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In the present scenario, immunization is of utmost importance as it keeps us safe

and protects us from infectious agents. Despite the great success in the field of

vaccinology, there is a need to not only develop safe and ideal vaccines to fight

deadly infections but also improve the quality of existing vaccines in terms of partial

or inconsistent protection. Generally, subunit vaccines are known to be safe in

nature, but they are mostly found to be incapable of generating the optimum

immune response. Hence, there is a great possibility of improving the potential of a

vaccine in formulation with novel adjuvants, which can effectively impart superior

immunity. The vaccine(s) in formulation with novel adjuvants may also be helpful in

fighting pathogens of high antigenic diversity. However, due to the limitations of

safety and toxicity, very few human-compatible adjuvants have been approved. In

this review, we mainly focus on the need for new and improved vaccines; the

definition of and the need for adjuvants; the characteristics and mechanisms of

human-compatible adjuvants; the current status of vaccine adjuvants, mucosal

vaccine adjuvants, and adjuvants in clinical development; and future directions.
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Introduction

The invention of vaccines has been considered as one of the triumphs of medical

research. Immunization not only stops the spread of infection during childhood but also

provides a lifetime of protection against some diseases. However, the scientific community

continues to face challenges in developing ideal vaccines against many infectious diseases, i.e.,

plague, tuberculosis, malaria, human immunodeficiency virus (HIV), and severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), due to immunological barriers such as

inadequate immune response and weak immunological memory against vaccines (1–3).

Apart from these obstacles, vaccine safety issues such as adverse effects in a population

suffering from rare genetic disorders, systemic and local reactogenicity caused by diphtheria
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and tetanus toxoids along with whole cell pertussis (DTwP), and

waning immunity shown by diphtheria and tetanus toxoids along

with acellular pertussis (DTaP) (4) have been considered

unacceptable, which further increases the impact of the challenge to

solve the vaccine problem for emerging or reemerging disease threats.

These challenges warrant new strategies that can help to understand

immune responses for immunization and introduce new ways to

induce robust immunity without sacrificing quality and safety (5).

The worldwide scientific community has recently witnessed

significant disease outbreaks, i.e., SARS in 2003, the H1N1

influenza pandemic of 2009, Ebola virus in 2014 (6), the plague in

Madagascar in 2017 (7), the Nipah outbreak in India in 2018 (8), and,

the most notable thus far, the ongoing COVID-19 pandemic (9). In

2014, the Ebola epidemic created huge panic in developed countries as

the mortality rate was found to be quite high in West African

countries (10). These incidences force the scientific community not

only to be alert but also to open up new avenues in pursuing new

strategies to elucidate the mechanistic approach to develop an

effective vaccine against these emerging pathogens (11). At present,

the ongoing COVID-19 pandemic has greatly affected human lives

worldwide and devastated the global economy; therefore, the scientific

community at large is busy developing an effective and safe vaccine

against SARS-CoV-2 (12).

Currently, inactivated, live-attenuated, subunit, and nucleic acid-

based vaccines are the four types of vaccines available for the human

population (13, 14). Live-attenuated vaccines comprise the whole

pathogen that can replicate in the host body and induce strong

immune responses. Live-attenuated vaccines have been observed to

be the most effective against polio, Measles, Mumps and Rubella

(MMR), chicken pox, influenza, rotavirus, and yellow fever. Killed

whole-pathogen vaccines are inactivated by heat or chemicals

[inactivated polio (Salk) and hepatitis A], are noninfectious, and are

mostly safe. Inactivated (killed) vaccines have been observed to

induce weak and short-term immunity, thus the need for boosters

to achieve complete protection (15). It has been found that DTwP

from India, which is a kind of licensed inactivated vaccine, bypasses

waning immunity and shows long-term protective efficacy (4, 16).

Similar to inactivated whole-pathogen vaccines, purified or

recombinant subunit vaccines do not contain live components of the

pathogen, but they consist only of the antigenic parts of the pathogen,

which makes them different from the former. Subunit vaccine antigens

have been poorly immunogenic, hence the need to add components to

enhance their protective immunity. Subunit vaccines sometimes use

epitopes that are shown to identify and interact with T cells or

immunoglobulins. Subunit vaccines have been generally documented

safe in terms of toxicity and reactogenicity, as subunit vaccines

comprise purified or recombinant antigens rather than the whole cell

(17). There are a few very successful examples of subunit vaccines, such

as hepatitis B virus (HBV), influenza virus (injection), and pertussis

vaccines. The developed subunit vaccines have been found to be poorly

immunogenic, and thus, multiple boosters and suitable adjuvantation

are necessary to augment their protective potential. Recently, mRNA

vaccines (nucleic acid-based vaccines) have been found to play an

important role during the COVID-19 pandemic. These mRNA-based

vaccines provide good immune response by directing the production of

antibodies, thus preventing serious complications (18).
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The need for adjuvants

Adjuvants were first discovered in 1920 by Gaston Ramon, a

French scientist who observed in his findings that the inclusion of

aluminum salts to vaccines enhanced their potential. The term

“adjuvant” originated from the Latin word adjuvare, which means

“to help.” Adjuvants are generally not immunogenic, but they

modulate the immune responses in formulation with the given

vaccines, thus not only reducing the required dose of vaccine but

also extending immune memory. Typically, the vaccines are

formulated with suitable adjuvants to augment the immune

responses to the administered vaccine antigen to evaluate the

potential to halt the contagion. Another important role of adjuvants

is to direct humoral and cell-mediated immune responses to generate

pathogen-specific immunity (19–22).

At present, adjuvants are exploited (a) to augment the immune

response to the given vaccine and enhance the antibody response and

the number of recipients that were vaccinated; (b) to enhance rates of

seroconversion in individuals with diminished responsiveness due to

age, illness, or therapeutic interventions, e.g., the use of the adjuvant

MF59 with the influenza vaccine to improve/increase the response in

aged individuals (23, 24); and (c) to reduce the dose and the number of

boosters of vaccine antigens (25–27) as the ability of an adjuvant to

allow comparable responses with considerably lower amounts of

vaccine antigen might be crucial in regions where vaccine production

facilities are limited and immunization is urgent in public in general.

The demand for vaccines with multiple boosters poses noteworthy

challenges worldwide. Adjuvants can decrease the number of required

boosters to provide complete protection (26–28) (Figure 1).

