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Multi-omics analysis
of Siglec family genes in
cutaneous melanoma

Kezhu Li, Nan Xu and Shu Guo*

Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shengyang,
Liaoning, China
Background: Melanoma is widely recognized as the most aggressive and fatal

type of skin cancer; however, effective prognostic markers are lacking. The sialic

acid-binding immunoglobulin-type lectin (Siglec) gene family plays an important

role in the development of tumors and immune escape, but its prognostic role in

melanoma remains unknown.

Results: Siglec genes have a high mutation frequency, with up to 8% in SIGLEC7.

High expression levels of Siglecs in tumor bulk suggests a better prognosis. Siglecs

also show a high degree of synergistic expression. Immunohistochemistry was

used to analyze the expression of SIGLEC9 in tumor tissue microarray. The

expression of SIGLEC9 in tumor tissue without metastasis was higher than that

in tumor tissue with metastasis. We used unsupervised clustering to create a high

expression of Siglec (HES) cluster and a low expression of Siglec (LES) cluster. The

HES cluster correlated with high overall survival and increased expression levels of

Siglec genes. The HES cluster also showed significant immune cell infiltration and

activation of immune signaling pathways. We used least absolute shrinkage and

selection operator (LASSO) regression analysis to reduce the dimensionality of

Siglec cluster-related genes and constructed a prognostic model composed of

SRGN and GBP4, which can risk-stratify patients in both the training and test

datasets.

Conclusion: We conducted a multi-omics analysis of the Siglec family genes in

melanoma and found that Siglecs play an important role in the occurrence and

development of melanoma. Typing constructed using Siglecs can show risk

stratification and derived prognostic models can predict a patient’s risk score. In

summary, Siglec family genes are potential targets for melanoma treatment as

well as prognostic markers that can direct individualized treatments and improve

overall survival.
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Background

Melanoma is the most aggressive and deadly type of skin cancer

(1). Melanoma is an immunogenic tumor and is commonly

associated with ultraviolet exposure and elevated tumor mutation

burden (TMB). Immune checkpoint inhibitors (ICBs) have

revolutionized the management of many cancers, especially

advanced melanoma. Nearly 50% of patients are treated with

anti-cytotoxic T-lymphocyte associated protein 4 (CTLA4) and

anti-programmed cell death protein 1 (PD-1) antibodies, leading

to tumor regression and long-term long-lasting cancer control. ICB

treatment is especially effective in the treatment of melanoma (2).

The clinical success of ICBs in melanoma has demonstrated that

reactivating the immune system can effectively inhibit tumor

growth. However, even in the best-case scenario of treatment with

a combination of multiple ICBs, half of the patients do not receive a

lasting benefit (3). Therefore, there is a need to identify better

predictive markers as well as therapeutic targets to improve overall

patient survival.

Sialic acid-binding immunoglobulin-type lectins (Siglecs) are

glycan-binding immune checkpoint receptors, which are expressed

primarily in immune cells and play an important role in signal

transduction. By identifying glycans containing sialic acid as

ligands, they help the immune system distinguish between self

and non-self (4). So far, 14 Siglec genes have been identified in

humans, including SIGLEC1, CD22, CD33, MAG, SIGLEC5,

SIGLEC6, SIGLEC7, SIGLEC8, SIGLEC9, SIGLEC10, SIGLEC11,

SIGLEC14, SIGLEC15, and SIGLEC16. Siglecs have long been

associated with cancer: CD22 and CD33 are specific markers for

B-cell lymphoma (5, 6) and anti-CD22 and anti-CD33 antibody

therapies have also been used in clinical trials of B-cell lymphoma

and myeloid leukemia (7). Siglec15 is a key regulator of osteoclast

differentiation. Clinical trials targeting Siglec-15 have shown

encouraging therapeutic effects. Siglecs exhibit tumor-associated

expression and different mechanisms of action associated with PD-

L1, which implies a potential for combating disease in PD-1/PD-L1-

resistant patients. However, the overall expression of Siglec family

genes in melanoma tumor cells or tumor microenvironments has

not been clearly studied, and it is of great significance to study

Siglecs as potential prognostic markers for melanoma.

