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Background: Aging is an influential risk factor for progression of both

degenerative and oncological diseases of the bone. Osteosarcoma,

considered the most common primary mesenchymal tumor of the bone, is a

worldwide disease with poor 5-year survival. This study investigated the role of

aging-/senescence-induced genes (ASIGs) in contributing to osteosarcoma

diagnosis, prognosis, and therapeutic agent prediction.

Methods: Therapeutically Applicable Research to Generate Effective

Treatments (TARGET), Gene Expression Omnibus (GEO), and The Cancer

Genome Atlas (TCGA) were used to collect relevant gene expression and

clinical data of osteosarcoma and paracancerous tissues. Patients were

clustered by consensus using prognosis-related ASIGs. ssGSEA, ESTIMATE,

and TIMER were used to determine the tumor immune microenvironment

(TIME) of subgroups. Functional analysis of differentially expressed genes

between subgroups, including Gene Ontology (GO), Kyoto Encyclopedia of

Genes and Genomes (KEGG), and gene set variation analyses (GSVAs), was

performed to clarify functional status. Prognostic risk models were constructed

by univariate Cox regression and least absolute shrinkage and selection

operator (LASSO) regression. SCISSOR was used to identify relevant cells in

osteosarcoma single-cell data for different risk groups. The effect of

immunotherapy was predicted based on TIDE scores and chemotherapy

drug sensitivity using CTRP and PRISM.
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Results: Three molecular subgroups were identified based on prognostic

differentially expressed ASIGs. Immunological infiltration levels of the three

groups differed significantly. Based on GO and KEGG analyses, differentially

expressed genes between the three subgroups mainly relate to immune and

aging regulation pathways; GSVA showed substantial variations in multiple

Hallmark pathways among the subgroups. The ASIG risk score built based on

differentially expressed genes can predict patient survival and immune status.

We also developed a nomogram graph to accurately predict prognosis in

combination with clinical characteristics. The correlation between the immune

activation profile of patients and the risk score is discussed. Through single-cell

analysis of the tumor microenvironment, we identified distinct risk-group-

associated cells with significant differences in immune signaling pathways.

Immunotherapeutic efficacy and chemotherapeutic agent screening were

evaluated based on risk score.

Conclusion: Aging-related prognostic genes can distinguish osteosarcoma

molecular subgroups. Our novel aging-associated gene signature risk score

can be used to predict the osteosarcoma immune landscape and prognosis.

Moreover, the risk score correlates with the TIME and provides a reference for

immunotherapy and chemotherapy in terms of osteosarcoma.
KEYWORDS
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Introduction

Osteosarcoma is considered the most common primary solid

malignant tumor of bone and is caused by malignant

mesenchymal cells producing osteoid or immature bone (1).

In the general population, the incidence of osteosarcoma is 2–3

per million per year, and this disease exhibits a predilection for

0–14 years and over 60 years. Men are 1.4 times as likely as

women to be afflicted (2). The etiology of osteosarcoma remains

unknown in most individuals. The connection of osteosarcoma

with the pubertal growth spurt age and maximal growth

locations shows the involvement of fast bone proliferation.

Additionally, radiation causes a small percentage of

osteosarcomas. Alkylating agents may also play some role in

osteosarcoma development. Osteosarcoma is more common in a

variety of well-defined hereditary illnesses linked to germline

mutations of tumor-suppressor genes (TSGs), such as hereditary

retinoblastoma (1) and Li–Fraumeni cancer family syndrome

(3), which are associated with an increased incidence of

osteosarcoma. The pathophysiology of osteosarcoma has not

been clearly elucidated, but many studies have shown that its

pathogenesis is closely related to genetic and hereditary factors,
02
and most of the current main treatment modalities require drug

chemotherapy in addition to surgery. Based on the need to

elucidate the pathogenesis and find more effective

chemotherapeutic agents, the screening and identification of

osteosarcoma biomarkers have become a hot topic of research.

Cellular senescence is characterized by the accumulation of

senescence-associated galactosidase glycosidase (SA-b-gal) and
the expression of the senescence-associated secretory phenotype

(SASP). Several variables, including oxidative stress and DNA

damage, have been associated with cellular senescence (4, 5). The

cellular senescence process is mediated by two well-known

mechanisms, namely, the p53/p21 and Rb1/p16 pathways;

however, cells can also be regulated by pathways that are not

dependent on p53 (6). In addition, thioredoxin-interacting

protein (TXNIP) can act as another key regulator of cellular

senescence (7). Cellular senescence is connected to a range of

disorders, and the role of cellular senescence in tumor

suppression has become a hot topic of research in recent years

in the field of cancer prevention and treatment (8). Cellular

senescence has an influential function in different stages of

oncogenesis, establishment, and escape (9). A previous study

showed that cancer-associated fibroblast (CAF) senescence is
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closely associated with cancer metastasis (10). Due to the

surrounding inflammatory milieu, CAFs in ascites undergo

cellular senescence with the progression of gastric cancer to

the peritoneum. Furthermore, senescent CAFs continue to emit

senescence-associated proteins, which promote tumor growth by

activating genes that produce senescence-associated proteins

and thereby induce spreading of the cancer to the peritoneum

at a much faster pace. According to other studies, aging boosts

tumor invasion and recurrence (11).

Bioinformatics methods have recently been used to predict

disease target genes and analyze their possible molecular

mechanisms and can thus provide more feasible ideas and

protocols for subsequent trials. The goals of related studies are

to obtain an understanding of the disease pathogenesis and

investigate new target drugs, particularly with the development

of gene chips and high-throughput sequencing technologies.