Another reason for formulating a vaccine with an adjuvant is to

attain qualitative modulation of the immune response. Adjuvants are

used to a greater extent for underdeveloped vaccines to modulate

types of immune responses that are not effectively stimulated by

vaccine antigens without adjuvants. Adjuvants are used in preclinical

and clinical studies (i) to provide functionally suitable immune

responses (e.g., humoral or cellular, Th1, Th2, and Th17);

furthermore, it has been observed that balanced Th1/Th2/Th17

responses increase the duration of T-cell responses and prolong

mouse survival (29–33); (ii) to enhance long-term memory cells

(e.g., T-cell memory) (34–36); (iii) to provide the initial rapid

response that can be essential in a pandemic (37–39); and (iv) to

modify the breadth, specificity, or affinity of the response (39, 40)

(Figure 1). In this review, our main objective is to focus on the

modulation of the immune response using various adjuvants.
Characteristics and mechanisms
of action

Aluminum salts (alum)

Aluminum salts have been clinically approved, and they are the

most widely used adjuvants in human vaccines. These adjuvants are

made up of the precipitates of aluminum phosphate and aluminum

hydroxide for the adsorption of vaccine antigens. Brenntag Biosector,

Chemtrade, and SPI Pharma™ are some of the manufacturers that
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prepare these formulations. Alhydrogel®, Rehydragel™, and Adju-

Phos® are tradenames of alum that are available in the market (41).

Aluminum salts as adjuvants have been utilized for more than 80

years in vaccine research and usually stimulate the Th2 type of

immune response (42, 43). Alum has been approved as a

component of licensed human vaccines, i.e., Haemophilus

influenzae type b (Hib), both hepatitis A and B viruses, tetanus,

meningococcal virus, human papilloma virus (HPV), diphtheria, and

the most recent SARS-CoV-2 (11, 41, 44–47). The mechanism of

action of alum is almost known, and it is now clear that depot

formation is not an essential step for the activity of alum as an

adjuvant (48–50). Alum as an adjuvant primarily evokes innate

immunity (50–52). Alum stimulates B-cell differentiation to

augment antibody production (53). It is also well documented that

alum stimulates the Th2 type of immune response in mice, but in

humans, almost all the vaccine antigens in formulation with the alum

adjuvant induce a mixed type of response, i.e., Th1 and Th2 (54, 55).

Alum triggers the NLRP3 inflammasome to express interleukin (IL)-

1b after in vitro priming of macrophages and dendritic cells (DCs)

with lipopolysaccharide (LPS) (56). However, in vivo, the

adjuvanticity of alum does not support the data (50, 51). It has

been observed that alum stimulates the Th2 type of immune response

and produces IL-4, IL-5, IgG1, and IgE (43, 57). Another functional

activity performed by alum is the initiation of a signaling cascade by

using DCs to carry out actin-mediated phagocytosis that leads to the
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activation of two kinase proteins (Src and Syk), which, in turn,

mobilizes Ca2+ and finally activates the transcription factor NFAT

(calcineurin-nuclear factor of activated T cells), resulting in the

production of IL-2 (33, 58–60). In addition, alum mediates its

adjuvanticity by activating the cascade of complement proteins (41,

61–63). Alum as an adjuvant is highly advantageous due to its safety,

vaccine antigen stabilization, and the modulation of high-production

and long-lasting antibody titers. Vaccines that have been formulated

with an alum adjuvant cannot be filter sterilized, lyophilized, or

frozen (64).
Adjuvants in emulsion forms (oil-in-water)

MF59 and AS03 adjuvants
MF59 is a highly safe and effective oil-in-water emulsion of

squalene oil. Unlike Freund’s adjuvants, squalene is more readily

metabolized and highly purified for vaccine development. Recently,

MF59 has been licensed by Fluad™ (Seqirus, Melbourne, Australia)

as an important component of flu vaccine for old people, and it has

also been successfully used in infants and children later on (65, 66).

Apart from this, it was also licensed to be used as a pandemic vaccine

against H1N1 in children, infants, and pregnant women (67). It is

evident from the findings that the MF59 adjuvant trivalent inactivated

influenza vaccine (TIV) elicited a strong humoral and cellular
FIGURE 1

Schematic representation of vaccine adjuvants and their benefits.
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immune response in infants in comparison to non-MF59 adjuvanted

influenza vaccines (68, 69). The formulation of MF59 significantly

modulated the weak efficacy of the influenza vaccine in infants.

Subsequently, the HBV vaccine in formulation with the MF59

adjuvant was observed to induce a 100 times stronger immune

response in comparison to alum (70). Similar to other adjuvants,

the mechanism of action of MF59 is not yet fully elucidated. The

effectiveness of the MF59 adjuvant does not depend on the formation

of a depot at the site of vaccination because of the short half-life of

MF59 (49, 71). However, the MF59 adjuvant has shown the potential

to elicit a strong IgG and cell-mediated immune response (72).

Moreover, MF59 can induce monocytes, macrophages, and DCs to

express and secrete chemokines, i.e., CCL4, CCL2, CCL5, and CXCL8,

which recruit more leukocytes for the reuptake of more vaccine

antigens. Finally, this differentiation converts immune cells into

antigen-presenting cells (APCs). Furthermore, these APCs migrate

to lymph nodes where they induce an adaptive immune response as

shown in Figure 2 (67, 73, 74).

AS03 is also an oil-in-water emulsion adjuvant that includes

squalene, a-tocopherol, and polysorbate 80 (75). The inclusion of

a-tocopherol into the AS03 formulation made it different from other

oil-in-water emulsion adjuvants (76). AS03 was first used in

formulation with a vaccine against malaria (77). Recently, this

adjuvant has been used for human vaccination against influenza.

Recent clinical trials have shown that the AS03 adjuvant with the

influenza vaccine elicited a strong immune response (78). In addition,

the AS03 adjuvant vaccine was found to induce a robust immune

response in infants as well (79). Furthermore, AS03 evokes immunity

by stimulating Nuclear factor kappa B (NF-kB), a proinflammatory

cytokine, and chemokines. Later, it recruits immune cells such as

monocytes and macrophages. The advantage of applying this

adjuvant in formulation with the pandemic vaccine is its capability

of generating a strong humoral immune response with a lower dose of

vaccine antigen, i.e., 3.75 or 7.5 mg per strain in comparison to 15 µg

per strain in conventional trivalent inactivated influenza vaccines.

Since 2009, ~4.7 million doses of AS03-adjuvanted A(H1N1) vaccines

have been injected in children (80, 81).

