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Identification of diagnostic hub
genes related to neutrophils and
infiltrating immune cell
alterations in idiopathic
pulmonary fibrosis

Yingying Lin1†, Xiaofan Lai1†, Shaojie Huang1†, Lvya Pu2,
Qihao Zeng2, Zhongxing Wang1* and Wenqi Huang1*

1Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University,
Guangzhou, China, 2Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
Background: There is still a lack of specific indicators to diagnose idiopathic

pulmonary fibrosis (IPF). And the role of immune responses in IPF is elusive. In this

study, we aimed to identify hub genes for diagnosing IPF and to explore the

immune microenvironment in IPF.

Methods: We identified differentially expressed genes (DEGs) between IPF and

control lung samples using the GEO database. Combining LASSO regression and

SVM-RFE machine learning algorithms, we identified hub genes. Their differential

expression were further validated in bleomycin-induced pulmonary fibrosis

model mice and a meta-GEO cohort consisting of five merged GEO datasets.

Then, we used the hub genes to construct a diagnostic model. All GEO datasets

met the inclusion criteria, and verification methods, including ROC curve

analysis, calibration curve (CC) analysis, decision curve analysis (DCA) and

clinical impact curve (CIC) analysis, were performed to validate the reliability of

the model. Through the Cell Type Identification by Estimating Relative Subsets of

RNA Transcripts algorithm (CIBERSORT), we analyzed the correlations between

infiltrating immune cells and hub genes and the changes in diverse infiltrating

immune cells in IPF.

Results: A total of 412 DEGs were identified between IPF and healthy control

samples, of which 283 were upregulated and 129 were downregulated. Through

machine learning, three hub genes (ASPN, SFRP2, SLCO4A1) were screened. We

confirmed their differential expression using pulmonary fibrosis model mice

evaluated by qPCR, western blotting and immunofluorescence staining and

analysis of the meta-GEO cohort. There was a strong correlation between the

expression of the three hub genes and neutrophils. Then, we constructed a

diagnostic model for diagnosing IPF. The areas under the curve were 1.000 and

0.962 for the training and validation cohorts, respectively. The analysis of other

external validation cohorts, as well as the CC analysis, DCA, and CIC analysis, also

demonstrated strong agreement. There was also a significant correlation

between IPF and infiltrating immune cells. The frequencies of most infiltrating

immune cells involved in activating adaptive immune responses were increased

in IPF, and a majority of innate immune cells showed reduced frequencies.
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Conclusion: Our study demonstrated that three hub genes (ASPN, SFRP2,

SLCO4A1) were associated with neutrophils, and the model constructed with

these genes showed good diagnostic value in IPF. There was a significant

correlation between IPF and infiltrating immune cells, indicating the potential

role of immune regulation in the pathological process of IPF.
KEYWORDS

hub genes, neutrophils, infiltrating immune cell, idiopathic pulmonary fibrosis, immune
microenvironment, machine learning, diagnostic model
Introduction

Idiopathic pulmonary fibrosis (IPF) is a kind of chronic,

progressive and irreversible fibrotic interstitial lung disease (ILD) of

unknown etiology (1). If IPF is left untreated, continuous disease

progression can ultimately lead to destruction of the lung tissue

structure, decreased lung compliance and even respiratory failure and

death. It was reported that the average life expectancy of IPF patients

is only 3-5 years after diagnosis without prompt treatment (2). Thus,

early diagnosis and timely treatment are very important. IPF is

diagnosed by identifying the pathological pattern of common

interstitial pneumonia based on radiological or histological criteria

without other evidence of etiology (3). However, it is not easy to

exclude other idiopathic interstitial pneumonias and known causes of

interstitial lung disease, such as viral infections, chemoradiotherapy,

environmental toxicants and chronic inflammatory diseases (4).

Thus, it is meaningful to search for specific indicators or construct

a diagnostic model for identifying IPF.