Researchers in the field of cancer are interested in using aging-/

senescence-induced genes (ASIGs) as diagnostic or prognostic

molecular biomarkers (12, 13). In contrast, the prognostic roles

of ASIGs and their biological functions in osteosarcoma are

unknown. Furthermore, an ASIG signature that can reliably

predict overall survival (OS)-related survival has not been

identified. The goal of this study was to determine whether

these ASIGs are linked to osteosarcoma using mRNA expression

and clinical data from public sources. We also created and

validated a predictive multigene signature.
Materials and methods

Data collection

The Genome Data Commons data portal (https://portal.gdc.

cancer.gov/) provided us with mRNA expression data from

osteosarcoma patients. The complete clinical information of

the patients was downloaded from the Therapeutically

Applicable Research to Generate Effective Treatments

(TARGET) database (https://ocg.cancer.gov/programs/target).

The mRNA expression data and clinical characteristics of

osteosarcoma samples in GSE21257, the mRNA expression

profiles of osteosarcoma and adjacent tissues in GSE99671,

and the single-cell RNA sequencing (scRNA-seq) data of

osteosarcoma in GSE152048 were obtained from the NCBI

Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/

). For the external public cohort, we obtained mRNA expression

data for 265 SARC tumor samples from The Cancer Genome

Atlas (TCGA) (https://portal.gdc.cancer.gov/). All of the clinical

data used in this study can be found in Supplementary Table S1.

Supplementary Table S2 contains the demographic information

and clinical characteristics of the training and validation cohorts.
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We integrated the MSigDB gene sets to establish the

expression patterns related to aging. Specifically, the following

gene sets were previously established experimentally: GOBP cell

aging (M14701), Tang senescence Tp53 targets up (M11850),

WP TCA cycle in senescence (M40058), WP senescence and

autophagy in cancer (M39619), GOBP regulating cellular

senescence (M16568), GOBP positively regulating cellular

aging (M24705), and GOBP replicative senescence (M14683)

(14). These genes are known as ASIGs because they are

upregulated during cellular senescence; they are all listed in

Supplementary Table S3.
scRNA-Seq data analysis

Gene expression data for individual samples were analyzed

using Read10×() in the Seurat package (v4.1.1) of R software

(v4.2.0). Low-quality cells with ≤300 detected genes or ≥10%

mitochondrial genes were removed and normalized by

NormalizeData(), and the top 3,000 highly variable genes were

subsequently identified by FindVariableFeatures(). Batch effects

were removed from all samples using the Harmony package

(v1.0) (15). K-nearest neighbors were calculated using

Harmony-corrected data, and a shared nearest neighbor

(SNN) plot was created. A clustering algorithm was then used

to find the cell clusters. Using the unified manifold

approximation and project (UMAP) dimensionality reduction

technique, the identified clusters were visualized on a 2D map.

To identify the cell clusters, we first used the SingleR package

(v1.10.0) as an auxiliary tool to identify cells and identified

differentially expressed genes (DEGs) with high discriminatory

power between groups using the FindAllMarkers() function in

Seurat with a Wilcoxon rank sum test with Bonferroni

correction. DEGs and well-known cell markers in the

literature were used to annotate cell clusters. Details of the

cellular biomarkers are provided in Supplementary Table S4.

Based on the R package SCISSOR (v2.0.0) (16) developed by Sun

et al., the key step is to quantify the similarity between single-cell

data and bulk data by measuring the Pearson correlation of each

pair of cells and bulk samples, then optimize the regression

model of the correlation matrix using the sample phenotype, and

select similar cells that are important for a given phenotype with

high confidence. We obtained relevant cells for high- and low-

risk grouping by integrating the expression data of patients in

TARGET-OS and the risk grouping information of patients.

Calculations were performed with default parameters using the

R package infercnv (v1.12.0) with annotated immune cells as a

reference, and clusters were reassigned via the CNV matrix. The

CNV score was calculated by the average of the CNV matrix in

each cluster. Using the R package CellChat (v1.1.3) (17), the
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communication network between cells in the tumor

microenvironment (TME) was analyzed and visualized.
Identification of ASIGs in different cluster
subgroups

In order to evaluate the prognosis-related genes among

ASIGs in osteosarcoma, a combination of univariate Cox

regression analysis and single-gene Kaplan–Meier (KM)

analysis was used, and genes satisfying p< 0.05 were screened.

The results of KM analysis and univariate Cox regression of the

prognosis-related genes in ASIGs are listed in Supplementary

Table S5. Using the STRING database, the protein–protein

interaction (PPI) network was constructed with a confidence

of 0.18 for the above prognostic genes and analyzed in Cytoscape

software. Differential analysis was performed to determine

prognosis-related differentially expressed genes among the

ASIGs. The program “ConsensusClusterPlus” was then used to

perform 500 iterations of consensus clustering using the “pam”

method and Pearson distance based on the expression matrix of

these 22 genes.
TME assessment and immune infiltration
analysis

Tracking the Tumor Immune Phenotype (TIP) (http://biocc.

hrbmu.edu.cn/TIP/) (18), a web-based analysis platform was

used to obtain the activation levels of the seven-step anticancer

immune cycle. The stromal status, immune status, and tumor

purity were assessed for each sample by the ESTIMATE

algorithm (19). This algorithm calculates the stromal and

immune score of the tumor tissue based on specific

characteristics related to stromal and immune cell infiltration

in the tumor tissue to predict the level of infiltrating stromal and

immune cells and infer the purity of tumor. The single sample

gene set enrichment analysis (ssGSEA) approach was then used

to calculate the particular immune cells in the TME.