This study analyzed multi-omics data on Siglecs, including

simple nucleotide variation, copy number variation, transcriptome,

and clinical data, to elucidate the role of Siglec family genes in

melanoma. In addition, we focused on the typing and prognosis

potential of Siglecs in melanoma.
Methods

Data acquisition

We downloaded data pertaining to the skin cutaneous

melanoma (SKCM) multi-group cohort from The Cancer

Genome Atlas (TCGA, https://portal.gdc.cancer.gov/), including

472 simple nucleotide variations in VarScan2 annotation format,

472 transcriptome profiles in HTSeq-FPKM format, and 470
Frontiers in Immunology 02
clinical data. The downloaded raw data were sorted using Perl

(https://www.perl.org/). From the UXSC Xena website (https://

xena.ucsc.edu/) (8), we downloaded 367 sets of copy number

variation data in GISTIC2 format. We downloaded transcriptome

data from GSE91061 (FPKM format) from the Gene Expression

Omnibus (GEO, https://www.ncbi.nlm.nih.gov/gds), specifically the

melanoma immunotherapy cohort (9). We converted the TCGA-

SKCM and GSE91061 transcript group data to TPM format using

the R package “limma”. We used the R packages “limma” and “sva”

to merge TCGA-SKCM and GSE91061 into one cohort (n = 519).

The above data analysis and the following analysis were performed

using R software (R x64 4.1.0).
Simple nucleotide variation and copy
number variation data analysis

Using the R package “maftools”, 14 Siglec family genes were

extracted to draw the waterfall map. We used Perl to calculate the

TMB value, which here refers to the relative number of gene

mutations in a particular tumor tissue, and its calculation

principle is Fisher’s exact test of VarScan2. The copy number

variation data were also sorted out into a gene matrix using Perl.

We used the R package “RCircos” to draw a circle map of the

position of the gene on the chromosome.
Consensus clustering and principal
component analysis

Consensus clustering is an unsupervised clustering method that

can classify subtypes of samples according to genetic multiplex data.

The basic principle of the algorithm is to use the resampling method

to extract a certain sample data set and calculate the rationality of

the specified number of clusters. A consistent cumulative

distribution function (CDF) diagram and Delta area plot of CDF

can be drawn according to different K values (K values from 1 to 9).

When the initial speed of CDF is slow, the best K value is selected

according to the cleanliness of the clustering result background and

the actual clinical situation. The algorithm is based on the R package

“ConsensusClusterPlus”. PCA was used to identify the results of

consensus clustering, based on the R packages “limma”

and “ggplot2”.
Least absolute shrinkage and
selection operator

LASSO is an algorithm that filters variables through data

dimensionality reduction. By constructing a penalty function, it

can compress the coefficients of variables and change some

regression coefficients to 0, to achieve the purpose of variable

selection. In this study, the merging cohort was randomly divided

into a training dataset and a test dataset with a proportion of 1:1.

We used the LASSO algorithm to construct a robust and simple

prognostic model in the training dataset. The model formula can be
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used to calculate the risk score of each patient. The prediction

performance of the model can be judged by using the training

dataset and the test dataset for Kaplan-Meier (KM) analysis. The

above calculation flow is based on the R package “glmnet” (10).
Enrichment analysis

ssGSEA is an extension of the gene set enrichment analysis

(GSEA) method, which calculates the enrichment fraction (11) of

each sample and gene set pair. ssGSEA can calculate the final

enrichment score of a single sample based on the gene set, thus

judging the pathway or the activity of specific cells. We downloaded

the gene sets of immune cells from the ImmPort website (https://

www.immport.org/home). Through analysis of the immune cell

gene set, the ssGSEA algorithm can be used to evaluate the activity

of immune cells in each sample. GSVA, an algorithm of GSEA (12),

can classify samples unsupervised with respect to the changes of

pathway activity according to the amount of gene expression and

multiple pathway information. As a result of this analysis, we

obtained pathways with differences in different groups. Metascape

(http://metascape.org) integrates more than 40 bioinformatics

databases (13), including those related to biological pathway

enrichment analysis, protein-protein interaction network

structure analysis, and rich gene annotation functions.
CIBERSORT and ESTIMATE algorithm

CIBERSORT is a deconvolution tool for the expression matrix of

human immune cell subtypes based on the principle of linear support

vector regression (14). LM22 in CIBERSORT’s report is a signature

gene expression matrix used to estimate the proportion of white

blood cells in bulk RNA, where LM22 and bulk RNA are linked by

machine learning. When the bulk RNA data are entered into this

program, the proportion of immune cell infiltration can be calculated.