Although IPF is characterized by sustained epithelial cell damage,

fibroblast activation and excessive deposition of the extracellular

matrix in the lung parenchyma, the pathological mechanism of

fibrosis in IPF is still poorly understood (5). Substantial evidence

from preclinical and clinical studies suggests that immune

dysfunction contributes to the progression of IPF (6, 7). However,

the roles of different immune dysfunctions and diverse immune cells

in IPF are currently unclear. In fact, there is no consensus thus far on

whether immune regulation is beneficial or harmful in IPF. IPF was

originally thought to be a kind of inflammatory disease (8). However,

subsequent clinical trials showed that immunosuppressive agents did

not stop disease progression and conversely harmed patients with IPF

(9). Similarly, it was reported that the decreased activity of several

immune pathways in IPF were associated with poor progression-free

survival (10). Together, these results demonstrated that the

immunosuppressive microenvironment in IPF might accelerate the

progression of this disease. However, it was also reported in other

studies that an increased proportion or activation of some immune

cells influences disease progression and accelerates the deterioration

of lung function in patients with IPF (11–13).

In this study, we searched for hub genes for IPF diagnosis,

which might show promise as specific indicators of IPF. Animal
02
models and a meta-GEO cohort were established to further verify

the differential expression of these genes. Then, we constructed a

diagnostic model of IPF using the hub genes through machine

learning and validated the reliability of the model in all the GEO

cohorts, which all met the inclusion criteria. Furthermore, the

analysis of diverse infiltrating immune cells was performed to

explore the immune microenvironment in IPF. By establishing

links between hub genes and infiltrating immune cells, we hoped

to explore which immune cells might play an important role in IPF.
Methods

Data acquisition and processing

Our study flow chart is shown in Figure 1. All expression profiling

data generated with arrays used in this study were downloaded from

the GEO database (https://www.ncbi.nlm.nih.gov/geo/). Our inclusion

criteria were as follows: more than 30 lung samples fromHomo sapiens

and concurrent inclusion of both IPF patients and healthy controls.

According to the inclusion criteria, five GEO datasets including

GSE32537 (healthy controls=50, IPF=119), GSE17978 (healthy

controls=20, IPF=38), GSE53845 (healthy controls=8, IPF=40),

GSE110147 (healthy controls=11, IPF=27), and GSE10667 (healthy

controls=15, IPF=31) were identified. After background calibration and

normalization of the data, the differentially expressed genes (DEGs)

were screened by the Limma package according to the following

criteria: |log2-fold change| > 1 and adjusted P value <0.05.
Gene enrichment analysis

Gene Ontology (GO) is an international standardized gene

function classification system to comprehensively describe the

properties of genes and gene products in an organism, including

biological process (BP), molecular function (MF) and cellular

component (CC) terms (14). The Kyoto Encyclopedia of Genes and

Genomes (KEGG) is a well-known database for pathway-associated

investigation of genes (15). To explore functions in IPF, we performed

GO and KEGG enrichment analyses of the DEGs identified between
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IPF and healthy control samples. Disease Ontology (DO) is a database

established in 2003 that includes common and rare diseases (16). In

this study, we also performed DO enrichment analysis to explore the

diseases favored by the DEGs.
Construction and validation of the
diagnostic model

Among the included datasets, GSE32537 had the largest

number of samples, so we selected it as our training set. First,

LASSO regression and SVM-RFE machine learning algorithms

were performed to identify candidate hub genes for a diagnostic

model (17). Then, we constructed the diagnostic model using hub

genes and calculated the risk score of the model using multiple

logistic regression analysis. The model was presented as a

nomogram. ROC curve analysis was subsequently performed to

evaluate the diagnostic value of the nomogram. To further validate

the reliability of the diagnostic model, we integrated GSE17978 and

GSE53845 into one dataset, creating one dataset with more than 100

samples, as our main validation cohort. To eliminate batch effects in

the merged dataset, we applied the Bioconductor “SVA” R package.