Supplementary Table S6 lists the genes of immune cells (20)

used by the ssGSEA algorithm. For immune infiltration analysis,

the TIMER and MCPCOUNTER algorithms were used, and the

abundance of APC cells was calculated.
Functional enrichment analysis

The “ClusterProfiler” R package was used to identify

enhanced relevant pathways through Gene Ontology (GO)

analysis and Kyoto Encyclopedia of Genes and Genomes

(KEGG) analysis. The “GSVA” R software package was used

to perform gene set variation analysis (GSVA). The alterations in

signal pathways among the three clusters were investigated using
Frontiers in Immunology 04
the “Hallmark” gene set collected from the Molecular

Signature Database.
Construction of a prognostic ASIG
signature

We used the R package “survival” to perform univariate Cox

analysis of DEGs to identify ASIGs with prognostic value. We

then utilized the “glmnet” R package to perform least absolute

shrinkage and selection operator (LASSO) regression of the

prognostic genes. Four genes were then discovered and used to

create a risk score. The risk score was calculated using the

following formula: Risk score = (−0.1913) * EVI2B +

(−0.1043) * AIM1 + (−0.1502) * PRKACB + (0.2488) *

TCEA3. To define the threshold values, we used cutoff values

for receiver operating characteristic (ROC) curves based on the

ASIG risk scores and split the patients into two different risk

score groups. The survival curves were created by Kaplan–Meier

(KM) analysis and the log rank test using the “survival” R

package to assess the accuracy of the prediction, and ROC

curves for the risk scores were constructed using the

“timeROC” R package.
Osteosarcoma cell lines and cell culture

The osteoblast cell line (hFOB1.19) and osteosarcoma cell

lines (Saos-2, U2OS, and HOS) were obtained from the

American Type Culture Collection (ATCC, Manassas, VA,

USA). The cell lines were cultured in Dulbecco’s modified

Eagle’s medium (DMEM) containing 10% fetal bovine serum

(FBS) and 1% penicillin/streptomycin. All of the cell lines were

grown in an incubator at 37°C with 5% CO2.
RNA extraction and quantitative real-
time polymerase chain reaction

Total RNA was extracted from the cell lines using TRIzol

reagent. Reverse transcription was performed using the

Revertaid First-Strand cDNA Synthesis Kit (Thermo Scientific,

Cat. No. k1622). The RNA concentration was adjusted using an

UltraSYBR mixture, and the samples were then reacted in a

Roche real-time quantitative PCR instrument. The primers and

their sequences were as follows:

EVI2B-F, 5’-AAGCAGTCACAGCCTACCTTA-3’; EVI2B-R,

5’-TGAATTGTGTTGGTTGACCCAAA-3’; AIM1-F, 5’-GACAG

TGACCACTAAAGTGACC-3’; AIM1-R, 5’-GTGGCAGTGTTGC

CTTTGT-3’; PRKACB-F, 5’-CCATGCACGGTTCTATGCAG-3’;

PRKACB-R, 5’-GTCTGTGACCTGGATATAGCCTT-3’; TCEA3-

F, 5’-AAGAGCACGGACATGAAGTACC-3’; TCEA3-R, 5’-CTC

TGCCGTCATCTTGGCTA-3’; GAPDH-F, 5’ -ACAACTTTG
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GTATCGTGGAAGG-3’ and GAPDH-R, 5’-GCCATCACGCC

ACAGTTTC-3’.

We used GAPDH as an internal reference and calculated the

relative mRNA expression level using the 2−DDCT method. This

part of the experiment was repeated three times.
Prediction of drug sensitivity

The Cancer Therapeutics Response Portal (CTRP, https://

portals.broadinstitute.org/ctrp) and the PRISM database

(https://depmap.org/portal/prism/) were used to collect drug

sensitivity data for cancer cell lines (CCLs). The area under

the ROC curve (AUC) value of each drug was calculated for

osteosarcoma patients by the ridge regression method using the

calcPhenotype function in the R package “pRRophetic” based on

CCLs in the CTRP and PRISM databases. Lower AUC values

suggested heightened sensitivity to therapy. Subsequently, the

difference in AUC values between different risk scoring groups

and the correlation with the risk score was evaluated.

Connectivity map (CMap) analysis is used to analyze the

similar effects of compounds on cell line processing and find

drugs to treat diseases (21). Based on the differential genes

between the results of tumor and adjacent tissue samples in

GSE99671, the CMap score of the drug was obtained using the

CLUE (https://clue.io/query). CMap score is a standardized

quantity ranging from −100 to 100 and is sorted by

“connectivity score.” Negative values indicate the gene

expression pattern of a specific perturbation opposite to the

disease-specific expression pattern, indicating the potential

therapeutic effect of the perturbation on the disease. Drugs

with CMap score >90 or< −90 are generally used for further

research (22). Supplementary Table S7 lists the genes utilized for

CMap analysis and the CMap scores of all drugs.
Statistical analysis

In this study, statistical operation and visualization were

performed using R 4.1.1 software. Based on the recommended

methods, the statistical analyses of different datasets were

performed using different packages. All the tests were bilateral,

and p<0.05 was considered to indicate statistical significance in

all the tests.
Results

Identification of three molecular
subtypes based on ASIGs

We performed KM analysis and univariate Cox regression

analysis to investigate 64 genes associated with prognosis in the
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TARGET-OS data (Figure 1A). Using STRING, the interaction

network of these 64 genes was created and revealed that these 64

genes may interact with one another (Figure 1B). We

downloaded data from Gene Expression Omnibus (GEO)

encompassing samples of cancer tissues and paracancerous

tissues to analyze the DEGs between the two tissues. For

GSE99671, volcano plots and heatmaps were used to illustrate

22 DEGs among 64 prognosis-related genes (Figures 1C, D).

Pearson’s correlation coefficient was utilized to build a

coexpression network of 22 prognosis-related DEGs, and these

22 genes were confirmed to be coexpressed in bone

malignancies, and according to the expression patterns of

these genes, these 22 prognosis-related genes can be clustered

into four gene clusters (Figure 1E). The osteosarcoma patients in

the training cohort were clustered into three groups using a

consensus clustering method based on the prognostically

relevant DEGs identified in GSE99671 and TARGET-OS. With

K = 3, 49 of the patients were assigned to cluster A, and 14 and

22 patients were assigned to clusters B and C, respectively

(Figures 1F–H). Survival was similarly well discriminated

between the three subgroups (p = 0.003) (Figure 1I). The

patients in cluster B had a lower overall survival rate than

those in clusters A and C, whereas the patients in cluster C

had the highest overall survival rate. Principal component

analysis (PCA) clearly distinguished the three subgroups

(Figure 1J). The expression levels of ASIGs in the three

subtypes are shown in a heatmap and visualized using box

plots, which revealed considerable variations in expression

among the three clusters (Figures 1K, L).
Immune status of three molecular
subtypes and functional analysis