Army liposome formulation
This formulation was developed by the U.S. military, made up of

cholesterol and liposomes containing saturated phospholipids and

monophosphoryl lipid A (MPLA) (82). There are improved versions

of army liposome formulation (ALF), i.e., ALF adsorbed to aluminum

hydroxide (ALFA), ALF containing the QS21 saponin (ALFQ), and

ALFQ adsorbed to aluminum hydroxide (ALFQA) (83, 84). It has

been found that the vaccine candidate circumsporozite protein of

Plasmodium falciparum adjuvanted with ALFA imparted adequate

humoral and cellular immune responses (85). The WRAIR (Walter

Reed Army Institute of Research) malaria vaccine branch developed

and tested the protective efficacy of FMP013 (falciparum malaria

protein-013) and FMP014 (a self-assembling protein nanoparticle)

SAPN (two new synthetic malarial antigens) with an ALFQ adjuvant

(86–88).

Recombinant gp120 adjuvanted with ALFA induced cross-

reactive antibodies against different subtypes of HIV-1 (89). As

regards ALF and ALFQ in formulation with the recombinant HIV-

1 envelope gp140 protein, ALF induces a dominant Th2 type of
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immune response, while ALFQ induces a more balanced Th1 and Th2

type of immunity (90, 91). In addition, the ALFQ adjuvant activates

innate immune responses, upregulates APOBEC3 (apolipoprotein B

mRNA-editing enzyme catalytic polypeptide-like family), an anti-

HIV protein, and maintains a proinflammatory environment, as a

result of which, MDMs (monocyte-derived macrophages) that are

permissive to HIV-1 infection become capable of restricting HIV-1

infection (92).

Virosomes (lipids and glycoproteins)
Virosomes display the attributes of an adjuvant system and are

known for their biodegradable and nontoxic qualities. Generally,

virosomes do not generate anti-virosome antibodies (93).

Virosomes are small spherical unilamellar lipid membrane vesicles

(150 nm) embedded with viral envelope proteins, such as

neuraminidase and hemagglutinin of the influenza virus. These

proteins are integrated into phosphatidylcholine bilayer liposomes.

These prepared virosomes are devoid of nucleocapsid including the

genetic material of the source virus (94). These proteins facilitate

virosome membranes to bind with cell receptors, mediating pH-

dependent fusion with immune cells. Consequently, virosomes

transport their contents, i.e., vaccine antigen(s), directly to their

target cells, evoking an antigen-specific immune response yet

carrying a weak immunogenic antigen (95). Virosomes are virus-

like particles that allow the presentation of vaccine antigen to both

major histocompatibility complex (MHC) class I and class II to elicit

both B-cell and T-cell immune responses (95–99).

The types of immune response evoked by the virosome adjuvant

system depend on whether the antigenic epitopes are outside or inside

the virosome. There are few established examples such as PeviPRO™,

which induces a humoral immune response (27). The antigen is

degraded in endosomes of the cell and, hence, mainly generates an

MHC II antigen presentation. PeviTER™ formulated antigens not only

elicit a CD4+ and CD8+ T-cell immune response but also generate a

strong cytotoxic T lymphocyte (CTL) response. Virosome adjuvant

system encapsulation presents vaccine antigens via the MHC I route

because the antigen is delivered naturally into the APC cytosol (95).

The approved vaccines such as Epaxal® (for hepatitis A) and

Inflexal®V (for influenza) (100) have successfully proven the

excellence of virosomes. Thus far, these hepatitis A (Epaxal®) and

influenza (Inflexal®V) vaccines have been authorized to be used in

more than 45 countries, and more than 10 million people have been

immunized to date. This new generation of vaccines offers additional

benefits because they are effective even in immunosuppressed patients

and in infants (101). Furthermore, they have a high safety profile as

embedded viruses do not replicate. To the best of our knowledge,

virosomes are no longer licensed to be used in humans.

AS04 (alum-adsorbed TLR-4 agonist)
To develop the novel adjuvant systems, aluminum salts have been

used, mainly consisting of different Toll-like receptor (TLR) agonists

absorbed on alum. Adjuvant system 04 (AS04) has already been

approved for use in formulation with HPV (Cervarix) and HBV

(Fendrix) vaccines. This adjuvant system includes alum in

formulation with LPS that mainly constitutes 3-O-desacyl-4′-
monophosphoryl lipid A (MPLA) from Salmonella minnesota. It is

documented that MPLA retains the ability to stimulate innate
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immunity by interaction with TLR-4 (54). It further leads to induce

NF-kB signaling and produce pro-inflammatory cytokines and

chemokines that recruit the immune cells at the vaccination site

and draining lymph nodes. An increase in the number of monocytes

and DCs has been observed within a few hours of vaccination where

they interact to stimulate antigen-specific T and B cells for strong

cellular and humoral immune responses. There is no synergistic effect

shown by alum with MPLA; however, a comparative study of MPLA

and AS04 revealed that alum extends the cellular responses evoked by

MPLA at the vaccination site. Hence, research findings suggest that

the AS04 adjuvant induces innate immune responses by stimulating

TLR-4 (54). The AS04-adjuvanted HBV vaccine elicits innate

immune responses in humans (102). An elevated level of IL-6 and

C-reactive protein was observed in the AS04-adjuvanted HBV

immunized serum in comparison to the alum-adjuvanted HBV

immunized serum. Yet, higher HBs Ag-specific T cells and

antibodies were reported than those induced by the HBV vaccine in

formulation with alum (103). Both HBV and HPV vaccines in

formulation with AS04 elicit stronger humoral immune responses

in comparison to the same vaccines when formulated with the alum

adjuvant, signifying the importance of the TLR4 agonist MPLA

adjuvant for human use (103–105).
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RC-529 adjuvant
Sequential acid and base hydrolysis of LPS generates an MPLA

that is known to retain various immunostimulatory functions of LPS.

