Prediction of drug sensitivity

The Cancer Therapeutics Response Portal (CTRP, https://
portals.broadinstitute.org/ctrp) and the PRISM database
(https://depmap.org/portal/prism/) were used to collect drug
sensitivity data for cancer cell lines (CCLs). The area under
the ROC curve (AUC) value of each drug was calculated for
osteosarcoma patients by the ridge regression method using the
calcPhenotype function in the R package “pRRophetic” based on
CCLs in the CTRP and PRISM databases. Lower AUC values
suggested heightened sensitivity to therapy. Subsequently, the
difference in AUC values between different risk scoring groups
and the correlation with the risk score was evaluated.
Connectivity map (CMap) analysis is used to analyze the
similar effects of compounds on cell line processing and find
drugs to treat diseases (21). Based on the differential genes
between the results of tumor and adjacent tissue samples in
GSE99671, the CMap score of the drug was obtained using the
CLUE (https://clue.io/query). CMap score is a standardized
quantity ranging from -100 to 100 and is sorted by
“connectivity score.” Negative values indicate the gene
expression pattern of a specific perturbation opposite to the
disease-specific expression pattern, indicating the potential
therapeutic effect of the perturbation on the disease. Drugs
with CMap score >90 or< —90 are generally used for further
research (22). Supplementary Table S7 lists the genes utilized for
CMap analysis and the CMap scores of all drugs.

Statistical analysis

In this study, statistical operation and visualization were
performed using R 4.1.1 software. Based on the recommended
methods, the statistical analyses of different datasets were
performed using different packages. All the tests were bilateral,
and p<0.05 was considered to indicate statistical significance in
all the tests.

Results

Identification of three molecular
subtypes based on ASIGs

We performed KM analysis and univariate Cox regression
analysis to investigate 64 genes associated with prognosis in the
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TARGET-OS data (Figure 1A). Using STRING, the interaction
network of these 64 genes was created and revealed that these 64
genes may interact with one another (Figure 1B). We
downloaded data from Gene Expression Omnibus (GEO)
encompassing samples of cancer tissues and paracancerous
tissues to analyze the DEGs between the two tissues. For
GSE99671, volcano plots and heatmaps were used to illustrate
22 DEGs among 64 prognosis-related genes (Figures 1C, D).
Pearson’s correlation coefficient was utilized to build a
coexpression network of 22 prognosis-related DEGs, and these
22 genes were confirmed to be coexpressed in bone
malignancies, and according to the expression patterns of
these genes, these 22 prognosis-related genes can be clustered
into four gene clusters (Figure 1E). The osteosarcoma patients in
the training cohort were clustered into three groups using a
consensus clustering method based on the prognostically
relevant DEGs identified in GSE99671 and TARGET-OS. With
K = 3, 49 of the patients were assigned to cluster A, and 14 and
22 patients were assigned to clusters B and C, respectively
(Figures 1F-H). Survival was similarly well discriminated
between the three subgroups (p = 0.003) (Figure 1I). The
patients in cluster B had a lower overall survival rate than
those in clusters A and C, whereas the patients in cluster C
had the highest overall survival rate. Principal component
analysis (PCA) clearly distinguished the three subgroups
(Figure 1J). The expression levels of ASIGs in the three
subtypes are shown in a heatmap and visualized using box
plots, which revealed considerable variations in expression
among the three clusters (Figures 1K, L).

Immune status of three molecular
subtypes and functional analysis

The tumor immune microenvironment (TIME) includes
initiation of the anticancer immunity cycle, recruitment of
immune cells, expression of immune checkpoint inhibitors
(ICIs) and effector genes, and presentation of a T-cell-
associated inflammatory signature (TIS). We then explored the
immune differences between the three molecular subtypes. The
immune cell distribution obtained by the ssGSEA algorithm was
significantly different among the three clusters and is presented
in a heatmap of 28 immune cells (Figure 2A). The scores for 28
immune cells in cluster B were significantly lower than those in
clusters A and C, reflecting a worse immune status. By
comparing the 28 immune cells between the three clusters, we
found that 25 were significantly different. Among the 28
immune cells in cluster A, 7, including immature dendritic
cell, monocyte, neutrophil, and type 17 T-helper cell, were the
most infiltrated among the three clusters (Figure 2B), confirming
that the patients in cluster A may exhibit an inflammatory
phenotype, corresponding to better immune status. According
to the ESTIMATE algorithm, cluster B had the lowest immune
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Prognostic gene screening and consensus clustering. (A) Univariate Cox regression of ASIGs for the screening of prognosis-related genes.
(B) Construction of a PPl network of 64 prognosis-related genes using STRING. (C) Differential expression analysis of osteosarcoma samples