The tumor immune microenvironment (TIME) includes

initiation of the anticancer immunity cycle, recruitment of

immune cells, expression of immune checkpoint inhibitors

(ICIs) and effector genes, and presentation of a T-cell-

associated inflammatory signature (TIS). We then explored the

immune differences between the three molecular subtypes. The

immune cell distribution obtained by the ssGSEA algorithm was

significantly different among the three clusters and is presented

in a heatmap of 28 immune cells (Figure 2A). The scores for 28

immune cells in cluster B were significantly lower than those in

clusters A and C, reflecting a worse immune status. By

comparing the 28 immune cells between the three clusters, we

found that 25 were significantly different. Among the 28

immune cells in cluster A, 7, including immature dendritic

cell, monocyte, neutrophil, and type 17 T-helper cell, were the

most infiltrated among the three clusters (Figure 2B), confirming

that the patients in cluster A may exhibit an inflammatory

phenotype, corresponding to better immune status. According

to the ESTIMATE algorithm, cluster B had the lowest immune
frontiersin.org
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score, the lowest stromal score, the highest tumor purity, and the

worst overall survival (Figure 2C). In contrast, although the

immunological score of cluster C was lower than that of cluster

A, cluster C had the highest stromal score, a lower percentage of

tumor metastasis, and thus the best overall patient survival

(Figure 2D). We then evaluated the correlations of the 22

prognosis-related ASIGs used for clustering with 28 immune

cells and found that 21 of the included genes were significantly

associated with at least one immune cell (Figure 2E). We then
Frontiers in Immunology 06
explored the DEGs between the three clusters and performed

functional enrichment analysis.

By comparing the DEGs between the three clusters (|

DEG_logFC| > 0.25, DEG_p value< 0.01), we found that 56

genes were fully differentially expressed between all three

clusters (Figure 2F). A GO analysis revealed that the

functions of these DEGs were enriched for immune

activation, immune cell proliferation, and cell adhesion

regulation (Figure 2G). A KEGG analysis also reflected
B C

D E

F G H I

J K L

A

FIGURE 1

Prognostic gene screening and consensus clustering. (A) Univariate Cox regression of ASIGs for the screening of prognosis-related genes.
(B) Construction of a PPI network of 64 prognosis-related genes using STRING. (C) Differential expression analysis of osteosarcoma samples
and adjacent samples in GSE99671 (p-value< 0.05 and log2FC > 0.25). (D) Heatmap of 22 prognosis-related differences in ASIGs in GSE99671.
(E) Coexpression network of 22 prognosis-related genes in TARGET-OS (p-value< 0.05 and correlation > 0.3). (F) Heatmap of the consensus
matrices for k = 3. (G, H) Consensus cumulative distribution function (CDF) plot for 22 ASIGs in TARGET-OS. (I) Kaplan–Meier curves based on
three clusters in the TARGET-OS. (J) Principal component analysis (PCA) of the three subgroups. (K, L) Heatmap and box plot of 22
prognosisrelated ASIGs in the three subgroups (*p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001).
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several pathways related to cancer and immunity, including the

MAPK and mTOR signaling pathways, longevity regulatory

pathway, and platelet activation (Figure 2H). We then

identified hallmark pathways that were significantly different

between the three subgroups by GSVA analysis, and these

included the P53 pathway, KRAS pathway, glycolysis, and

inflammatory response-related pathways. We demonstrated
Frontiers in Immunology 07
the existence of significant differences among multiple

cancer-related pathways based on the three molecular

subtypes of ASIGs, which reflected the intrinsic differences in

signaling pathways among these three subtypes (Figure 2I). In

summary, the expression of ASIGs is linked to the immune

response and the modulation of cancer-related pathways,

which are related to the survival state of patients.
B

C D

E

F G

H

A

I

FIGURE 2

Immune status and functional analysis of DEGs in the three subgroups. (A, B) Heatmap and box plot of the statistical analysis of the ssGSEA
results. (C) Estimate evaluation, immune status, stromal status, and tumor purity calculated for the three clusters using the ESTIMATE algorithm.
(D) Proportion of patients with metastasis in the three subgroups. (E) Correlation between 22 prognosis-related ASIGs and 28 immune cells.
(F) DEGs in the three subgroups (|log2FC|>0.25, p-value<0.01). (G, H) Network diagram constructed from the GO and KEGG analysis of DEGs.
(I) Heatmap of GSVA results of the hallmark pathway (ns, not significant, *p< 0.05, ** p< 0.01, *** p< 0.001, ****p< 0.0001).
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Development of ASIG subgroup risk
scores and validation

The predictive ability of the risk score was assessed. We used

Cox univariate regression to screen for 14 prognosis-related

genes based on the DEGs in the three subgroups (Figure 3A). A

LASSO analysis was then performed in the TARGET-OS cohort,

and four genes that may be employed in model creation were

evaluated to determine their optimal value for building a risk

model (Figures 3B, C). We also performed quantitative PCR

(qPCR) to measure the mRNA expression levels of the four

genes in different cell lines. The four osteosarcoma cell lines

generally exhibited higher TCEA3 expression and lower

PRKACB, AIM1, and EVI2B compared with the osteoblast cell

line (hFOB1.19) (Figure 3D). The risk score was then calculated

using the following equation:

Risk score = ( − 0:1913) ∗EVI2B + ( − 0:1043) ∗AIM1

+ ð−0:1502) ∗ PRKACB + (0:2488) ∗TCEA3

According to the KM analysis, all four genes independently

predicted overall survival in osteosarcoma, which demonstrated

that they are all prognosis-related genes in osteosarcoma

(Supplementary Figure S1A). Patients were split into high- and

low-risk groups depending on the cutoff value of the risk model.