We also used the GSE110147 and GSE10667 datasets as external

validation cohorts. Calibration curve (CC) analysis, decision curve

analysis (DCA) and clinical impact curve (CIC) analysis were also

performed to evaluate the clinical diagnostic value of the model.
Infiltrating immune cell analysis

In this study, we used the Cell Type Identification by Estimating

Relative Subsets of RNA Transcripts (CIBERSORT) algorithm to identify

the proportions of 22 immune cell types in lung samples from IPF patients

and healthy controls (18). Correlation analyses between infiltrating

immune cells and hub genes were also performed to explore which

kinds of infiltrating immune cells were the main participants in the
Frontiers in Immunology 03
development of IPF. Differences were considered significant when the

CIBERSORT output P value < 0.05. We also performed correlation

analysis of the different types of infiltrating immune cells in IPF (19).
Animal experiments

Our animal experiments were approved by the Ethics Committee

of Sun Yat-sen University. All C57BL/6 mice were fed in a colony

room in the Sun Yat-sen University Animal Center with a 12:12 hour

light/dark cycle. We injected mice with bleomycin (Teva

Pharmaceutical; 3 U/kg) or an equal volume of PBS intratracheally

when they were eight weeks old. On day 21 after injection, all mice

were harvested, and lung samples were collected for further analysis.
Histopathology, immunofluorescence and
immunohistochemistry staining analysis

Mouse lung samples were embedded in paraffin and cut into

sections. Then, we performed hematoxylin and eosin (H&E), Masson

trichrome and Sirius Red staining to analyze pulmonary fibrosis. As

previously described (20), the method for immunofluorescence (IF)

staining of mouse lung samples was as follows: lung samples were

incubated with appropriate primary antibodies (Supplementary

Table S1) overnight at 4°C after dewaxing and antigen retrieval.

Then, we stained the sections with a secondary antibody

(Supplementary Table S1) that recognized the primary antibody for

40 min at room temperature. Stained sections were imaged

with a Zeiss 800 laser scanning confocal microscope. The

immunohistochemistry (IHC) method involves several steps. First,

antigen retrieval and blocking were performed to enhance the

visibility of target antigens. Next, primary antibodies, followed by

secondary antibodies (Supplementary Table S1), were sequentially

incubated with lung tissues. Subsequently, diaminobenzidine (DAB)

was applied as a chromogen to stain the target antigens. The presence
FIGURE 1

Study flowchart. DEGs, differentially expressed genes; qPCR, quantitative polymerase chain reaction; GEO, Gene Expression Omnibus.
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of a brown signal is considered indicative of positive staining. As

suggested in other study (21), the analysis of occupied area was

conducted by selecting brown regions using a consistent threshold

value within the macro function of ImageJ software (NIH). The

findings were expressed as the percentage of the area occupied by

positive staining relative to the total area in each specimen.
RNA extraction and quantitative
real-time PCR