and adjacent samples in GSE99671 (p-value< 0.05 and log2FC > 0.25).

(D) Heatmap of 22 prognosis-related differences in ASIGs in GSE99671.

(E) Coexpression network of 22 prognosis-related genes in TARGET-OS (p-value< 0.05 and correlation > 0.3). (F) Heatmap of the consensus
matrices for k = 3. (G, H) Consensus cumulative distribution function (CDF) plot for 22 ASIGs in TARGET-OS. () Kaplan—Meier curves based on
three clusters in the TARGET-OS. (J) Principal component analysis (PCA) of the three subgroups. (K, L) Heatmap and box plot of 22
prognosisrelated ASIGs in the three subgroups (*p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001).

score, the lowest stromal score, the highest tumor purity, and the
worst overall survival (Figure 2C). In contrast, although the
immunological score of cluster C was lower than that of cluster
A, cluster C had the highest stromal score, a lower percentage of
tumor metastasis, and thus the best overall patient survival
(Figure 2D). We then evaluated the correlations of the 22
prognosis-related ASIGs used for clustering with 28 immune
cells and found that 21 of the included genes were significantly
associated with at least one immune cell (Figure 2E). We then
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explored the DEGs between the three clusters and performed
functional enrichment analysis.

By comparing the DEGs between the three clusters (|
DEG_logFC| > 0.25, DEG_p value< 0.01), we found that 56
genes were fully differentially expressed between all three
clusters (Figure 2F). A GO analysis revealed that the
functions of these DEGs were enriched for immune
activation, immune cell proliferation, and cell adhesion
regulation (Figure 2G). A KEGG analysis also reflected
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FIGURE 2

EGFR tyrosine kinase inhibitor resistance

Immune status and functional analysis of DEGs in the three subgroups. (A, B) Heatmap and box plot of the statistical analysis of the ssGSEA
results. (C) Estimate evaluation, immune status, stromal status, and tumor purity calculated for the three clusters using the ESTIMATE algorithm.
(D) Proportion of patients with metastasis in the three subgroups. (E) Correlation between 22 prognosis-related ASIGs and 28 immune cells.

(F) DEGs in the three subgroups (|log2FC|>0.25, p-value<0.01). (G, H) Network diagram constructed from the GO and KEGG analysis of DEGs.
() Heatmap of GSVA results of the hallmark pathway (ns, not significant, *p< 0.05, ** p< 0.01, *** p< 0.001, ****p< 0.0001).

several pathways related to cancer and immunity, including the
MAPK and mTOR signaling pathways, longevity regulatory
pathway, and platelet activation (Figure 2H). We then
identified hallmark pathways that were significantly different
between the three subgroups by GSVA analysis, and these
included the P53 pathway, KRAS pathway, glycolysis, and
inflammatory response-related pathways. We demonstrated
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the existence of significant differences among multiple
cancer-related pathways based on the three molecular
subtypes of ASIGs, which reflected the intrinsic differences in
signaling pathways among these three subtypes (Figure 2I). In
summary, the expression of ASIGs is linked to the immune
response and the modulation of cancer-related pathways,
which are related to the survival state of patients.
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Development of ASIG subgroup risk
scores and validation

The predictive ability of the risk score was assessed. We used
Cox univariate regression to screen for 14 prognosis-related
genes based on the DEGs in the three subgroups (Figure 3A). A
LASSO analysis was then performed in the TARGET-OS cohort,
and four genes that may be employed in model creation were
evaluated to determine their optimal value for building a risk
model (Figures 3B, C). We also performed quantitative PCR
(qQPCR) to measure the mRNA expression levels of the four
genes in different cell lines. The four osteosarcoma cell lines
generally exhibited higher TCEA3 expression and lower
PRKACB, AIMI, and EVI2B compared with the osteoblast cell
line (hFOB1.19) (Figure 3D). The risk score was then calculated
using the following equation:

Risk score = (—0.1913) % EVI2B + ( — 0.1043) % AIM1

+(—0.1502) % PRKACB + (0.2488) s TCEA3

According to the KM analysis, all four genes independently
predicted overall survival in osteosarcoma, which demonstrated
that they are all prognosis-related genes in osteosarcoma
(Supplementary Figure S1A). Patients were split into high- and
low-risk groups depending on the cutoft value of the risk model.
Figure 3E depicts the risk scores, patient survival, and inter-
cluster prognostic markers. According to the overall survival
curves, patients with high-risk scores showed worse survival
than those with low-risk scores (p< 0.0001) (Figure 3F). We next
assessed the predictive ability of the risk model, and a time-
correlated ROC analysis revealed that the constructed risk model
had strong predictive power at 5 years, with AUCs of 0.736,
0.739, and 0.724 (Figure 3G). We also compared the scores of the
three clusters of patients using the Sankey diagram and found
that the high-risk group contained all the patients in cluster B,
nearly half of those in cluster A, and only a few of the patients in
cluster C. An analysis of the grouping of risk score versus patient
survival status showed that a higher number of the patients in
the high-risk score group were at a death state (Figure 3H). The
ESTIMATE algorithm revealed that the low-risk group had
3.8¢-09),
immunological scores (8.4e—07), and ESTIMATE scores (p =
8.2e-10), and lower tumor purity (Figure 3I). We found that the
risk score of the three clusters corresponded to the survival of

significantly higher stromal scores (p =

each cluster, and significant differences were found among the
clusters, implying that our risk ratings were better able to
represent the subgroups in the three clusters (Figure 3]). These
findings suggest that our risk score model based on the
prognostic genes of the ASIG subgroup can well predict the
prognosis of osteosarcoma patients and distinguish differences
in the TME.

We further validated the risk score model with two
validation cohorts. Using the abovementioned risk score
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calculation, the patients with osteosarcoma in the GEO dataset
GSE21257 were split into two different risk score groups. The
associations among risk score, patient survival rate, and
prognostic factor expression in different groups were also
investigated (Supplementary Figures S1B, E). The survival
study revealed that the high-risk group had a worse prognosis
(p =0.0099) (Supplementary Figure S1C). According to the ROC
analysis (Supplementary Figure S1D), the AUC values of the risk
scores at 1, 3 and 5 years were 0.776, 0.699 and 0.631,
respectively. We screened a sample of 56 individuals from
TCGA-SARC containing connective tissue from the
extremities, trunk, and pelvis, and bone tissue because
osteosarcoma occurs in the connective tissue of the extremities
and trunk (Supplementary Table S1). The patients were split into
high- and low-risk groups according to the risk score. The
overall survival of the high-risk group was poor (p = 0.027)
(Supplementary Figure S1F), and the AUC analysis showed that
the risk score had good predictive value (Supplementary
Figure S1G).

Development and calibration of
columnar charts integrating clinical
information and risk scores

We combined the patients’ clinical characteristics to create
line graphs and more accurately estimate the patients’ prognosis.
First, we performed multivariate Cox regression analysis in the
TARGET-OS cohort to determine that the risk score based on
the four candidate genes is an independent risk factor relative to
other clinical indicators (p< 0.001) (Figure 4A). The C-index
reached 0.81 (95% CI, 0.772-0.848), demonstrating the high
precision of the model. We then constructed a nomogram and
scored the prognosis of patients according to their clinical
indicators and risk scores (Figure 4B). In addition, we created
an R Shiny app webpage (https://rshinyanalysisfigure.shinyapps.
io/dynnomapp/) to enable interactive visualization for more
convenient and precise patient prognosis prediction. The
overall survival predicted by the nomogram was almost
identical to the survival of the training (TARGET-OS) and
validation (GSE21257) cohorts at 1, 3, and 5 years
(Figures 4C, D). These results suggest that our developed
comprehensive nomogram could precisely predict the
prognosis of osteosarcoma patients.