Figure 3E depicts the risk scores, patient survival, and inter-

cluster prognostic markers. According to the overall survival

curves, patients with high-risk scores showed worse survival

than those with low-risk scores (p< 0.0001) (Figure 3F). We next

assessed the predictive ability of the risk model, and a time-

correlated ROC analysis revealed that the constructed risk model

had strong predictive power at 5 years, with AUCs of 0.736,

0.739, and 0.724 (Figure 3G). We also compared the scores of the

three clusters of patients using the Sankey diagram and found

that the high-risk group contained all the patients in cluster B,

nearly half of those in cluster A, and only a few of the patients in

cluster C. An analysis of the grouping of risk score versus patient

survival status showed that a higher number of the patients in

the high-risk score group were at a death state (Figure 3H). The

ESTIMATE algorithm revealed that the low-risk group had

significantly higher stromal scores (p = 3.8e−09) ,

immunological scores (8.4e−07), and ESTIMATE scores (p =

8.2e−10), and lower tumor purity (Figure 3I). We found that the

risk score of the three clusters corresponded to the survival of

each cluster, and significant differences were found among the

clusters, implying that our risk ratings were better able to

represent the subgroups in the three clusters (Figure 3J). These

findings suggest that our risk score model based on the

prognostic genes of the ASIG subgroup can well predict the

prognosis of osteosarcoma patients and distinguish differences

in the TME.

We further validated the risk score model with two

validation cohorts. Using the abovementioned risk score
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calculation, the patients with osteosarcoma in the GEO dataset

GSE21257 were split into two different risk score groups. The

associations among risk score, patient survival rate, and

prognostic factor expression in different groups were also

investigated (Supplementary Figures S1B, E). The survival

study revealed that the high-risk group had a worse prognosis

(p = 0.0099) (Supplementary Figure S1C). According to the ROC

analysis (Supplementary Figure S1D), the AUC values of the risk

scores at 1, 3 and 5 years were 0.776, 0.699 and 0.631,

respectively. We screened a sample of 56 individuals from

TCGA-SARC containing connective tissue from the

extremities, trunk, and pelvis, and bone tissue because

osteosarcoma occurs in the connective tissue of the extremities

and trunk (Supplementary Table S1). The patients were split into

high- and low-risk groups according to the risk score. The

overall survival of the high-risk group was poor (p = 0.027)

(Supplementary Figure S1F), and the AUC analysis showed that

the risk score had good predictive value (Supplementary

Figure S1G).
Development and calibration of
columnar charts integrating clinical
information and risk scores

We combined the patients’ clinical characteristics to create

line graphs and more accurately estimate the patients’ prognosis.

First, we performed multivariate Cox regression analysis in the

TARGET-OS cohort to determine that the risk score based on

the four candidate genes is an independent risk factor relative to

other clinical indicators (p< 0.001) (Figure 4A). The C-index

reached 0.81 (95% CI, 0.772–0.848), demonstrating the high

precision of the model. We then constructed a nomogram and

scored the prognosis of patients according to their clinical

indicators and risk scores (Figure 4B). In addition, we created

an R Shiny app webpage (https://rshinyanalysisfigure.shinyapps.

io/dynnomapp/) to enable interactive visualization for more

convenient and precise patient prognosis prediction. The

overall survival predicted by the nomogram was almost

identical to the survival of the training (TARGET-OS) and

validation (GSE21257) cohorts at 1, 3, and 5 years

(Figures 4C, D). These results suggest that our developed

comprehensive nomogram could precisely predict the

prognosis of osteosarcoma patients.
Association analysis between risk score
and TIME and immune checkpoint
blockade (ICB) response

Understanding the diversity of the TIME could effectively

guide tumor immunotherapy. As a result, we examined the

relationships between risk ratings based on ASIG clusters and
frontiersin.org
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the cancer immune cycle. Apparently, almost all seven processes,

including cancer cell antigen release and presentation (steps 1

and 2), initiation and activation (step 3), and multiple immune

cell recruitment (step 4), exhibited substantial inverse

relationships with risk scores. Based on these results, we

propose that high-risk patients with osteosarcoma may have

tumors at an immunosuppressive state, whereas a low risk score

for the inflammatory phenotype may indicate increased

responsiveness to immune checkpoint blockade (ICB) therapy.

The risk score was inversely related to the enrichment of some

positive signals associated with immunotherapy [e.g., interferon

(IFN) signals], but more predictive pathways mediating

immunotherapy were positively related to risk scores, implying

that immunotherapy may still be effective for high-risk patients
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(Figure 5A). The T-cell-associated inflammatory signature (TIS)

score was also found to be strongly and inversely connected with

the risk score (Figure 5B). Using the ssGSEA algorithm, the 28

immune cells were found to be lower in the high-risk group,

indicating an immune “cold” phenotype, and higher in the low-

risk group, indicating an immune “hot” phenotype. The risk

score was inversely linked with most immune checkpoints

(ICPs), as shown in Figures 5C, D, implying an immune

escape mechanism and a better immunotherapeutic outcome

for tumor cells in the low-risk group. This finding suggests that

osteosarcoma patients in the low-risk group may still benefit

from immunotherapy. In contrast, we assessed the relative

abundance of 22 tumor-infiltrating immune cells (TIICs)

(Figures 5E, F) in osteosarcoma patients in the high-risk group
B C
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A