RNA was extracted from lung samples using TRIzol reagent

(Molecular Research Center, Inc.) and reverse transcribed into

cDNA with the RevertAid First Strand cDNA Synthesis Kit

(Thermo Fisher Scientific, K1622). Then, we performed

quantitative real-time PCR (qPCR) using LightCycler480 SYBR

Green I Master Mix (Roche, 4887352001-1). 18S served as the

internal control. Differences were considered statistically significant

with a P value < 0.05 using an independent-sample t test or the

Mann-Whitney U test. All primer sequences used in this study are

listed below: mouse Aspn forward 5’-TCCTCTGACAAGG

TTGGACT-3’, and reverse 5’-AGAGAGTTGTCGTCATCATC

GT-3’; mouse Sfrp2 forward 5’-CGTGGGCTCTTCCTCTTCG-3’,

and reverse 5’-ATGTTCTGGTACTCGATGCCG-3’; mouse

Slco4a1 forward 5’-CGATCTGCACAGCTACCAGAG-3’, and

reverse 5’-GCTGACGAAGGTAAGGCATAG-3’; And mouse 18s

forward 5’-GTGACGTTGACATCCGTAAAGA-3’, and reverse 5’-

GCCGGACTCATCGTACTCC-3’.
Western blotting

Mouse lung samples were prepared using RIPA buffer (Beyotime,

P0013B). The total protein concentration was assessed using the

Pierce BCA Protein Assay (Thermo Fisher, 23227). After

electrophoresis, proteins were transferred to PVDF membranes

(Millipore). Then, the target proteins were immunoblotted with

specific antibodies. The signal intensity of protein bands was

visualized with a chemiluminescent substrate (Millipore). All

protein bands from three independent blots were quantified using

ImageJ software. The corresponding primary and secondary

antibodies utilized are listed below: rabbit anti-Asporin (Invitrogen,

PA5-28124), rabbit anti-SFRP2 (Affifinity Biosciences, DF4451),

rabbit anti-SLCO4A1 (XY-Bioscience, XY12713), rabbit anti-

GAPDH (Cell Signaling Technology, D16H11), and anti-rabbit IgG

HRP-linked Ab (Cell Signaling Technology, 7074).
Statistical analysis

All statistical analyses performed in this study were conducted

with R software, version 4.1.3 (http://www.r-project.org). An

independent-sample t test was applied to validate the differences

between two groups if the continuous variables were normally

distributed; otherwise, we used the Mann-Whitney U test. A P

value < 0.05 was considered statistically significant.
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Results

Identification of differentially expressed
genes between IPF and healthy control
samples and functional enrichment
analysis of IPF

First, we downloaded RNA sequences of lung samples from the

GEO database (GSE32537, including 119 IPF subjects and 50

healthy controls). After bioinformatic analysis with Limma, a

total of 412 DEGs were identified between the IPF and healthy

control samples, of which 283 were upregulated and 129 were

downregulated (Figure 2A; Supplementary Figure S1A).

Then, we investigated the potential biological functions of the

DEGs through GO enrichment analysis. We found that the DEGs

were mainly enriched in the extracellular matrix (ECM), extracellular

structure and external encapsulating structure organization for BP

terms. With regard to CC terms, these genes were mainly involved in

collagen-containing ECM and external side of plasma membrane. In

the MF category, they were strongly related to ECM structural

constituent (Figure 2B). The GO enrichment analysis revealed that

IPF was tightly linked to the pathological ECM deposition process.

Moreover, DO enrichment analysis showed that these DEGs were

mainly enriched in lung diseases. Together, these results indicated

that these DEGs were reliable for subsequent IPF research

(Figure 2C). Through KEGG enrichment analysis, we also found

that IPF was strongly related to cytokine-cytokine receptor

interaction and focal adhesion signaling pathways (Figure 2D).
Identification of candidate hub genes
through machine learning

We identified the candidate hub genes of a diagnostic model by

LASSO regression combined with SVM-RFE machine learning

algorithms. LASSO regression identified seven potential genes

(ASPN, SFRP2, SLCO4A1, IL1R2, MMP7, FCN3, and CP)

(Figure 3A), and the SVM-RFE algorithms screened eight

potential genes (ASPN, SFRP2, FCN3, COL14A1, MGAM,

SLCO4A1, CD24, and SPATA18) (Figure 3B). By taking the

intersecting genes, we identified four candidate hub genes (ASPN,

SFRP2, FCN3, and SLCO4A1) (Figures 3C, D). Each gene showed

reliable classification between IPF and healthy control samples by

ROC curve analysis (Supplementary Figures S1B–E).
Candidate hub genes showed significant
expression differences between fibrotic
lungs and control lungs in bleomycin-
induced pulmonary fibrosis model mice