Association analysis between risk score
and TIME and immune checkpoint
blockade (ICB) response

Understanding the diversity of the TIME could effectively

guide tumor immunotherapy. As a result, we examined the
relationships between risk ratings based on ASIG clusters and
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FIGURE 3

Construction of the risk model with the TARGET-OS cohort and validation with the validation cohort. (A) Through univariate Cox regression, the
prognostic DEGs in the three clusters were screened. (B, C) LASSO regression analysis with optimal lambda. (D) Relative mMRNA expression of
PRKACB, AIM1, EVI2B and TCEA3 in different cell lines by gPCR. (*p < 0.05, **p < 0.01, ***p < 0.001. Not labeled: no statistical significance
compared to hFOB 1.19). (E) Risk scores constructed from candidate genes, patient survival status, and expression heatmaps of the four
candidate genes. (F) Survival curve of osteosarcoma patients in different risk groups. (G) ROC curve of the risk score model based on four
candidate genes. (H) Relationship of the risk score grouping and survival status of the patients in the three subgroups. (I) ESTIMATE algorithm
results for different risk groups. (J) Distribution of risk scores in the three subgroups.

the cancer immune cycle. Apparently, almost all seven processes,
including cancer cell antigen release and presentation (steps 1
and 2), initiation and activation (step 3), and multiple immune
cell recruitment (step 4), exhibited substantial inverse
relationships with risk scores. Based on these results, we
propose that high-risk patients with osteosarcoma may have
tumors at an immunosuppressive state, whereas a low risk score
for the inflammatory phenotype may indicate increased
responsiveness to immune checkpoint blockade (ICB) therapy.
The risk score was inversely related to the enrichment of some
positive signals associated with immunotherapy [e.g., interferon
(IFN) signals], but more predictive pathways mediating
immunotherapy were positively related to risk scores, implying
that immunotherapy may still be effective for high-risk patients
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(Figure 5A). The T-cell-associated inflammatory signature (TIS)
score was also found to be strongly and inversely connected with
the risk score (Figure 5B). Using the ssGSEA algorithm, the 28
immune cells were found to be lower in the high-risk group,
indicating an immune “cold” phenotype, and higher in the low-
risk group, indicating an immune “hot” phenotype. The risk
score was inversely linked with most immune checkpoints
(ICPs), as shown in Figures 5C, D, implying an immune
escape mechanism and a better immunotherapeutic outcome
for tumor cells in the low-risk group. This finding suggests that
osteosarcoma patients in the low-risk group may still benefit
from immunotherapy. In contrast, we assessed the relative
abundance of 22 tumor-infiltrating immune cells (TIICs)
(Figures 5E, F) in osteosarcoma patients in the high-risk group
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Development of a nomogram integrating clinical information. (A) Multivariate Cox analysis integrating clinical information and the risk score. (B)
Nomogram for evaluating the 1- to 5-year overall survival of osteosarcoma patients. (C) Nomogram calibration for the training cohort (TARGET-
OS) over 1-5 years. (D) Nomogram calibration for the verification cohort (GSE21257) over 1-5 years.

by considering the inverse correlation feature with the TIS score
and further evaluated the correlation between innate immunity
(Figures 5G, H) and risk score, which indicated that infiltrating
immune cells in the high-risk group are associated with a lack of
innate immune activation. We showed a significant inverse
correlation between APC cell infiltration and the risk score
using multiple algorithms (Figure 5I). Similar results were
obtained with the validation cohort (Supplementary Figure
S2). The above research results suggest that patients in the
high-risk group may have more immunotherapy possibilities if
a strategy to induce APCs in the TME to promote strong innate
signaling could indeed help improve the cross-initiation of
tumor antigen-specific CD8+ T cells by increasing chemokine
production for effector T-cell trafficking. In contrast, the
inflammatory profile of low-risk osteosarcoma patients may
still be susceptible to immunotherapy.