FIGURE 3

Construction of the risk model with the TARGET-OS cohort and validation with the validation cohort. (A) Through univariate Cox regression, the
prognostic DEGs in the three clusters were screened. (B, C) LASSO regression analysis with optimal lambda. (D) Relative mRNA expression of
PRKACB, AIM1, EVI2B and TCEA3 in different cell lines by qPCR. (*p < 0.05, **p < 0.01, ***p < 0.001. Not labeled: no statistical significance
compared to hFOB 1.19). (E) Risk scores constructed from candidate genes, patient survival status, and expression heatmaps of the four
candidate genes. (F) Survival curve of osteosarcoma patients in different risk groups. (G) ROC curve of the risk score model based on four
candidate genes. (H) Relationship of the risk score grouping and survival status of the patients in the three subgroups. (I) ESTIMATE algorithm
results for different risk groups. (J) Distribution of risk scores in the three subgroups.
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by considering the inverse correlation feature with the TIS score

and further evaluated the correlation between innate immunity

(Figures 5G, H) and risk score, which indicated that infiltrating

immune cells in the high-risk group are associated with a lack of

innate immune activation. We showed a significant inverse

correlation between APC cell infiltration and the risk score

using multiple algorithms (Figure 5I). Similar results were

obtained with the validation cohort (Supplementary Figure

S2). The above research results suggest that patients in the

high-risk group may have more immunotherapy possibilities if

a strategy to induce APCs in the TME to promote strong innate

signaling could indeed help improve the cross-initiation of

tumor antigen-specific CD8+ T cells by increasing chemokine

production for effector T-cell trafficking. In contrast, the

inflammatory profile of low-risk osteosarcoma patients may

still be susceptible to immunotherapy.
TME differences in cells associated with
different risk scores

We next sought to clarify the cell types associated with

different risk score phenotypes within the TME. Single-cell

sequencing data of 11 osteosarcoma patients, including 7

primary patients, 2 recurrent patients, and 2 lung metastasis

patients, were downloaded from GSE152048. After quality
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control and elimination of sample batches, the filtered cells

were clustered and annotated as nine major cell clusters,

including osteosarcoma cells, macrophages, monocytes,

endothelial cells, pericytes, mesenchymal stem cells, T cells, B

cells, and myoblasts (Figures 6A, B). We used the SCISSOR

algorithm (16) developed by Sun et al. with a combination of

sequencing data of TARGET-OS patients with risk grouping

information of the corresponding patients to clarify the cells

associated with different risk phenotypes (Figure 6A). Using

infercnv software with immune cells as a reference, a CNV score

was calculated for individual cells (Figure 6A). Not surprisingly,

more high-risk-related cells were identified in patient samples

with recurrence and metastasis (Figure 6C). In the high-risk

group, higher exhaustion and cell proliferation scores were

found for T cells. However, the T-cell cytotoxicity scores did

not appear to be significantly different. This finding

demonstrated that T cells in the TME among patients in the

high-risk groups may still have some proliferative potential, but

immune escape occurs due to T-cell exhaustion-related

mechanisms. Furthermore, the CNV score of osteosarcoma

cells was significantly higher in the high-risk group than in the

low-risk group, implying that the high-risk patients had a higher

degree of tumor cell malignancy in osteosarcoma (Figure 6D).

We used CellChat to infer the overall intercellular interactions

based on ligand receptor signaling to characterize the cell

interactions between the high- and low-risk groups.
B

C D

A

FIGURE 4

Development of a nomogram integrating clinical information. (A) Multivariate Cox analysis integrating clinical information and the risk score. (B)
Nomogram for evaluating the 1- to 5-year overall survival of osteosarcoma patients. (C) Nomogram calibration for the training cohort (TARGET-
OS) over 1–5 years. (D) Nomogram calibration for the verification cohort (GSE21257) over 1–5 years.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.997765
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lv et al. 10.3389/fimmu.2022.997765
B C

D E F

G

H I

A

FIGURE 5

Correlation analysis between the risk score based on the ASIG subgroup and the TME and ICPs. (A) Correlation between the risk score
constructed based on the four candidate genes and the tumor immunity cycle (right) and immunotherapy prediction pathways (left).
(B) Correlation between T-cell score and risk score. (C) Distinctions in 28 immune cell infiltration levels between different risk score groups
determined using the ssGSEA algorithm (*p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001). (D) Correlation analysis between the risk score
constructed based on the four candidate genes and ICP. (E, F) Heatmap and correlation analysis between risk scores constructed based on
the four candidate genes and tumor-infiltrating lymphocytes (TILs). (G, H) Heatmap of risk scores and innate immune pathways and
correlation analysis. (I) The correlation between APC cell infiltration and risk score was assessed using three algorithms (TIMER,
MCPCOUNTER, and ssGSEA).
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FIGURE 6

TME differences in cells associated with different risk scores. (A) UMAP analysis identified nine major cell types in osteosarcoma samples (top
left), sample groupings involving primary, recurrent, and metastasis (top right), associated cells by SCISSOR risk groupings (bottom left), and CNV
score inferred by the infercnv-related heatmap (bottom right). (B) The DEGs and marker genes for nine major cell types are shown. The colors
in the top and side bars indicate specific cell clusters. (C) A bar graph depicts the proportion of cells in different sample groupings that are
associated with the risk score. (D) Boxplots depict the exhaustion (top left), toxicity (top right), and proliferation (bottom left) scores of T cells in
the two risk score groups. The difference in the CNV score between osteosarcoma cells is shown (bottom right). (E) Differences in the number
of cells associated with different risk scores and the intensity of their cellular communication. (F) Circos plots depict putative ligand–receptor
interactions between T cells from the high-risk (left) and low-risk (right) associated cell groups and other cell clusters. Branches connect pairs of
interacting cell types and indicate the number of events in the graph. (G) In the inferred network, the overall information flow differences for the
different risk-group-associated cells are shown. (H) Circos plots show the MIF signaling pathway and VEGF signaling pathway of related cells in
different risk groups.

https://doi.org/10.3389/fimmu.2022.997765
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lv et al. 10.3389/fimmu.2022.997765
Surprisingly, we found that the cells in the high-risk group

generally had less intercellular interactions (Figure 6E).