To further verify the differential expression of candidate hub

genes between IPF and control samples, we then established a

bleomycin-induced pulmonary fibrosis mouse model and detected

the expression of SLCO4A1, ASPN and SFRP2 between fibrotic lung

samples and control samples from model mice (Figure 4A). Since
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http://www.r-project.org
https://doi.org/10.3389/fimmu.2023.1078055
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2023.1078055
FCN3 is a pseudogene in mice, we were unable to validate it in the

mouse model (22). As shown by H&E, Masson trichrome, and Sirius

Red staining, there was significant collagen deposition and fibrosis in

the lung samples from bleomycin-induced model mice compared

with those from PBS-treated mice (Supplementary Figure S2A). By

qPCR and western blotting, we found that the mRNA and protein

levels of ASPN and SFRP2 were upregulated in lung samples from
Frontiers in Immunology 05
bleomycin-induced model mice, while SLCO4A1 was downregulated

(Figures 4B–E). Similarly, IF staining also produced the same findings

(Figure 4F). Overall, our hub genes showed significant differential

expression between fibrotic lungs and control lungs, and their change

trends were consistent with those in the meta-GEO cohort including

GSE32537, GSE17978, GSE53845, GSE110147 and GSE10667

(Supplementary Figures S2B–D).
A

B

D

C

FIGURE 2

Identification of DEGs between IPF and healthy control samples and functional enrichment analysis of IPF. (A) Heatmap of DEGs identified between
IPF and healthy control samples. Red represents upregulated genes, and blue represents the opposite. (B) GO enrichment analysis of DEGs. (C) DO
enrichment analysis of DEGs. (D) KEGG enrichment analysis of DEGs.
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Candidate hub genes showed strong
correlations with a decline in the
neutrophil level

To explore the relationships between candidate hub genes and

infiltrating immune cells, the CIBERSORT algorithm was used. We

found that all four candidate hub genes showed significant

correlations with immune cells (Supplementary Figure S3A–D),

including neutrophils, regulatory T cells, and resting mast cells.

Among the different types of infiltrating immune cells, the

expression of all four hub genes had the strongest link with a

decline in the neutrophil level. The expression of ASPN (P<0.001,

R=-0.63) and SFRP2 (P<0.001, R=-0.62) had a negative relationship

with neutrophils (Figures 5A, B), while SLCO4A1 (P<0.001, R=0.75)

and FCN3 (P<0.001, R=0.58) had a positive relationship with

neutrophils (Figure 5C; Supplementary Figure S3E). Ly6G has

been widely acknowledged as a key marker for identifying

neutrophils in murine models (23). In order to further

substantiate the relationship between hub genes and neutrophils,

we conducted an analysis of the correlation between the expression

of hub genes and Ly6G using IHC analysis in a bleomycin-induced

mouse model (Figure 5D). Our findings revealed a significant
Frontiers in Immunology 06
negative relationship between the expression of Aspn and Sfrp2

and the expression of Ly6G (Figures 5E, F), consistent with the

aforementioned results. Conversely, the expression of Slco4a1

demonstrated a positive relationship (Figure 5G). Collectively,

these results reinforce our previous findings and suggest a

potential decrease in neutrophil levels within the immune

microenvironment of IPF.
Construction of a diagnostic model
using hub genes

Considering that we could not validate the differential

expression of FCN3 in animal models, we ultimately identified

three hub genes (ASPN, SFRP2 and SLCO4A1) to construct a

diagnostic model for IPF. The model that incorporated the above

three hub genes was developed using multivariate logistic regression

analysis and is presented as a nomogram (Figure 6A). Furthermore,

we obtained a risk score based on the expression levels of the three

hub genes, where the risk score = -5.6339 + (the expression level of

ASPN × 0.8534) + (the expression level of SFRP2 × 0.7400) + (the

expression level of SLCO4A1 × -0.8030). As shown in a CC, the
A B

DC

FIGURE 3

Identification of candidate hub genes through machine learning. (A) The candidate hub genes screened by LASSO regression. The nadir of the curve
corresponds to the suitable genes of the diagnostic model. (B) The candidate hub genes screened by the SVM-RFE machine learning algorithm. The
nadir of the curve corresponds to the suitable genes of the diagnostic model. (C) The Venn diagram shows the intersection of the genes obtained by
LASSO regression and SVM-RFE machine learning algorithm. (D) The four candidate genes and their chromosomal locations.
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A