TME differences in cells associated with
different risk scores

We next sought to clarify the cell types associated with
different risk score phenotypes within the TME. Single-cell
sequencing data of 11 osteosarcoma patients, including 7
primary patients, 2 recurrent patients, and 2 lung metastasis
patients, were downloaded from GSE152048. After quality

Frontiers in Immunology

10

control and elimination of sample batches, the filtered cells
were clustered and annotated as nine major cell clusters,
including osteosarcoma cells, macrophages, monocytes,
endothelial cells, pericytes, mesenchymal stem cells, T cells, B
cells, and myoblasts (Figures 6A, B). We used the SCISSOR
algorithm (16) developed by Sun et al. with a combination of
sequencing data of TARGET-OS patients with risk grouping
information of the corresponding patients to clarify the cells
associated with different risk phenotypes (Figure 6A). Using
infercnv software with immune cells as a reference, a CNV score
was calculated for individual cells (Figure 6A). Not surprisingly,
more high-risk-related cells were identified in patient samples
with recurrence and metastasis (Figure 6C). In the high-risk
group, higher exhaustion and cell proliferation scores were
found for T cells. However, the T-cell cytotoxicity scores did
not appear to be significantly different. This finding
demonstrated that T cells in the TME among patients in the
high-risk groups may still have some proliferative potential, but
immune escape occurs due to T-cell exhaustion-related
mechanisms. Furthermore, the CNV score of osteosarcoma
cells was significantly higher in the high-risk group than in the
low-risk group, implying that the high-risk patients had a higher
degree of tumor cell malignancy in osteosarcoma (Figure 6D).
We used CellChat to infer the overall intercellular interactions
based on ligand receptor signaling to characterize the cell
interactions between the high- and low-risk groups.
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Correlation analysis between the risk score based on the ASIG subgroup and the TME and ICPs. (A) Correlation between the risk score
constructed based on the four candidate genes and the tumor immunity cycle (right) and immunotherapy prediction pathways (left).

(B) Correlation between T-cell score and risk score. (C) Distinctions in 28 immune cell infiltration levels between different risk score groups
determined using the ssGSEA algorithm (*p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001). (D) Correlation analysis between the risk score
constructed based on the four candidate genes and ICP. (E, F) Heatmap and correlation analysis between risk scores constructed based on
the four candidate genes and tumor-infiltrating lymphocytes (TILs). (G, H) Heatmap of risk scores and innate immune pathways and
correlation analysis. (I) The correlation between APC cell infiltration and risk score was assessed using three algorithms (TIMER,
MCPCOUNTER, and ssGSEA).
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Surprisingly, we found that the cells in the high-risk group
generally had less intercellular interactions (Figure 6E).
Although communication among tumor cells, macrophages,
and T cells is important in the TME, changes in
communication among these cells in the TIME may be more
important (Figure 6F). Moreover, we found enrichment of low-
risk-related cells to the highest antigen presentation signal,
validating the inhibition of the antigen presentation-related
signaling pathway of APC cells in our previous high-risk
group at the cellular level. The high-risk group was enriched
with the MIF signaling pathway, the CLEC signaling pathway,
which was previously reported to be associated with
osteosarcoma growth and metastasis, and the vascular
endothelial growth factor (VEGF) signaling pathway, which
promotes blood vessel growth (Figures 6G, H). Overall, these
results confirm the association of osteosarcoma immune activity
and the tumor growth profile with risk-score-related groups
based on DEGs related to senescence.

Identification of potential therapeutic
drugs for treatment of the high-risk-
score group