Although communication among tumor cells, macrophages,

and T cel ls is important in the TME, changes in

communication among these cells in the TIME may be more

important (Figure 6F). Moreover, we found enrichment of low-

risk-related cells to the highest antigen presentation signal,

validating the inhibition of the antigen presentation-related

signaling pathway of APC cells in our previous high-risk

group at the cellular level. The high-risk group was enriched

with the MIF signaling pathway, the CLEC signaling pathway,

which was previously reported to be associated with

osteosarcoma growth and metastasis, and the vascular

endothelial growth factor (VEGF) signaling pathway, which

promotes blood vessel growth (Figures 6G, H). Overall, these

results confirm the association of osteosarcoma immune activity

and the tumor growth profile with risk-score-related groups

based on DEGs related to senescence.
Identification of potential therapeutic
drugs for treatment of the high-risk-
score group

We applied immunotherapy to predict the treatment effects

and drug prediction based on risk scores. ICB therapy for cancer

can have long-term clinical improvements, but only some patients

respond to this treatment. Jiang et al. created TIDE algorithms

(23) that integrate expression indicators of T-cell dysfunction and

T-cell rejection to assess tumor immune evasion in the ability to

forecast ICB response. Tumor cells with higher TIDE scores are

more likely to trigger immunological escape, implying a reduced

response rate to ICI therapy. Our outcomes indicated that the

TIDE score was significantly lower in the low-risk group; that is,

the low-risk group had greater immunotherapeutic potential,

which supports our hypothesis. Unsurprisingly, the low-risk

group exhibited greater T-cell dysfunction, whereas the high-

risk group had higher T-cell rejection, which implies the existence

of two distinct T-cell functional status phenotypes in the different

risk groups, T-cell dysfunction and T-cell rejection. Based on the

CD274 score, the low-risk groupmight have more options for PD-

L1 immunotherapy (Figure 7A). For the high-risk group, we

constructed a drug response prediction model using the PRISM

and CTRP datasets. Hundreds of CCLs can be found in these two

databases, which include expression and drug sensitivity

information. Therefore, we built a drug response prediction

model using these two databases, which include samples from

hematopoietic, lymphoid tissue and cell lines, and removed

compounds containing NA records. Finally, we used 680 CCLs

(including 354 compounds) and 480 CCLs (including 1,285

compounds) from the CTRP and PRISM datasets, respectively,

for subsequent analysis. Following the flow chart, we performed

drug sensitivity prediction with TARGET-OS and GSE21257 and
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performed analyses using CTRP and PRISM, respectively

(Figure 7B). Drug response analyses were performed for the

different risk groups, and differences were assessed to identify

compounds in the high-risk category with lower AUC estimations

(CTRP: log2FC > 0.01; PRISM: log2FC > 0.005). We then

performed Spearman correlation analysis of the AUC values

with risk scores and selected derived compounds that exhibited

a negative correlation with risk scores (CTRP: R< −0.4; PRISM:

R< −0.33). Using TARGET-OS and GSE21257 with the CTRP

dataset, we obtained 40 compounds, and using PRISM, we

obtained 62 compounds, all of which had lower AUC estimates

in the high-risk-score group and showed a significant inverse

relation with the risk score (Figures 7C, D). Compounds with gene

expression patterns that were opposite to the osteosarcoma

expression patterns were identified through CMap analysis

using cancer and paracancerous tissue data from GSE99671. We

selected a subset of compounds with CMap scores< −90 and

found one compound in each of the CTRP and PRISM datasets,

including parbendazole and flubendazole, both of which had

CMap scores< −95 (Figures 7E, F). In conclusion, evidence

from multiple datasets and drug sensitivity estimates from

multiple databases indicated that both parbendazole and

flubendazole were potentially beneficial for osteosarcoma

patients with high risk scores.
Discussion

In diploid cells, cellular senescence, the occurrence of which

was first described in the 1960s (24), is a persistent cell cycle

arrest that limits their proliferative life span. This biological

clock is triggered by the continual shortening of telomeres that

occurs with each cell division and is a physiological reaction to

avoid genomic instability and hence DNA damage build-up (25).

Replicative senescence is the currently used term for this process.

Senescent cells can accumulate during aging and at locations

involved in age-related diseases, such as osteoarthritis (26) and

atherosclerosis (27), which disrupts the normal physiology of

tissues and leads to gradual functional degradation, even causing

secondary damage to the body (28–30). Premature senescence is

a term used to describe an accelerated senescence response in

diploid cells that is not caused by telomere shortening (31). As

soon as cells are exposed to certain insults, such as genotoxic

stress or metabolic shock, as a result of culture conditions, the

senescence response begins. Senescence can also be induced by

oncogenic stress, which is caused by the overexpression of

specific oncogenes or the deletion of TSGs in primary and

tumor cells (32). Senescence has been observed in vivo in a

number of malignancies and halts tumor development and

progression. Senescence appears to be a strong anticancer

mechanism due to its antiproliferative properties. The tumor-

suppressive effect of senescence has cleared the way for cancer

therapies that increase senescence, a procedure known as pro-
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FIGURE 7

Evaluation of immunotherapy and screening of chemotherapeutic drugs. (A) Prediction of ICB treatment response of osteosarcoma based on
the TIDE, dysfunction, CD274, and exclusion scores. (B) Flow chart of chemosensitivity prediction based on the osteosarcoma risk score.
(C) Heatmap of the sensitivity of 40 chemotherapeutic drugs screened in the CTRP database. (D) Heatmap of the sensitivity of 62
chemotherapeutic drugs screened in the PRISM database. (E) Intersection with drugs with CMap scores< −90 in the CTRP database.
(F) Intersection with drugs with CMap scores< −90 in the PRISM database.
Frontiers in Immunology frontiersin.org14

https://doi.org/10.3389/fimmu.2022.997765
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lv et al. 10.3389/fimmu.2022.997765
senescence therapy for cancer. Despite their participation in a

number of clinical illnesses, senescent cells are essential in

physiological processes such as embryogenesis, tissue

remodeling, and tissue repair (33). However, the involvement

of senescence in the development, management, and prognosis

of osteosarcoma remains unknown. We explored the expression

of ASIGs in osteosarcoma tumor tissues and their relationships

with osteosarcoma in the current investigation. First, a unique

prognostic model incorporating four DEGs (EVI2B, AIM1,

PRKACB, and TCEA3) belonging to ASIG subgroups was

built and validated. Immune-related pathways were found to

be involved in functional studies.