B

D E

F

C

FIGURE 4

ASPN, SFRP2 and SLCO4A1 showed significant expression differences between fibrotic lungs and control lungs in bleomycin-induced pulmonary fibrosis
model mice. (A) Diagram of animal model construction and evaluation. (B-D) qPCR analysis of the relative mRNA (Aspn, Sfrp2 and Slco4a1) expression
levels in bleomycin-induced pulmonary fibrosis model mice (n = 6 mice per group). (E) Western blot analysis of the relative protein (Aspn, Sfrp2 and
Slco4a1) expression levels in bleomycin-induced pulmonary fibrosis model mice (n = 3 mice per group). (F) Representative immunofluorescence images
showing the locations of ASPN, SFRP2 and SLCO4A1 in the lungs of bleomycin-treated or PBS-treated mice. Scale bars, 50 µm. All the experiments have
been repeated three times and the data are presented as the mean ± SD. *P < 0.05, **P < 0.01, and ***P < 0.001.
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nomogram for the classification of IPF and healthy control samples

showed good agreement between prediction and reality (Figure 6B).

DCA demonstrated that patients could benefit from the diagnostic

model developed with the three hub genes at threshold probabilities

from 0 to 1 (Figure 6C). Similarly, a CIC showed that the predicted

number of high-risk patients was very close to the actual number of

high-risk patients, further affirming that our model had clinical
Frontiers in Immunology 08
diagnostic value for IPF (Supplementary Figure S3F). Through

ROC curve analysis, we found that the AUC of the diagnostic

model was 1.000 for the training set (Figure 6D). To further validate

the reliability of the diagnostic model, we merged two external

datasets into a validation cohort (GSE17978 and GSE53835) that

included 78 IPF lung samples and 28 healthy control lung samples.

The AUC was 0.962 (Figure 6E). In regard to the other external
A B

D

E F G

C

FIGURE 5

Candidate hub genes showed strong correlations with neutrophils. (A-C) Correlation analysis between neutrophils and candidate hub genes (ASPN,
SFRP2 and SLCO4A1) in the GEO cohort. (D) Representative immunohistochemical images of Aspn, Sfrp2, Slco4a1 and Ly6G in the lung tissues of
bleomycin-treated mice (n = 6). Scale bars, 50µm. (E-G) Correlation analysis between the expression of candidate hub genes (Aspn, Sfrp2 and
Slco4a1) and Ly6G in the lung tissue of bleomycin-treated mice (n = 6). All the experiments have been repeated three times and the data are
presented as the mean ± SD.
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cohorts, the AUCs of GSE110147 and GSE10667 were 0.985 and

0.925, respectively (Supplementary Figure S3G, H). Overall, it was

suggested that our diagnostic model had a strong ability to

distinguish IPF patients from healthy controls.
Significant correlations between IPF and
infiltrating immune cells

As shown above, all three hub genes had good diagnostic value for

IPF and showed significant correlations with immune cells, especially

neutrophils. To further explore the immune microenvironment in IPF,

we performed immune cell infiltration analysis between IPF and

healthy control samples using the meta-GEO cohort generated by

merging five datasets, namely, GSE32537, GSE17978, GSE53845,

GSE110147 and GSE10667. The proportions of different immune

cells are shown in Supplementary Figure S4A, and we found that

there was a significant difference in immune cells between IPF and

healthy control samples (Supplementary Figure S4B), including

differences in naïve B cells (P<0.001), memory B cells (P<0.001),

plasma cells (P<0.001), naïve CD4 T cells (P<0.001), resting memory

CD4 T cells (P<0.001), activated CD4 memory T cells (P<0.001),

follicular helper T cells (P=0.024), gamma delta T cells (P=0.003),

resting NK cells (P<0.001), monocytes (P<0.001), M0 macrophages
Frontiers in Immunology 09
(P=0.039), resting dendritic cells (P<0.001), activated dendritic cells