ESTIMATE is an algorithm for evaluating the purity of tumor

samples (15). Stromal score and immune score can be calculated

by estimating the expression matrix of tumor samples, which can be

used to represent the existence of matrix and immune cells. The

estimate score, which can be used to estimate the purity of the tumor,

can be obtained by adding the stromal and immune score.
Survival analysis

KM analysis, the most widely used method of survival analysis

at present, is a non-parametric method to estimate the survival

probability from the observed survival time. In the gene cluster and

SIGLECcluster, the subtype was used to taken KM analysis. On the

less of KM analysis, we used the R packet “survminer” and

“survival” to find the threshold of the best grouping of 14 genes,

and then divided them into two groups for KM analysis. In the

traditional way, the median value is usually used for truncation

value, but because each queue is inconsistent, the median value

cannot well reflect the packet, so we use the algorithm to get the best
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truncation value. The receiver operating characteristic (ROC) curve

is also known as the sensitivity curve; the grouping of points on

the curve reflects that they all respond to the same signal stimulus.

The area under curve (AUC) is defined as the area surrounded

by the coordinate axis under the ROC curve. When the AUC is

greater than 0.5, the classifier has a certain role. We used the ROC

curve to judge the prognostic ability of the model. Nomogram can

visually render the results of Logistic regression or Cox regression.

It establishes the scoring standard according to the regression

coefficients of all independent variables. For each patient, the

independent variable score can be added up to get a total score,

and the probability of the occurrence of the outcome time of each

patient can be calculated. Calibration curve and ROC curve can

evaluate the model accuracy of nomogram.
Immunohistochemical staining

We obtained melanoma tissue microarray (TMA) from Yunbaiao

Biotechnology. The chip contains 38 primary tumors, 10 metastatic

tumors, and 15 normal tissues. We first dewaxed and hydrated the

sections, then repaired the antigens, and then incubated the sections

with the first antibody overnight after blocking. The first antibody used

is: anti-SIGLEC9 antibody (# HEK293, His). The second day, the

biotinylated second antibody was added, and the film was sealed and

observed under the microscope. The slices are scanned and visualized

using a high-resolution digital slide scanner. Finally, Halo was used to

calculate the proportion of positive cells to all cells under each

tissue microscope.
Other analysis and statistical analysis

All of heat map in this study was prepared using the “pheatmap” R

package; the column scatter chart and violin chart were prepared using

“ggpubr” and “reshape2”; and the Sankey diagram was generated using

“ggalluvial”. GEPIA (http://gepia.cancer-pku.cn/index.html) is a

comprehensive analysis database of gene expression, GEPIA can be

used for gene difference analysis (16).

TISCH (http://tisch.comp-genomics.org/statistics/) is a tool for

single cell integration analysis. Melanoma single cell data GSE120575

was downloaded from GEO and analyzed with R package “seurat”

after data collation. Cbioportal (https://www.cbioportal.org/) is a

comprehensive gene analysis website, which can calculate the

correlation of target genes. The comparison between the two groups

was performed using the difference analysis algorithm “limma”, and

the correlation analysis was performed using the Spearman test.
Results

Analysis of point mutations and copy
number variation in Siglec family genes

We created a mutation waterfall map of Siglec family genes in

the TCGA-SKCM cohort (Figure 1A). The results showed that the
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mutation frequency of SIGLEC7 was the highest, reaching 8%;

SIGLEC1 and CD22 mutation frequencies were as high as 7%;