Although the processes driving tumor susceptibility to ASIGs

have received much attention in recent years, the possible

regulation of tumor immunity by ASIGs has remained a

mystery. We found that many immune-related biological

processes and pathways were prominent in GO analyses based

on DEGs between different risk groups. It is reasonable to believe

that ASIGs are associated with tumor immunity. Immune

dysregulation is a common symptom of malignancies. In the

TME, cellular senescence frequently triggers an immunological

response (34), and immune cell infiltration promotes tumor

progression (35). However, the significance of ARGs in immune

cell modulation in osteosarcoma is uncertain. According to this

study, osteosarcoma patients in the low-risk group may still

benefit from immunotherapy. In contrast, we assessed the

relative abundance of 22 TIICs in osteosarcoma patients in the

high-risk group considering the inverse correlation feature with

the TIS score and further evaluated the correlation between innate

immunity and risk score, which indicated that infiltrating immune

cells in the high-risk group are related to a lack of innate immune

activation. We showed a significant inverse correlation between

APC cell infiltration and the risk score using multiple algorithms.

The above research results suggest that patients in the high-risk

group may have more immunotherapy possibilities if a strategy to

induce APCs in the TME to promote strong innate signaling could

indeed help improve the cross-initiation of tumor antigen-specific

CD8+ T cells by increasing chemokine production for effector T-

cell trafficking. In contrast, the inflammatory profile of low-risk

osteosarcoma patients may still be susceptible to immunotherapy.

Tumor cells, inflammatory cells, immune cells, mesenchymal

stem cells, endothelial cells, and tumor-associated fibroblasts

comprise the TME, which plays a different function in the

proliferation, metastasis, and treatment resistance of tumor cells.

Immunosuppression has been discovered to be common in the

TME due to the lack of antigens in tumor cells and the lack of

immunosuppression produced by immune system suppressive

signaling pathways such as PD-1/PD-L1 and cytotoxic T-

lymphocyte-associated antigen-4 (CTLA-4) (36). In addition,

tumor cells alter infiltrating immune cells by secreting and

releasing immunosuppressive substances such as transforming

growth factor, interleukin-2, interleukin-10, and vascular

endothelial growth factor into the microenvironment, which
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impede their antitumor activities (37). Furthermore, aberrant

metabolic patterns amplify the immunosuppressive effects of the

TME (38). Previous research has found that aging can cause

comparable immune evasion. BRAFV600E mutant melanocytic

nevi, for example, undergo senescence but are immune

suppressed, which allows their accumulation during aging in

humans (39). Additionally, when premalignant hepatocytes are

not removed by the immune system after NrasG12 V-induced

senescence, immature suppressive myeloid cells can be recruited,

which restricts NK-cell activity and encourages hepatocellular

carcinoma (HCC) progression (40). In this study, we observed

that the high-risk group had higher T-cell depletion scores,

reduced intercellular ligand–receptor communication, and

weaker cellular antigen-presentation signaling using single-cell

data analysis. As a result, we believe that aging-related genes

reduce tumor immunity by boosting T-cell depletion and lowering

cellular antigen presentation signals.

This study has several limitations. First, we built and evaluated

our prognostic model using retrospective data from public

databases. To confirm its clinical value, more prospective real-

world evidence is needed. Second, the intrinsic shortcoming of

constructing a prognostic model based solely on a single signature is

inescapable because many significant prognostic genes in

osteosarcoma may have been ignored. Third, in this study, cells

associated with high and low risks were obtained through the

combined analysis of RNA transcriptome data and single-cell data.

More sample data from different risk patients are still needed to

verify the reliability of this analysis. Furthermore, the association

between risk score and immune response, and the outcomes of drug

sensitivity prediction, needs to be studied experimentally.

In conclusion, aging-related prognostic genes can

distinguish molecular subgroups of osteosarcoma. An

innovative aging-related gene signature risk score can be

utilized to predict prognosis. Moreover, the risk score was

found to be linked to the TIME and was used to help navigate

patient immunotherapy and chemotherapy in osteosarcoma.
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SUPPLEMENTARY TABLE 3
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SUPPLEMENTARY TABLE 4
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SUPPLEMENTARY TABLE 5
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univariate Cox regression.
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SUPPLEMENTARY TABLE 7
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SUPPLEMENTARY FIGURE 1

Independent survival evaluation of genes used to establish the risk score
model and verification of the risk score using the verification cohort. (A)
Survival curve of four candidate gene groups in the TARGET-OS cohort. (B)
Risk score constructed from candidate genes, patient survival status, and

expression heatmaps of the four candidate genes in the verification cohort
(GSE21257). (C) Survival curve of the various risk score groups of the

verification cohort (GSE21257). (D) ROC of the risk score constructed

based on four candidate genes in the validation cohort (GSE21257). (E)
Distribution of risk scores in the TCGA-SARC validation cohort and heatmap

of candidate genes. (F) Survival curve of different risk score groups in the
TCGA-SARC validation cohort. (G) ROC curve of the risk score constructed

based on four candidate genes in the validation cohort (TCGA-SARC).

SUPPLEMENTARY FIGURE 2

The validation cohort (GSE21257) verified the association analysis

between the risk score and immune microenvironment. (A) Correlation
between risk scores in the validation cohort and tumour immune cycle

(right) and immunotherapy prediction pathway (left). (B) Correlation

between the risk score and T-cell score in the validation cohort. (C) The
differences in the 28 immune cell infiltration levels between different risk

score groups were evaluated in the validation cohort (* P< 0.05, ** P<
0.01, *** P< 0.001). (D) Correlation analysis between the risk score of the

validation cohort and ICPs. (E, F) Heatmap and correlation between the
risk score of the validation cohort and TILs. (G, H) Risk score, innate

immune pathway heatmap and correlation analysis of the validation

cohort. (I) The correlation between APC infiltration and the risk score of
the validation cohort was evaluated using three algorithms (TIMER,

MCPCOUNTER, and ssGSEA).
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