(P=0.012), resting mast cells (P<0.001), eosinophils (P<0.001) and

neutrophils (P<0.001). As shown above, the proportions of most

infiltrating immune cells involved in activating an adaptive immune

response were increased, and the frequencies of a majority of innate

immune cells were reduced in IPF. By analyzing the correlations of

different infiltrating immune cells, it was shown that resting memory

CD4 T cells had the strongest negative correlation with CD8 T cells

(R=-0.57) and neutrophils showed a negative correlation with resting

mast cells in IPF lung samples (Supplementary Figure S4C). All of the

above results showed that the changes in diverse infiltrating immune

cells might have roles in the pathogenesis of IPF.
Discussion

IPF is a progressive and irreversible interstitial lung disease with

high mortality and limited treatment options. Although it can be

diagnosed by the pathological pattern of usual interstitial

pneumonia based on radiological or histological examination, it

lacks specific diagnostic indicators that distinguish it from other

interstitial lung diseases. Thus, searching for specific indicators or

constructing a diagnostic model for identifying IPF is

meaningful (24).
A B

D EC

FIGURE 6

Construction of a diagnostic model using neutrophil-associated hub genes. (A) The nomogram presents the diagnostic model constructed with the
three hub genes. (B) Calibration curve (CC) of the diagnostic model. (C) Decision curve analysis (DCA) of the diagnostic model. (D) ROC curve for
the training cohort (GSE32537). (E) ROC curve for the validation cohort (merged dataset containing GSE17978 and GSE53845).
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In this study, we have identified a total of 412 DEGs between

lung samples from patients with IPF and healthy controls. GO

enrichment analysis revealed that these DEGs are strongly

associated with ECM-related functions, which is in line with the

pathological characteristics of IPF. IPF is characterized by the

replacement of healthy tissue with excessive ECM (4), leading to

elevated biomechanical stiffness and altered cellular behavior,

ultimately contributing to aberrant lung remodeling and disease

pathogenesis (25–27). Additionally, KEGG pathway analysis

revealed that these DEGs primarily participate in cytokine-

cytokine receptor interaction and focal adhesion signaling

pathways. Both of these pathways are known to play crucial roles

in IPF pathogenesis. Integrins, which are the main receptors for cell

adhesion to ECM proteins, can promote myofibroblast

differentiation and disease pathogenesis (28). Moreover, integrins

also activate transforming growth factor-beta (TGF-b), which plays

a crucial role in promoting pro-fibrotic cytokine secretion and

perpetuating fibrogenesis (29–31).

Furthermore, we found that ASPN, SFRP2 and SLCO4A1 were

differentially expressed between IPF and healthy control samples

in the GEO cohorts. Our results were further validated in a mouse

model of bleomycin-induced pulmonary fibrosis. ASPN, a

member of the small leucine-rich proteoglycan family (32), has

been shown to encode extracellular matrix proteins (33). In some

studies, ASPN was also shown to be differentially expressed in lung

tissue between IPF patients and healthy controls (34, 35), which

was consistent with our findings. Moreover, in our previous study,

we demonstrated that ASPN could accelerate pulmonary fibrosis

by promoting myofibroblast differentiation induced by TGF-b
(36) and play an important role during the pathological process of

IPF. SFRP2 was also one of the hub genes in our diagnostic model.

SFRP2 was reported to prompt the development of fibrosis (37).

Previous studies have demonstrated that SFRP2 facilitates the

proliferation of cardiac fibroblasts by activating the Wnt/b-
catenin pathway and participates in myocardial fibrosis and

cardiac remodeling (38, 39). The differentiation of fibroblasts

into myofibroblasts is an important pathological characteristic

of IPF (2, 5). Progenitors of myofibroblasts have high expression

of SFRP2, which indicates the important role of SFRP2 in the

differentiation of myofibroblasts (40, 41). Whether SFRP2

contributes to the development of IPF and the associated

mechanism are worthy of further exploration. SLCO4A1 is a

solute carrier organic anion transporter family member.