We applied immunotherapy to predict the treatment effects
and drug prediction based on risk scores. ICB therapy for cancer
can have long-term clinical improvements, but only some patients
respond to this treatment. Jiang et al. created TIDE algorithms
(23) that integrate expression indicators of T-cell dysfunction and
T-cell rejection to assess tumor immune evasion in the ability to
forecast ICB response. Tumor cells with higher TIDE scores are
more likely to trigger immunological escape, implying a reduced
response rate to ICI therapy. Our outcomes indicated that the
TIDE score was significantly lower in the low-risk group; that is,
the low-risk group had greater immunotherapeutic potential,
which supports our hypothesis. Unsurprisingly, the low-risk
group exhibited greater T-cell dysfunction, whereas the high-
risk group had higher T-cell rejection, which implies the existence
of two distinct T-cell functional status phenotypes in the different
risk groups, T-cell dysfunction and T-cell rejection. Based on the
CD274 score, the low-risk group might have more options for PD-
L1 immunotherapy (Figure 7A). For the high-risk group, we
constructed a drug response prediction model using the PRISM
and CTRP datasets. Hundreds of CCLs can be found in these two
databases, which include expression and drug sensitivity
information. Therefore, we built a drug response prediction
model using these two databases, which include samples from
hematopoietic, lymphoid tissue and cell lines, and removed
compounds containing NA records. Finally, we used 680 CCLs
(including 354 compounds) and 480 CCLs (including 1,285
compounds) from the CTRP and PRISM datasets, respectively,
for subsequent analysis. Following the flow chart, we performed
drug sensitivity prediction with TARGET-OS and GSE21257 and
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performed analyses using CTRP and PRISM, respectively
(Figure 7B). Drug response analyses were performed for the
different risk groups, and differences were assessed to identify
compounds in the high-risk category with lower AUC estimations
(CTRP: log2FC > 0.01; PRISM: log2FC > 0.005). We then
performed Spearman correlation analysis of the AUC values
with risk scores and selected derived compounds that exhibited
a negative correlation with risk scores (CTRP: R< —0.4; PRISM:
R< -0.33). Using TARGET-OS and GSE21257 with the CTRP
dataset, we obtained 40 compounds, and using PRISM, we
obtained 62 compounds, all of which had lower AUC estimates
in the high-risk-score group and showed a significant inverse
relation with the risk score (Figures 7C, D). Compounds with gene
expression patterns that were opposite to the osteosarcoma
expression patterns were identified through CMap analysis
using cancer and paracancerous tissue data from GSE99671. We
selected a subset of compounds with CMap scores< —90 and
found one compound in each of the CTRP and PRISM datasets,
including parbendazole and flubendazole, both of which had
CMap scores< —95 (Figures 7E, F). In conclusion, evidence
from multiple datasets and drug sensitivity estimates from
multiple databases indicated that both parbendazole and
flubendazole were potentially beneficial for osteosarcoma
patients with high risk scores.

Discussion

In diploid cells, cellular senescence, the occurrence of which
was first described in the 1960s (24), is a persistent cell cycle
arrest that limits their proliferative life span. This biological
clock is triggered by the continual shortening of telomeres that
occurs with each cell division and is a physiological reaction to
avoid genomic instability and hence DNA damage build-up (25).
Replicative senescence is the currently used term for this process.
Senescent cells can accumulate during aging and at locations
involved in age-related diseases, such as osteoarthritis (26) and
atherosclerosis (27), which disrupts the normal physiology of
tissues and leads to gradual functional degradation, even causing
secondary damage to the body (28-30). Premature senescence is
a term used to describe an accelerated senescence response in
diploid cells that is not caused by telomere shortening (31). As
soon as cells are exposed to certain insults, such as genotoxic
stress or metabolic shock, as a result of culture conditions, the
senescence response begins. Senescence can also be induced by
oncogenic stress, which is caused by the overexpression of
specific oncogenes or the deletion of TSGs in primary and
tumor cells (32). Senescence has been observed in vivo in a
number of malignancies and halts tumor development and
progression. Senescence appears to be a strong anticancer
mechanism due to its antiproliferative properties. The tumor-
suppressive effect of senescence has cleared the way for cancer
therapies that increase senescence, a procedure known as pro-
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senescence therapy for cancer. Despite their participation in a
number of clinical illnesses, senescent cells are essential in
physiological processes such as embryogenesis, tissue
remodeling, and tissue repair (33). However, the involvement
of senescence in the development, management, and prognosis
of osteosarcoma remains unknown. We explored the expression
of ASIGs in osteosarcoma tumor tissues and their relationships
with osteosarcoma in the current investigation. First, a unique
prognostic model incorporating four DEGs (EVI2B, AIMI,
PRKACB, and TCEA3) belonging to ASIG subgroups was
built and validated. Immune-related pathways were found to
be involved in functional studies.