In vitro studies have shown that MPLA activates and stimulates the

maturation of DCs and upregulates the human leukocyte antigen‐DR,

CD80, CD86, CD40, and CD83 (106). MPLA is also known to induce

the expression of Th1 and Th2 cytokines (106, 107) and augment the

antigen-specific Tc cell response (108, 109). MPLA is an approved

adjuvant and has been used in hepatitis B vaccine formulations. After

this, synthetic mimetics such as aminoalkylglucosaminide 4-

phosphates (AGPs) were characterized, and it was observed that

they activate innate cells such as macrophages, DCs, B cells, and

APCs. One such AGP compound, RC-529, was observed to activate

the signal via TLR-4 and upregulate the costimulatory molecules on

the cell surface including cytokines and chemokines (107). RC-529

was found to be an effective adjuvant in a clinical trial in which

healthy volunteers were administered with a vaccine formulation

against hepatitis B. In comparison to alum, RC-529 induced a

significantly high production of antibodies in subjects who were

administered with the vaccine formulation (108, 110). MPLA’s

synthetic mimetic RC-529 was observed as safe and effective in

clinical trials (111).
FIGURE 2

MF59 adjuvant and its mechanism of action. At the injection site, MF59 adjuvant-activated macrophages secrete the chemokines that stimulate and
recruit the immune cells. Differentiation converts immune cells into antigen-presenting cells to activate B and T cells to impart strong humoral and
cellular immune responses.
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Mucosal vaccine adjuvants

These adjuvants evoke the innate immune system of the host and

help to provide protection against pathogens. Whole-cell-based

vaccines using live-attenuated or killed pathogens usually consist of

endogenous adjuvants, such as the products of the bacterial cell wall

and their genomic DNA/RNA. These adjuvants act as pathogen-

associated molecular patterns (PAMPs) and are adequate to stimulate

adaptive immunity. However, subunit vaccines usually miss, or are

unable to induce, an innate immune response, and thus, the inclusion

of an adjuvant is essential to deliver successful vaccines (112). Most of

the pathogens enter the host via either the intranasal or the oral route.

Therefore, an effective mucosal vaccine is of utmost importance to

prevent such kinds of mucosal transmitted diseases. The mucosal

vaccine, in comparison to the intramuscular/subunit vaccine,

provides noteworthy benefits such as low cost, noninvasiveness,

and, most importantly, very low risk of transmission of blood-

borne infections, especially to young children. However, due to the

lack of ideal mucosal adjuvants, only a few mucosal vaccines are

approved for human use (113).

Generally, mucosal adjuvants have two roles: first, they act as

delivery vehicles, and second, they act as immunostimulatory

molecules. However, some mucosal adjuvants exhibit the

characteristics of both immunostimulators and delivery systems,

such as chitosan and its derivatives (114). It is documented that

mucosal adjuvants can stimulate protective local and systemic

immunity that is crucial for successful mucosal immunizations

against various infectious diseases (115–118). In addition, mucosal

adjuvants perform many vital roles to provide protection against

infections at distant as well as local sites. For example, Cytosine-

phosphorothioate-guanine (CpG) oligodeoxynucleotides act as

effective mucosal adjuvants for vaccinations via the nasal route

against pathogens transmitted by blood transfusion and sexual

activities (119, 120). Moreover, mucosal adjuvants are strong

stimulators of immunity against tumors (121, 122). Among many

mucosal adjuvants, the agonists of TLR and mutant enterotoxins are

the two most appealing types because they are not only effective but

also comparatively safe (115). So far, bacterially derived Adenosine

diphosphate (ADP)-ribosylating enterotoxins are the most

characterized mucosal adjuvants. This class of adjuvant comprises

Escherichia coli heat-labile enterotoxin (LT), cholera toxin (CT), and

mutants/subunits of LT and CT. These toxins stimulate an antigen-

specific cellular and humoral immune response that includes CTLs,

Th1, Th2, and Th17. Most importantly, these adjuvants stimulate

antigen-specific IgA antibodies and long-lasting memory cells to

vaccine antigens when administered via the mucosal route (123).
How do heat-labile toxin/double-
mutant heat-labile toxin mucosal
adjuvants work?

The mucosal adjuvant LT is a polymeric protein of 84 kDa. This

adjuvant retains an active form as AB5 that contains an A subunit and

a pentameric B subunit. dmLT is a mutated form of its parent

molecule LT (124, 125). The adjuvant dmLT immunomodulates the
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systemic as well as mucosal immune responses specific to the vaccine

antigen after vaccination via the mucosal or parental route. It can

simply be formulated with vaccine antigen(s) in an aqueous buffer.

Due to the dual approach of the adjuvant, i.e., immunostimulatory

characteristics and universal cell binding, the cell uptake of vaccine

antigen(s) are many-fold high, and that is how the mucosal immunity

is enhanced. This is the most suitable approach to deliver vaccine

formulations, particularly for subunit vaccines to unapproachable

sites, and specifically for sublingual (s.l.), oral (p.o.), and

transcutaneous (t.c.i.) delivery. These strategies not only are needle-

free but also reveal the capacity to enhance ease of administration and

compliance. Moreover, it reduces the risk of transmission of the

diseases from vaccinations using risky injections (126–129). The

dmLT adjuvant evokes a strong Th17 response specific to the

vaccine antigen and induces IL-17, and it provides protection

against infections mainly in mucosal sites (130). The expression of

IL-17 helps to increase the transport of secretory sIgA antibodies into

the lumen of mucosal tissue by inducing B-cell differentiation into

IgA-secreting cells (131–134). The dmLT adjuvant also stimulates the

mucosal immune responses after parenteral vaccination (135–139).

However, these studies have been tested only in animal models, and

the use of this adjuvant in humans is yet to be determined.

LT, CT, and their related mutants have been very well

characterized in the recent past (139–141). The subunits of the

active form AB5 of LT or CT adjuvant function uniquely. Subunit

B binds to the receptor and leads the entry into the cell. During

mucosal vaccination, the B subunit helps in transporting the vaccine

antigens throughout the mucosal sites (142). Subunit A is responsible

for binding to ADP-ribosylation factors (ARFs), and ADP ribosylates

Gsa, which results in an accumulation of Cyclic adenosine

monophosphate (cAMP). Then, LT stimulates the activation of

DCs, the expression of cytokines, and the stimulation of Th17

response (142, 143). It is also documented that the use of subunit A

of LT alone evokes a mixed Th1/Th2/Th17 type of immune response

but has a weaker impact than the active AB5 form of LT. The use of

subunit B evokes a Th2/T regulatory cell (Treg)-skewed response

(144). However, toxicity has always been a concern for

these adjuvants.

How does the dmLT adjuvant induce the immune system?

Figure 3 depicts the immunologic cascade. (I) At the vaccination

site, after the uptake of the vaccine antigen, the activation of the

innate immune system takes place. The epithelial cells secrete

cytokines and chemokines such as IL-8 and granulocyte colony-

stimulating factor (G-CSF). (II) The DCs are recruited to the

vaccination site and activated for antigen processing and

presentation to the major histocompatibility complex (Ag-MHC).