SIGLEC6, SIGLEC10, CD33, and SIGLEC5 mutation frequencies

were 6%; whereas SIGLEC15 and SIGLEC16 had no mutations,

suggesting that they were highly conservative. T > A is the main

point mutation found in Siglec family genes. Copy number analysis

of the TCGA-SKCM cohort revealed that the increase in the copy

number of SIGLEC9, SIGLEC7, CD33, SIGLEC10, SIGLEC8,

SIGLEC6, SIGLEC5, and SIGLEC14 was greater than the

frequency of loss (Figure 1B), while the opposite was true

for SIGLEC15.
Siglec family gene expression can predict
overall survival

We combined the cohorts of TCGA-SKCM and GSE91061 to

obtain data of 519 patients, of which clinical follow-up information

was available for 507 patients. The expression matrix of the Siglec

family genes was extracted and KM analysis was performed. The

results showed that 12 genes had statistical significance in

predicting overall survival (P < 0.05, Figure 2A), including

SIGLEC1, CD33, MAG, SIGLEC5, SIGLEC6, SIGLEC7, SIGLEC8,

SIGLEC9, SIGLEC10, SIGLEC11, SIGLEC14, and SIGLEC16; In the

analysis of disease specific survival (DSS), we found that SIGLEC1,

CD33, MAG, SIGLEC5, SIGLEC6, SIGLEC7, SIGLEC8, SIGLEC9,

SIGLEC10, and SIGLEC11 had statist ical significance

(Supplementary Figure 1); In the analysis of progression free

interval (PFI), we found that SIGLEC1, CD33, SIGLEC5,
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SIGLEC6, SIGLEC7, SIGLEC8, SIGLEC9, SIGLEC10, SIGLEC11,

and SIGLEC16. had statistical significance (Supplementary Figure

2). Also, the prognosis of the high expression group was worse than

that of the low expression group. Univariate analysis of these 14

genes showed that only MAG, CD22, SIGLEC15, and SIGLEC8

were statistically insignificant (Figure 2B); the others were

statistically significant, and were all protective genes with Hazard-

Ratio > 1. Siglec family genes have highly synergistic effects at the

expression level, and the positive correlation between genes

is obvious.
SIGLEC9 is mainly expressed in myeloid
cells and plays a role of immune activation
in melanoma

To further explore the potential value of these genes as markers,

we drew the box map of these genes, and the results showed that the

expression level of CD22, SIGLEC10, SIGLEC1, SIGLEC14,

SIGLEC7, SIGLEC9 was more than 2 (Supplementary Figure 3A).

We explored the differential expression of the SIGLEC family in

tumor and normal tissue in GEPIA and found that the content of

CD22, SIGLEC7, and SIGLEC9 in the tumor was higher than that in

normal tissue (Supplementary Figure 3B). Since CD22 has no

prognostic value in SKCM, we selected SIGLEC7 and SIGLEC9

for further analysis. We analyzed the expression of SIGLEC7 and

SIGLEC9 in single-cell data using the TISCH database and found

that SIGLEC7 was mainly expressed in NK, DC, and monocyte/

macrophage, and SIGLEC9 was mainly expressed in monocyte/
A

B

FIGURE 1

Analysis of mutation and copy number variation (CNV) of Siglec family genes. (A) Mutation waterfall. (B) The frequency of CNVs, green dots mean
CNV gain and red dots mean CNV loss.
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macrophage (Supplementary Figure 3C). We downloaded and

analyzed the GSE120575 data. According to the common marker,

the data set can be divided into T/NK, myeloid, B, and plasma cells

(Supplementary Figures 3D, E). Indeed, SIGLEC7 and SIGLEC9 are

highly expressed in the myeloid cells (Supplementary Figure 3F).

We went on to analyze the differences between the two genes in the

immunotherapy response group and the non-response group. It

was found that the expression of SIGLEC7 was very low in the

response group, while there was no difference in the expression of

SIGLEC9 between the two groups. We analyzed the expression of

SIGLEC9 in the melanoma microarray cohort (Figure 2C), which

contained 38 primary tumors, 10 metastatic tumors, and 15 normal

tissues. The TAMwas stained with SIGLEC9 antibody, and then the

proportion of positive cells to all cells was calculated by HALO
Frontiers in Immunology 05
software, which was used as the expression of SIGLEC9. In 38

primary tumors, the expression of SIGLEC9 in metastatic tumors

decreased significantly (Figure 2D). There was no difference in the

expression of SIGLEC9 between men and women (Figure 2E). We

compared the expression of the primary tumor, metastatic tumor,

and normal tissue, and found no significant difference, which may

be the reason for the small sample size (Figure 2F). The number of

metastatic tumors is higher than that of the other two groups, which

may be because most of the metastatic sites are lymph nodes and are

rich in immune cells. There was no correlation between the

expression of SIGLEC9 and age (Figure 2G). We found that most

of the cells which expressed SIGLEC9 in melanoma were clustered

together, but the more scattered expression was found in normal

tissues (Supplementary Figure 4A). So we speculate that SIGLEC9
D

A

B

E

F G

C

FIGURE 2

Survival analysis of Siglec family genes. (A) Kaplan-Meier analysis of 12 genes. (B) The results of Cox analysis of Siglec family genes and gene
coexpression network. (C) SIGLEC9 stained TMA. (D) The difference of SIGLEC9 between metastatic cancer and no-metastatic cancer in primary
cancer. (E) The difference of SIGLEC9 between male and female in primary cancer. (F) The difference of SIGLEC9 between different tissue type.
(G) The correlation between SIGLEC9 expression and age.
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may have a significant effect on immune cells. The genes