Although the processes driving tumor susceptibility to ASIGs
have received much attention in recent years, the possible
regulation of tumor immunity by ASIGs has remained a
mystery. We found that many immune-related biological
processes and pathways were prominent in GO analyses based
on DEGs between different risk groups. It is reasonable to believe
that ASIGs are associated with tumor immunity. Immune
dysregulation is a common symptom of malignancies. In the
TME, cellular senescence frequently triggers an immunological
response (34), and immune cell infiltration promotes tumor
progression (35). However, the significance of ARGs in immune
cell modulation in osteosarcoma is uncertain. According to this
study, osteosarcoma patients in the low-risk group may still
benefit from immunotherapy. In contrast, we assessed the
relative abundance of 22 TIICs in osteosarcoma patients in the
high-risk group considering the inverse correlation feature with
the TIS score and further evaluated the correlation between innate
immunity and risk score, which indicated that infiltrating immune
cells in the high-risk group are related to a lack of innate immune
activation. We showed a significant inverse correlation between
APC cell infiltration and the risk score using multiple algorithms.
The above research results suggest that patients in the high-risk
group may have more immunotherapy possibilities if a strategy to
induce APCs in the TME to promote strong innate signaling could
indeed help improve the cross-initiation of tumor antigen-specific
CD8+ T cells by increasing chemokine production for effector T-
cell trafficking. In contrast, the inflammatory profile of low-risk
osteosarcoma patients may still be susceptible to immunotherapy.

Tumor cells, inflammatory cells, immune cells, mesenchymal
stem cells, endothelial cells, and tumor-associated fibroblasts
comprise the TME, which plays a different function in the
proliferation, metastasis, and treatment resistance of tumor cells.
Immunosuppression has been discovered to be common in the
TME due to the lack of antigens in tumor cells and the lack of
immunosuppression produced by immune system suppressive
signaling pathways such as PD-1/PD-L1 and cytotoxic T-
lymphocyte-associated antigen-4 (CTLA-4) (36). In addition,
tumor cells alter infiltrating immune cells by secreting and
releasing immunosuppressive substances such as transforming
growth factor, interleukin-2, interleukin-10, and vascular
endothelial growth factor into the microenvironment, which
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impede their antitumor activities (37). Furthermore, aberrant
metabolic patterns amplify the immunosuppressive effects of the
TME (38). Previous research has found that aging can cause
comparable immune evasion. BRAFV600E mutant melanocytic
nevi, for example, undergo senescence but are immune
suppressed, which allows their accumulation during aging in
humans (39). Additionally, when premalignant hepatocytes are
not removed by the immune system after NrasG12 V-induced
senescence, immature suppressive myeloid cells can be recruited,
which restricts NK-cell activity and encourages hepatocellular
carcinoma (HCC) progression (40). In this study, we observed
that the high-risk group had higher T-cell depletion scores,
reduced intercellular ligand-receptor communication, and
weaker cellular antigen-presentation signaling using single-cell
data analysis. As a result, we believe that aging-related genes
reduce tumor immunity by boosting T-cell depletion and lowering
cellular antigen presentation signals.

This study has several limitations. First, we built and evaluated
our prognostic model using retrospective data from public
databases. To confirm its clinical value, more prospective real-
world evidence is needed. Second, the intrinsic shortcoming of
constructing a prognostic model based solely on a single signature is
inescapable because many significant prognostic genes in
osteosarcoma may have been ignored. Third, in this study, cells
associated with high and low risks were obtained through the
combined analysis of RNA transcriptome data and single-cell data.
More sample data from different risk patients are still needed to
verify the reliability of this analysis. Furthermore, the association
between risk score and immune response, and the outcomes of drug
sensitivity prediction, needs to be studied experimentally.

In conclusion, aging-related prognostic genes can
distinguish molecular subgroups of osteosarcoma. An
innovative aging-related gene signature risk score can be
utilized to predict prognosis. Moreover, the risk score was
found to be linked to the TIME and was used to help navigate
patient immunotherapy and chemotherapy in osteosarcoma.
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