The upregulation of CD80 and CD86 and the secretion of polarizing

cytokines, e.g., IL-1, IL-23, IL-6, and G-CSF, take place. (III) The

activated DCs carrying the vaccine antigen then migrate to the

secondary lymphoid organs and facilitate the differentiation of

antigen-specific T helper and B cells into plasma cells secreting IgA

and IgG antibodies. Finally, a mixed Th1/Th2/Th17 type of immune

response is imparted with specifically strong stimulation of Th17 cells

(124, 145–147) and mucosal homing markers (135). It has been

documented that Th17 cells are an essential part of immunity for

promoting germinal center formation in secondary lymphoid organs

and for augmenting IgA antibody secretion (132–134).
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The stimulated DCs by an LT/dmLT adjuvant induced a very high

Th17 type of immune response due to the activation of caspase 1

inflammasome and, later, the expression of chemokines and cytokines

such as IL-1 and IL-23. A scientific study reported that murine DCs

activated with LT induced the expression of IL-1b, which is essential

for the production of Th17 cells (148). Re-stimulation of human

Peripheral blood mononuclear cells (PBMC) of immunized

individuals with vaccine antigens in formulation with dmLT

augmented the expression of IL-17A and IL-13 (146). In summary,

a defined series of events takes place after immunization with a

vaccine antigen in formulation with dmLT, which is an effective

stimulator of APCs and vaccine immunity (123).
TLR agonists as a mucosal
vaccine adjuvant

Vaccines in formulation with TLR ligand-based adjuvants

trigger and activate an innate immune response that helps in the

augmentation of a protective potential imparted by the vaccine

candidate. TLR-based adjuvants require an additional adaptor

protein, MyD88, which stimulates APCs and B cells for antibody
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production. In addition, MyD88 signaling also induces germinal

center formation that is imperative to produce antibody-secreting

cells (149). TLR ligand-based adjuvants include the TLR9-

dependent adjuvant CpG DNA (CpG) and the TLR2-dependent

adjuvant Porin B (PorB), both of which require MyD88 for proper

stimulation of APCs. CpG is an unmethylated bacterial DNA motif

while PorB is an outer-membrane protein of Neisseria meningitides.

It is documented that TLRs are expressed on APCs, including

macrophages, DCs, and B cells. Therefore, the main purpose of

using a TLR agonist in vaccine preparation as an adjuvant is to

stimulate these cells to impart a robust immune response, linking

innate and adaptive immunity (149). Various ligands for TLR4 have

been not only used in preclinical studies but also approved by the

Food and Drug Administration for clinical trials like Bacillus

Calmette–Guerin (BCG) and MPLA. LPS, a well-known ligand for

TLR4, was used as an inducer of acute inflammation in vivo for

tumor regression in a mouse model (150). It has been reported that

the TLR4 agonist, a second-generation lipid adjuvant like SLA-SE,

promotes an increment in mucosal antibodies elicited by

intramuscular immunization with an enterotoxigenic E. coli

(ETEC) vaccine antigen in a mouse model (151). To test the

efficacy of L-pampo, a combination of TLR1/2 and TLR3 agonists
FIGURE 3

Mechanism of action of the dmLT adjuvant. (I) At the vaccination site, the dmLT adjuvant stimulates the innate immune response and activated epithelial
cells secrete IL-8 and G-CSF. (II) Dendritic cells (DCs) are activated and recruited at the injection site where they process and present the antigen. It also
upregulates the costimulatory molecules, i.e., CD80 and CD86, and stimulates the expression of IL-1, IL-6, IL-23, and G-CSF. (III) The activated DCs
migrate to secondary lymphoid organs where they stimulate the differentiation of antibody-secreting plasma B cells and the generation of antigen-
specific Th cells. Overall, a strong Th17 immune response is imparted. Th17 cells are identified as essential in immunity and in stimulating germinal center
formation in secondary lymphoid organs as well as in enhancing IgA secretion.
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for the SARS-CoV-2 ferret model was utilized, which elicited a

vigorous humoral and cell-mediated immune response (152). More

recently, an orally administered SARS-CoV-2 vaccine (VXA-CoV2-

1), which is currently in Phase III clinical trial, used the double-

stranded RNA adjuvant, which basically targets TLR3 and helps in

the activation of the DC population owing to this receptor. The

adjuvant used in this study not only broadens the pattern

recognition receptor (PRR) target range but also is a promising

alternative to toxoid-based adjuvants for oral vaccination (153). In

our opinion, this advancement in adjuvant discovery for mucosal

immunity can offer a new hope for combating pathogenic strains

and can achieve a successful vaccine design.
The current status of adjuvants and
clinical trials

Safety has always been a great concern in the process of

developing novel vaccine adjuvants; therefore, many adjuvants have

been comprehensively evaluated in both preclinical and clinical

studies. A very commonly used adjuvant, e.g., alum, has been

approved in the United States. Alum-adjuvanted vaccines were

approved more than 70 years ago. Influenza vaccine in formulation

with the emulsion-based vaccine adjuvant MF59 was permitted in

1997 and marketed in Europe. In addition, an emulsion-based vaccine

adjuvant such as AS03 was adjuvanted with the influenza vaccine and

licensed in 2009. Virosomes, a liposomal adjuvant, were approved in

2000 as an essential part of hepatitis A and influenza vaccines. In

addition to this, AS04, a combination adjuvant containing MPLA

adsorbed to alum, has been approved in Europe and licensed in the

United States. Adjuvants that are licensed for use in humans are listed

in Table 1.

Despite offering many noteworthy benefits such as reduced cost,

high yield, and better safety of highly purified vaccine antigens, most

of these provide a weaker vaccine potential due to the lack of intrinsic

immunostimulatory factors like various PAMPs. It is essential to

understand how immune cell receptors such as TLRs are stimulated

by PAMPs, i.e., LPS of Gram-negative bacteria, and how the adaptive

immune response is coordinated and regulated by the innate immune

response (154). It has been reported that particulate material

stimulates innate immune signals (155). Thus, adjuvants were

identified for stimulating the specific receptors on innate immune

cells that can easily sense danger signals and cellular stress.

Unfortunately, due to the high reactogenicity and poor tolerance,

the early developed adjuvants could not reach clinical development.