coexpressed by SIGLEC9 (cor > 0. 8, p < 0. 05) were calculated

by cbioportal. These genes were input into metascape for

enrichment analysis, and most of them were related to immune

activation pathways (Supplementary Figure 4B). The three core

modules were “regulation of cell activation”, “positive regulation of

immune response”, and “leukocyte activation”.
Siglec family genes can define
melanoma typing

The consensus clustering algorithm was used for clustering in

the merge queue (n = 519). With the increase of the consensus

index, the slope of the cumulative distribution curve slightly

decreased, and the degree of variability of consistent CDF was the
Frontiers in Immunology 06
largest (Figures 3A, B). This method produces the best clustering

result (Figure 3C), and the white part of the matrix heat map is

clean. We used these methods to form a Siglec cluster. Using this

typing to analyze the cohort with KM analysis, we found that the

prognosis of patients in the A cluster was significantly higher than

that of patients in the B cluster (Figure 3D). Heat map analysis

showed that 14 Siglec genes were overexpressed in the A cluster and

underexpressed in the B cluster (Figure 3E). In the group with high

expression of Siglec, enrichment was found in patients with low T

stage and low age. There was no significant relationship between

Siglec score and other clinical factors. We therefore defined the A

cluster as the high expression of Siglec (HES) subtype and the B

cluster as the low expression of Siglec (LES) subtype. Principal

component analysis (PCA) clearly grouped the HES and LES

subtypes, indicating the accuracy of the consistent clustering

algorithm (Figure 3F). Unsupervised clustering of HES and LES
D
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C

FIGURE 3

Siglec family genes can define melanoma typing. (A) The cumulative distribution curve corresponding to different K values. (B) The relative change in
the area under the curve of the cumulative distribution function (CDF). (C) The sample-consistent cluster diagram when K = 2. (D) Kaplan-Meier
(KM) analysis was carried out according to the Siglec cluster. (E) The expression heat map of Siglec family genes and the clinical information
distribution of the cohort. (F) Principal component analysis (PCA) of the Siglec cluster. (G) Enrichment result of the gene set variation analysis (GSVA)
pathway. (H) The single sample gene set enrichment analysis (ssGSEA) and evaluation scatter plot of immune cells. "***" means p < 0.001.
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by gene set variation analysis (GSVA) showed that many immune-

related Kyoto encyclopedia of genes and genomes (KEGG)

pathways were enriched in the HES cluster (Figure 3G). We

estimated an enrichment score of 23 immune cell gene sets in

each sample by single sample gene set enrichment analysis

(ssGSEA). Except for “CD56dim.natural.killer.cell” in both

groups, the enrichment scores of other immune cells were

significantly higher in the HES than in the LES subtype (Figure 3H).
Gene clustering can stratify prognoses

We analyzed the differences between the HES and LES cluster

groups and selected the genes with |logFC| > 2 and adjusted p-value
Frontiers in Immunology 07
< 0.05 to obtain a group of 181 genes. We used the Metascape

website for enrichment analysis of these genes. The first three

enrichment terms were “regulation of cell activation”, “leukocyte

activation”, and “immune effector process” (Figure 4A). Univariate

Cox analysis showed that of the 181 genes, 178 genes showed

significantly altered levels. The expression matrices of these 178

genes were extracted for consistent clustering, and the clustering

effect was the best when K = 2 was used (Figure 4B). The prognosis

of patients in gene cluster A was significantly better than those in

gene cluster B (Figure 4C). The heat maps of these 178 genes

showed that these genes were generally highly expressed in gene

cluster A and had strong consistency (Figure 4D). The expression

levels of the Siglec family genes in gene cluster A were significantly

higher than those in gene cluster B (p < 0.001, Figure 4E).
D

A
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E

C

FIGURE 4

Correlation analysis of differentially expressed genes in the Siglec cluster. (A) The results of enrichment analysis using Metascape. (B) Consistent
cluster analysis. The graph on the left shows the cumulative distribution curve, the middle graph shows the area change under the cumulative
distribution curve, and the figure on the right shows the clustering results of the samples at K = 2. (C) The results of gene clustering analysis. (D)
Heat map of gene expression related to genotyping. (E) Differential expression of Siglec family genes in gene cluster A and gene cluster. “***” means
p < 0.001.
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Robust prediction using the LASSO model