Because of the characterizations of HIV and malaria vaccines, the

rationale that a combination of different adjuvants is a better option to

synergistically promote a broad range of immune responses, i.e.,

humoral and cellular, emerged (80, 156, 157). This combination of

adjuvants involved a delivery system, i.e., liposomes, alum, or

emulsions, as well as a natural immune stimulator immune

potentiator such as bacterial MPLA, viral dsRNA, or the plant

Quillaja saponins. The new-generation adjuvants are mostly known

as immune stimulators or immune potentiators, which have been tested

in humans and are under clinical trials listed in Table 2. These new-
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generation adjuvant systems were designed based on existing drug

delivery models and established pharmaceutical principles (170). Thus,

the delivery system performed is mainly on immune signal activation

that could be localized and focused on the formulated vaccine antigen

(54, 76, 171–174). The adjuvant system (AS) of GSK is the best example

of this advancement to make an effective vaccine against malaria (80).

How important is the delivery system for vaccine development? It was

mentioned and emphasized in the human clinical trial of two

alternative vaccines of GSK. Both vaccines contain the same immune

potentiators, but they were formulated differently. The vaccine that

contained the AS01 adjuvant system (a liposome formulation) provided

better protection in comparison to the vaccine containing the same

constituents in the AS02 adjuvant system (an emulsion formulation)

(158, 168). Therefore, the vaccine candidate RTS,S was formulated with

the adjuvant system AS01, and this example proved that the

combination of two immunopotentiators is necessary to achieve the

goal. The adjuvant system AS01 contains both MPLA and the saponin

QS-21. Studies suggest that when these two immune potentiators

(MPLA and QS-21) were formulated in liposomes, they work

synergistically and evoke an innate immune response that further

augments the adaptive immune response (158, 168, 174–176). The

capacity of the AS01 adjuvant system to stimulate the robust T-cell

immune response in humans for various vaccine antigens is elucidated

by the synergistic effect imparted by this unique combination of

immunopotentiators, e.g., MPLA and QS-21. These findings open the

doors and provide new avenues for the development of potential

adjuvant systems (177).

The rationale of most of the adjuvants as a candidate or as a

licensed vaccine (54, 76, 171–174, 178–187) became clear from the

data collected from clinical studies (69, 188, 189). Typically, these

adjuvants are known to stimulate the innate immune response very

quickly and promptly at the immunization site, draining the

stimulated immune cells into the lymph nodes, which is essential to

augment the pathogen-specific adaptive immunity. The stimulation

of PAMP and danger signal pathways, i.e., TLR, caspase-1, and

lysosomal destabilization-Syk/Card9, promotes not only the

recruitment of effector cells, including T and B cells, but also the

recruitment and activation of APCs. It has been proven from many

studies by targeted depletion of the activated APCs that this step is

very important to induce vaccine antigen-specific T cells effectively.

The type of antigen-specific T-cell phenotypes that will be produced

will depend on the nature of innate immune signal activation. The

secretion of IL-18 by stimulated subcapsular macrophages may

promote the development of IFN-g-secreting CD4+ T cells (178,

190). Similarly, the secretion of IL-6 or IL-12 by stimulated APCs may

also promote the production of a follicular-helper phenotype of T

cells (TFH), which promotes the secretion of high-avidity IgG by B

cells, for example, influenza immunization (191). The adjuvant

system that contained TLR ligands can modulate the clonal

arrangement and quality of the repertoire of antigen-specific T cells

by stimulating the expansion of clones of T cells with better TCR

affinity (40, 192).

Novavax, Inc. has developed an important adjuvant named

matrix-M. It is based on a saponin compound derived from the

bark of Quillaja saponaria (Soapbark tree). Currently, the matrix-M
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adjuvant is being used in formulation with the recombinant spike (S)

protein against SARS-CoV-2. At present, this vaccine formulation

(COVID-19 vaccine) is in Phase I clinical trial. The matrix-M

adjuvant not only induces the production of high neutralizing

antibody titers but also induces a robust T-cell immune response

and imparts high protective efficacy against various strains of

coronavirus (193–195). Matrix-M has also been used in other

vaccine formulations such as malaria vaccine (R21/Matrix-M),

which is currently in Phase IIb, and influenza vaccine, which

reached Phase I (196, 197). It has been observed that saponins such

as Q-21 possess adjuvant activity by inducing an OVA-specific CTL

response and high antibody titer by activating caspase 1 in

subcapsular sinus macrophages (SSMs) in the draining lymph node

(178, 198, 199), by activating tyrosine-protein kinase SYK through

destabilizing lysosome upon endocytosis (181). In addition, saponins

such as matrix-M play a crucial role in the activation of the innate

immune system, allow for dose-sparing in vaccine usage, and induce
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both humoral and cell-mediated immune responses. However, the

molecular mechanism of this adjuvant remains to be elucidated. The

mechanism of action of this adjuvant can be defined by using a system

vaccinology approach (32).

At present, the mechanistic approach and the rationale are

correlated with the effectiveness and the acceptability of adjuvanted

vaccines in humans. This piece of information might be helpful in

providing a protocol on how to assess and characterize new adjuvant

systems for vis-to-vis comparisons in nonclinical models (200–204)

and in the clinic as well (69, 103). A recent study has shown that five

different adjuvanted vaccines only affect the quantities of CD4+ T

cells specific to vaccine antigen but failed to modulate the range of

phenotypes of these cells (103). Hence, it is not always true that

adjuvants affect the quality of the immune response for all antigens. In

general, vaccine effectiveness is also heavily reliant on the vaccine

antigen itself and on what kind of immunity is needed for protection,

for example, HIV vaccine studies (204–206).
TABLE 1 Licensed vaccine adjuvants for human use.

Adjuvant
name

Formulation
type

Licensed
(Year)

Description Disease type Vaccine
Trade
Name

Alum Aluminum as
mineral salt

1962 Insoluble particulates of hydroxide, phosphate, or
hydroxyphosphate sulfate salts. Adsorption of antigens
by salt; modulates humoral immunity; Th2 type of
immune response; increases inflammation

Diphtheria, tetanus, pertussis,
inactivated poliomyelitis vaccine,
hepatitis A and B, human papilloma
virus, meningococcal, and
pneumococcal

Daptacel,
Twinrix,
Gardasil,
Bexsero,
Prevnar 20

MF59 Oil-in-water
emulsion

1997 Enhances recruitment of APCs and their activation;
promotes antigen uptake and migration of immune
cells to lymph nodes; modulates humoral and cellular
immune responses

Influenza (both pandemic and
seasonal)

Fluad

AS03 Oil-in-water
emulsion

2009 Induces the production of cytokines and recruitment
of immune cells. Modulates humoral and cellular
immunity.

Influenza (pandemic)
Used in influenza vaccine during the
2009 H1N1 pandemic

aTIV,
Pandemrix,
and
Arepanrix

Virosome Liposome 2000
These are
no longer
in use

Promotes uptake of vaccine antigen by APCs and
interacts with B cells leading to T-cell activation.
Modulates humoral and cellular immune responses.

Hepatitis A and influenza Epaxal

AS04 Alum-adsorbed
TLR4 agonist

2005 Stimulates TLR-4, increasing APC maturation, and
imparts the Th1 type of immune responses.
Improves humoral and cellular immune responses.

Human papilloma virus and hepatitis
B virus

Cervarix,
Fendrix

RC-529 Synthetic TLR4
ligand adsorbed to
aluminum
hydroxide

2004 Induces signal through TLR4, resulting in the
upregulation of cell-surface costimulatory molecules
and receptors, cytokines, and chemokines

Licensed product in Argentina for
hepatitis B virus

Supervax

Imiquimod Synthetic TLR7
agonist

1997 It activates Langerhans cells, which, in turn, travel to
lymph nodes and induce T-cell response

Genital and perianal warts, actinic
keratosis

Aldara

Alhydroxiquim-
II

Alum adsorbed to
TLR7/8 agonist

2022 Small molecules of Alhydroxiquim-II travels to lymph
nodes and detaches from alum to activate two cellular
receptors TLR7/8

COVID-19 COVAXIN

CpG ODN
(1018 ISS)

Soluble TLR9 ligand
(oligonucleotide)
co-administered
with HBV vaccine

2012 Boosts the humoral immune response, Th1-type
immunity, CD8+ T-cell-mediated immunity

Hepatitis B Heplisav-B

CpG ODN
(1018 ISS)

Soluble TLR9 ligand
(oligonucleotide)
adsorbed to alum

2022 Increased cellular and humoral immunity with
significant Th1-specific cytokine expression

COVID-19 CorbeVax
f
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Use of adjuvants during the COVID-19
pandemic and future perspective

To date, we have achieved many insights into a new generation of

adjuvants in terms of their immunology, and these insights may be

quite helpful in providing future avenues to develop novel adjuvanted
Frontiers in Immunology 10
vaccines by selecting the suitable combination of adjuvants and

antigens (207–209). With the advent of omics and system biology,

one can easily elucidate the complicated human immune response

stimulated by the ideal vaccines. Through these studies, a unique

collection of molecular signatures can be compared with newly

characterized vaccines (206, 209, 210). Moreover, compatible
TABLE 2 Vaccine adjuvants in the process of development.

Adjuvant
name

Formulation type Description Clinical development
stage

Disease
name/vaccine

References

AS01 Liposomes, dispersed
lipid vesicles containing
TLR4 ligand (MPLA)
and saponin QS-21

Augments the antibody titer, Th1 type
of immune response, and CD8+ T-cell-
mediated immunity

Phase III Malaria, (RTS,S) and for
approval for herpes zoster
vaccine (HZ/su)

(158)

ALF Liposomes containing
saturated phospholipids,
cholesterol, and
monophosphoryl lipid A
(MPLA)

Imparts adequate humoral and cellular
immune response

Phase I Malaria (FMP013, FMP014),
HIV-1 (gp140)

(82)

Topical cream
with TLR7
ligand

A topical cream of TLR7
ligand (imiquimod)
applied in conjunction
with intradermal
immunization

Promotes the innate immunity Phase III Influenza (159)

EGVac system Bacterial polysaccharide/
bacterial DNA

Augments the immune response against
HPV via both B-cell (humoral) and T-
cell (cellular) immune signal stimulation

Phase II Human papilloma virus (160)

Saponin
complexes
(ISCOM,
Matrix-M)

Lipid, purified saponins,
and cholesterol cage-like
nanocomplexes

Augments the antibody titer, and Th1
and Th2 type of immune response
including CD8+ T-cell-mediated
immunity

Phase I Influenza (161)

GLA-SE
Glucopyranosyl
Lipid A (GLA)

Oil-in-water nano-
emulsion (SE) with
synthetic TLR4 ligand

Multifunctional immunomodulatory
activity including the production of
inflammatory cytokines, chemokines,
DC maturation, and antigen-presenting
functions

Phase II Tuberculosis, RSV, and
Leishmania

(162)

IC31 Cationic peptide
complexed with TLR9
ligand (oligonucleotide)

Modulates a robust H4-specific IFN-g
response

Phase I Tuberculosis (163)

Water-in-oil
emulsions
(ISA51)

Oil dispersed nano-
emulsion (mainly
squalene) stabilized with
non-ionic surfactant

Augments antibody production and
significant Tc cell activity

Phase II Included in licensed seasonal
influenza

(164)

VAX2012Q,
VAX125

TLR5 ligand protein
(flagellin) linked to
antigen

Augments the antibody titer including
Th1/Th2 type of immunity

Phase II Influenza (165)

Poly I:C
(Ampligen,
rintatolimod)

PIKA

Double-stranded RNA
polymer analogue and
TLR3 ligand

Augments the antibody titer and Th1
type of immune response including
CD8+ T-cell-mediated immunity

Phase II Influenza and rabies (166)

VCL-HB01
(Vaxfectin)

Cationic liposome
(prophylactic and
therapeutic, and DNA
based)

Augments T cells and antibodies Phase II Genital herpes (167)

AS02 Oil-in-water nano-
emulsion with TLR4
ligand (MPLA) and
saponin, QS-21

Augments the antibody titer and Th1
type of immune response

Phase II (withdrawn) Malaria and HIV (168)

Matrix-M Protein-based
nanoparticle vaccine
technology

High neutralizing antibody titer and
also induces a robust T-cell immune
response

Phase II COVID-19 (169)
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animal models can also be developed and advanced for the evaluation

of potential adjuvanted vaccines. In addition, in the clinic, most of the

molecular analyses are done based on peripheral blood samples and

nonhuman primate models (203), which allows the evaluation of local

immune response to immunization and provides the chance for

logical validation of already available peripheral blood signatures.

For the speedy development of new-generation adjuvants, nonclinical

studies always play a crucial role in bridging clinical interpretations.