We used LASSO regression to construct a gene prognosis model

based on the results of Cox analysis of 178 genes that showed statistical

significance. The merged cohort was randomly divided into two

groups: training and test sets, and the training set was selected to

construct the prognosis model. With the increase of the lambda value,

the coefficients of some genes become 0, indicating that these genes

have little contribution to the model and can be omitted (Figure 5A).

We used 10X cross-validation to calculate the partial likelihood

deviance of the model. The prognostic ability of the model was the

best when the number of genes in the model was two. The calculation

formula of the model is: Risk score = SRGN* (- 0.1676) + GBP4*(-

0.1537). Using this formula, we generated a risk score for each patient.

The Sankey diagram shows that the HES cluster flows to the A cluster

and then flows to the low-risk group, but there is no difference in the

final survival ratio (Figure 5B). The expression levels of the Siglec
Frontiers in Immunology 08
family genes in the low-risk group were significantly higher than those

in the high-risk group, which was consistent with the previous gene

family univariate Cox analysis (Figure 5C). The risk score of the HES

cluster was significantly lower than that of LES cluster, and the risk

score of cluster A was also significantly lower than that of cluster B

(Figure 5D). KM analysis in the training set, the test set, and the

merging set showed that the patients could be divided into two groups,

and the overall survival rate of high-risk patients was lower than that of

low-risk patients (Figure 5E).We also took analysis in the DSS and PFI,

and the result shows risk-score can predict the DSS and PFI

(Supplementary Figure 5). At the same time, the ROC curve of risk

score was drawn for the three cohorts. In 1-/3-/5-year scenarios, the

AUC values were all greater than 0.5, indicating that the model has

certain prognostic ability (Figure 5F). In order to further improve the

accuracy of the model, we combined genetic model and clinical factors

to construct nomogram (Supplementary Figure 6). Calibration curve

and ROC curve show that the model has certain reliability and
D
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FIGURE 5

The genetic model can provide robust prediction. (A) On the left is the lambda and gene coefficient curve, every line means one gene, the gene’s
lambda is changing by coefficient; and on the right is the result of 10x cross validation, the relation between partial likelihood deviance. (B) Sankey
diagram for the Siglec cluster, the gene cluster, risk, and fustat, HES means high expression of Siglec, LES means low expression of Siglec, the ribbon
means the same sample. (C) Fourteen genes were expressed differently in the high-risk group and the low-risk group. (D) The scatter plot of risk
score difference between the Siglec cluster and the gene cluster. (E) Kaplan-Meier (KM) analysis was performed in the training set, the test set, and
the all set. (F) Receiver operating characteristic (ROC) curves of the training set, the test set, and the all set. *P<0.05, ***P<0.001.
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accuracy, and compared with the original model, the 1/3/5-year

survival rate prediction has been greatly improved.
Correlation analysis of risk score

We used the CIBERSORT algorithm to calculate the infiltration

ratio of 22 immune cells, and analyzed the Spearman correlation

with gene and risk score of the model. GBP4 was positively

correlated with CD8+ T cells and macrophage M1 levels but

negatively correlated with macrophage M0/2 (Figure 6A, p <

0.001). The risk score was negatively associated with CD8+ T

cells and macrophage M1 and positively correlated with

macrophage M0 (Figure 6B). We then used the ESTIMATE

algorithm to calculate stromal score, immune score, and
Frontiers in Immunology 09
ESTIMATE score in the merge queue. The three groups with

previous high-risk scores also had high scores in this analysis

(Figure 6C). The tumor mutation burden in the low risk group

was lower than that in the high risk group (Figure 6D). Finally, two

groups of mutation waterfalls were drawn, and the mutation

frequency of the low-risk group was higher than that of the high-

risk group (Figure 6E). Among them, MUC16 changes the most,

indicating that the gene is a protective gene.
Discussion

The overall incidence of cancer is declining, but the incidence of

melanoma continues to increase at a rate of approximately 3% per

year, causing severe public health problems and economic burdens
D

A B

E

C

FIGURE 6

Risk score correlation analysis. (A) Correlation analysis between GBP4, SRGN, and the level of immune cell infiltration. (B) The scatter plot of the
correlation between the risk score and CD8+ T cells, macrophage M1 memory macrophage M0, and macrophage M2. (C) Violin chart of ESTIMATE
score difference between high- and low-risk groups. (D) The left image shows the tumor mutation burden (TMB) difference analysis of the high- and
low-risk groups, and the right image shows the scatter plot of TMB and risk score. The red dot is cluster A and the blue dot is cluster B. (E) The
image on the left shows the point mutation waterfall of the high-risk group, and the image on the right shows the point mutation waterfall of the
low-risk group.
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(17). ICB therapy and targeted therapy for melanoma shows a good

remission rate; however, good prognostic markers are lacking. In

this study, we comprehensively analyzed the role of Siglec family

genes in melanoma using multiple datasets and found that

SIGLEC7 has a mutation frequency as high as 8%. Siglec genes

are protective factors of melanoma. Consistent clustering can divide

melanoma patients into a Siglecs high-expression group and a

Siglecs low-expression group, with the high-expression group

indicating a better prognosis. In short, Siglecs are a potential

therapeutic target and prognostic marker for melanoma.

The Siglec family genes play an important role in the occurrence

and development of melanoma. The mutation frequency of

SIGLEC7 is up to 8% in melanoma, whereas those of SIGLEC1

and CD22 are up to 7%. Siglec family genes play an important role

in tumor formation and may be some of the key genes that drive

normal cells to evolve into tumor cells. Siglec family genes are

thought to mainly act in immune cells (4), but little is known about

the mechanism of action in tumor cells. Copy number variation in

SIGLEC15 melanoma is mainly loss, whereas other Siglec family

genes are mainly acquired. SIGLEC15 is expressed in tumor cells,

and anti-SIGLEC15 mAb inhibitors can significantly upregulate the

immunosuppressive function of colorectal cancer in mice (18).

Although there are structural and functional similarities between

SIGLEC15 and PD-L1, the immunosuppressive mechanism

mediated by SIGLEC15 seems to be independent of the PD

pathway; therefore, SIGLEC15 is the most promising alternative

candidate for drug-resistant PD-L1 patients.

Siglec family genes are highly coexpressed, and the high

expression of most genes indicates a higher survival rate. Some

studies inhibit tumor growth through intravenous injections of

abiotic sialic acid on the surface of melanoma tumor cells to guide

the recognition and binding of SIGLEC1 by macrophages (19).

Studies also showed that macrophages expressing SIGLEC1 in the

subcapsular sinus provide the correct environment for melanoma

lymph node metastasis (20). However, other studies have shown

that SIGLEC1 can inhibit tumor growth, and SIGLEC1-positive

macrophages inhibit melanoma by limiting tumor-derived vesicle-B

cell interaction (21). SIGLEC1-positive macrophages are closely

related to T cell-mediated anti-tumor immunity (22). The degree of

infiltration of CD33-positive bone marrow cells may indicate a poor

prognosis of patients with melanoma (23). Most of the tumor-

infiltrating CD8+ T cells in melanoma specimens express SIGLEC9,

which binds to the ligands on the surface of tumor cells, thus

inhibiting T-cell response in the tumor microenvironment (24).

These studies focus on the expression of the Siglec gene in a single

immune cell, and the results show that Siglecs can help tumors

achieve immune escape.

The expression levels of Siglecs in this study represent the

overall level expressed in the tumor microenvironment, and Siglecs

are expressed in a variety of immune cells. Our analysis shows that

high expression levels of Siglecs suggest immune cell infiltration and

activation of immune-related signaling pathways. Infiltrating

immune cells can lead to a better prognosis for patients with

melanoma (25). This finding explains why the high expression

levels of Siglecs in the transcriptional group of melanoma bulk is
Frontiers in Immunology 10
associated with a better prognosis for patients. We further screened

SIGLEC9 for analysis and found that the gene was mainly expressed

on monocyte/macrophage. Immunohistochemical results showed

that the expression of the gene in early melanoma was higher than

that in advanced melanoma, indicating that the gene has a potential

prognostic protective effect. The enrichment analysis of the co-

expressed gene of gene showed that the gene may have a strong

immune activation. The analysis results are highly consistent with

the enrichment results of siglec-typing, indicating that the gene

plays a strong representative role in the Siglec gene family.