Adjuvants consist mostly of natural components. Current

technologies are continuously evolving for the development of new

adjuvants; soon, there will be important advancements for adjuvants

containing synthetic components. While the approved adjuvants will

always be considered valuable assets for the future, the key

components of many of these adjuvants have been developed from

natural resources and could be exchanged by synthetic molecules that

possess a similar function. New molecules that have the potential to

become more effective activators and agonists are currently

characterized. These molecules can be efficiently produced in bulk

at a low cost as they can be easily purified and evaluated and less

susceptible to their intrinsic biological variability. In addition, the

process for the large-scale production of these synthetic molecules

may be less susceptible to the many difficulties and challenges of

sourcing and extracting natural components. However, before

replacing the natural components in existing adjuvants, the concern

about safety and protective efficacy should be addressed in clinical

trials for the vaccine in formulation with these new adjuvant

candidates. As previously discussed, several promising adjuvant

candidates have been studied over the past 100 years; however, only

a few adjuvants were approved for human use. The complex acylated

polysaccharide emulsan produced by a bacterium, Acinetobacter

calcoaceticus, can be a good candidate due to its amenability to

structural tailoring and its emulsification behavior. We found that

emulsan activates macrophages and showed significant adjuvant

activity as determined by hapten-specific antibody titers. This

immune response was characterized by a high immunoglobulin

G2a titer, consistent with a Th1 response. The significant immune

potentiation demonstrated by this complex polymer establishes

emulsan as an exciting new candidate adjuvant. We proposed that

by manipulating the emulsan chemical structure, we can explore the

physical basis of PRRs and macrophage activation (211).

In the last few years, we gained a deep understanding and

immense knowledge of innate immune signals that provide new

avenues to focus on adjuvant targets with higher potentials, i.e.,

TLR, stimulator of interferon genes (STING), retinoic acid-

inducible gene I (RIG-I), C-type lectin receptors (CLRs),

nucleotide-binding oligomerization domain, leucine-rich repeat and

pyrin domain-containing (NLRP), and interferon-inducible protein

(AIM2). In addition, some complex exploratory adjuvant concepts

have been developed, including multimeric formulations containing

many distinct components (212). Despite having encouraging results

in preclinical studies, such adjuvants hardly play any role in ideal

prophylactic vaccines, but with the advent of therapeutic vaccines,

there may be additional avenues, if bulk production, robustness,

reproducibility problems, etc., can be resolved. Despite having a

huge advancement in adjuvants, there are some noteworthy

limitations such as the incapability to stimulate a strong CTL

response in humans. However, to stimulate a broad and diverse
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immune response, the adjuvants may also be utilized in prime/boost

backgrounds with the inclusion of nucleic acids and vectors (213).

Such an attempt has been made to develop an effective vaccine against

HIV using the prime/boost technique, and an adjuvanted vaccine

antigen is being evaluated as a booster protein after priming with a

vector (214). Therefore, clinical studies are extremely essential to

define the best combinations of a heterologous prime/boost setting.

Several basic problems can be solved by using a better approach to

characterizing the newly developed adjuvants, i.e., by elucidating the

signaling cascades specific to the innate immunity, which is required

to support the potentiality of a specific vaccine. How is the impact of a

quick and prompt stimulation specific to vaccine efficacy? Is there any

redundancy among the signal pathways of innate immune response?

Is it possible to provide a better result through a more specific

stimulation? What are the exact temporal and spatial associations

between the effectors of innate immunity such as cell–cell interaction

and cytokine signaling, and the adaptive immune effectors such as B

and T cells? Are these reactions time-dependent, in which vaccine

antigens and adjuvants remain at the vaccination site, and how are the

local APCs activated? In human populations, how are the adjuvants’

specific immune responses affected by ecological factors and

individual genetic predispositions? What about the influence of

several concurrent medications and already diseased individuals

on immunization?
Conclusion

The ultimate objective of immunization is to provide effective and

long-lasting protection against various infectious diseases. Such kind of

immune protection can only be achieved by using vaccine formulations

carrying suitable adjuvants and antigens. Adjuvants are essential

components of vaccine formulations and can modulate the vaccine

response. Earlier methods of vaccine formulations focused on a single

type of adjuvant, i.e., alum or emulsion. However, the new vaccine

formulations need to stimulate the well-defined cellular and humoral

immune responses. Therefore, to trigger robust immune responses, such

as humoral and cellular immune responses, there is an utmost need for

new immune potentiators or immune stimulant adjuvants in vaccine

formulations. The mucosal adjuvant dmLT is the outcome of 25 years of

research. It has been proven by both preclinical and clinical studies that

dmLT is a safe and potent adjuvant that can induce protective immunity

in a suitable formulation. There is a need to focus on some unanswered

questions for the improvement of the dmLT adjuvant such as safety and

stability issues of antigen–adjuvant combinations. The mechanism of

adjuvanticity and the induction of protective immunity imparted by

dmLT also warrant further studies. It has been suggested that dmLT can

promote both innate and adaptive immune responses in the case of

infants. Vaccine preparation with dmLT has been found to be effective

against mucosal infections. It has been concluded that dmLT will be

useful to overcome hypo-responsiveness to other whole cell- or LPS-

based vaccines such as cholera, Salmonella typhi, and Shigella vaccines in

infants in economically less developed countries (215). We predict that

the use of dmLT in vaccine preparations for infants will be highly effective

in the future.

In the recent past, many insights into the area of adjuvant

research have been obtained; now, there is a choice to select a
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suitable adjuvant rather than a classical adjuvant, such as immune

potentiators or combinations thereof, to augment vaccine efficacy.

Recently, alum, MF59, AS03, CpG, and matrix-M have been

licensed and used in vaccine preparations worldwide against

COVID-19 (216). It has been suggested that synthetic gene

coding for the spike protein, whether prefusion stabilized or also

receptor binding domain only, is used to engineer mammalian cells,

baculovirus, or plant cells to produce the recombinant protein that

then is purified, combined with adjuvants, and used as vaccine.

During vaccine preparations against COVID-19, we have gained

industrial and clinical knowledge with protein-based vaccines

combined with licensed adjuvants, and we believe that, in the

future, vaccine preparation based on these methods will be well

tolerated, effective, and available in large quantities. Furthermore,

the use of maturation of RNA and viral vectors to create vaccines

during the COVID-19 pandemic has opened up new avenues to

produce more effective vaccines in the future for emerging

infections. Recently completed clinical studies with new

adjuvants recommend that a panel of new immune potentiators

or immune stimulators be used in vaccine formulations for human

use in the future. The accessibility of these new-generation

adjuvants in different combinations will enable rational strategies

for the development of successful vaccines.
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