Siglec cluster classification is a prognostic marker of melanoma.

We used consistent clustering to obtain HES and LES clusters from

the Siglec family gene expression data. The HES cluster is

characterized by consistent and high expression levels of Siglecs,

which suggests a better clinical prognosis, whereas the LES cluster is

the opposite. Twenty-one types of immune cells (mainly B cells,

CD4+ T cells, and CD8+ T cells) in the HES cluster showed a high

level of infiltration. GSVA showed that the immune activation-

related signal pathway of the HES cluster was abnormally activated,

whereas the opposite was true for the LES cluster. Fourteen Siglec

genes were overexpressed in the A cluster and underexpressed in

the B cluster, and these genes showed very strong co-expression,

strengthening the clustering results.

To further explore the differences between groups contained in

the Siglec cluster, we analyzed the differences in the expression

profiles of A and B clusters. We enriched and analyzed the

identified genes, and the results showed that these genes were

mainly involved in the activation of immune cells, including innate

and adaptive immune cells. Tumor samples can still be grouped by

using these genes for unsupervised clustering again, and both Siglecs

and differentially expressed genes were consistently highly expressed

in the A cluster. These differentially expressed genes may have a very

close interaction with Siglecs. Moreover, we used these genes for

LASSO regression analysis to construct the risk scores of SRGN and

GBP4. The risk scores were successfully verified by both the training

set and the test set. The predictive performance of this model is

similar to that of the Siglec cluster, but it has a stronger clinical

application prospect because of the small number of genes. GBP4 was

positively correlated with CD8+ T cells and macrophage M1 levels

but negatively correlated with macrophage M0/2 levels. GBP4 is a

guanosine monophosphate binding protein, and many studies have

shown that GBP4 is a good prognostic marker for melanoma (26, 27).

The detection of these markers in tumor tissues and patients’ sera

revealed that melanoma has an obvious heterogeneity due to which

the markers found are not universally applicable (28). The Siglec

cluster developed in this study and the gene cluster and risk score

based on the Siglec cluster have a very strong prognostic effect and

have potential clinical application value.

Although this study uses multi-omics to analyze the role of the

Siglec family genes in melanoma, there are still some

shortcomings. First, this study is based on the bulk data of

tumor tissue, without specific analysis of Siglecs in immune

cells; second, the typing and model constructed need an

expanded clinical cohort for verification; third, although our

findings show that Siglecs play an important role in the
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occurrence and development of melanoma, further experiments

are needed to elucidate the mechanism.
Conclusion

We systematically analyzed multiple sets of data pertaining to

Siglec gene family expression in melanoma. We found that Siglecs

have a high mutation frequency and that a higher expression levels

of Siglecs indicated better prognosis among patients. We believe the

mechanism of action of Siglecs may involve immune cell infiltration

and immune signal pathway activation. Our work points to Siglecs

as both important prognostic markers for creating individualized

treatment plans for patients, as well as drug targets to treat this

aggressive and fatal disease.
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SUPPLEMENTARY FIGURE 1

KM analysis of siglec-family in DSS.

SUPPLEMENTARY FIGURE 2

KM analysis of siglec-family in PFI.

SUPPLEMENTARY FIGURE 3

The analysis of SIGLEC7 and SIGLEC9.b (A) The expression of sigle family in

TCGA. (B) The different expression in tumor and normal tissue. (C) SIGLEC7
and SIGLEC9 express in different cell subtypes. (D) The heatmap of marker in

different clusters. (E) The umap of scRNA in melanoma. (F) On the left is the
gene expression map shown using the umap diagram, in the middle is the

violin map of the gene under different cell type, and on the right is the violin
map of the gene in response to therapy.

SUPPLEMENTARY FIGURE 4

The IHC results of SIGLEC9. (A) The view of tissue under 5x and 20x. (B) The
enrichment result of gene set which has correlation with SIGLEC9 expression.
The color of dots means the gene sets. The term under the blue line means

the most center module in the network of enriched terms.

SUPPLEMENTARY FIGURE 5

KM analysis of risk score in PFI and DSS.

SUPPLEMENTARY FIGURE 6

The construction of nomogram. (A)Nomogram of clinical factors and genetic

model. (B) Calibration curve. (C) The ROC curve of genetic model
and nomogram.
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