Previous studies have shown that SLCO4A1 promotes

tumorigenesis and the progression of different carcinomas (42,

43), but the relationship between SLCO4A1 and fibrosis has rarely

been reported.

By combining LASSO regression and machine learning, we

constructed a diagnostic model using three hub genes. Then, we

validated the diagnostic reliability of the model in all GEO datasets

meeting the inclusion criteria. The results showed that our

diagnostic model showed reliable classification between IPF and

healthy control samples. We also found that our diagnostic model

had good clinical diagnostic value through DCA and CIC analysis.

Further studies are necessary to validate the feasibility of clinical

model application for the diagnosis of IPF.
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Considering that immune responses might contribute to the

progression of IPF (6, 44, 45), we analyzed infiltrating immune cells

in IPF and healthy control lung samples. We found that the

immune microenvironment was significantly different between

IPF and healthy control lungs. The frequencies of most

infiltrating immune cells involved in activating adaptive immune

responses, such as memory B cells, plasma cells, activated memory

CD4 T cells, follicular helper and gamma delta T cells, were

increased in IPF. Conversely, a majority of innate immune cells,

such as resting NK cells, monocytes, M0 macrophages, eosinophils

and neutrophils, showed decreased frequencies.

Although much progress has been made in understanding

innate and adaptive immune responses in IPF, their roles are still

unclear (5). According to the majority of studies, it has been

concluded that an increase in the frequency or activation of

certain T cells and B cells is associated with the progression of

IPF (12, 13, 45). T helper 2 (Th2) cytokines, including IL-4, IL-5, IL-

9 and IL-13, have been confirmed to play a promotive role in

fibrosis (46, 47). Cytokines such as TGF-b, IL-1b, CXC, and CC can

be secreted by epithelial cells and recruit T cells to induce the

migration of adaptive immune cells and prompt the progression of

fibrosis. However, previous studies have also reported that cytokine

receptorlike factor 1 could enhance the levels of T helper 1 (Th1)

and regulatory T cells, playing an antifibrotic role in the lungs (48).

Thus, the roles of diverse adaptive immune cells in IPF might be

different. In this study, we found that the levels of some of the

adaptive immune cells described above were increased in IPF

patients compared with healthy controls. Whether activating

adaptive immune cells mainly contributes to the progression of

IPF and whether suppression of the adaptive immune response is

helpful in patients with IPF needs further exploration.

Innate immune cells can recognize and defend against

infections caused by pathogens, mounting resistance to

reinfection (49). Previous studies have reported that the activity

of several immune pathways was reduced in IPF lungs, which was

related to a low-diversity microorganisms (10). Several clinical trials

have suggested that immunosuppressive agents are harmful to

patients with IPF (9). In this study, we demonstrated that the

levels of some innate immune cells, such as resting NK cells,

monocytes, M0 macrophages, eosinophils and neutrophils, were

decreased in IPF lungs compared with healthy control lungs. Thus,

an immunosuppressive environment might be related to innate

immune responses in IPF, weakening the resistance of IPF patients

to infection and promoting the progression of IPF.

In addition, by analyzing the correlations between hub genes

and infiltrating immune cells, we found that all hub genes showed a

strong correlation with neutrophils and that their expression levels

were negatively correlated with the number of neutrophils. Thus,

the involvement of neutrophils might play an important role in the

pathogenesis of IPF. As the first line of defense against invading

pathogens (50), neutrophils perform a series of protective

mechanisms to prevent the spread of infection and inflammation

(51). It was reported that there are more neutrophils in pulmonary

capillaries than in the systemic circulation, which facilitates their

rapid response to infection and inflammation in lung tissue (52).

Given this perspective, neutrophils contribute to maintaining
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homeostasis in the lungs and protect IPF patients from damage

caused by invading pathogens (7, 53). However, some studies have

suggested that neutrophils and their products promote fibrogenesis

in IPF. It was reported that an increased frequency of neutrophils in

IPF patients increases the degree of pulmonary fibrosis and is

correlated with a poor prognosis (54–56). Neutrophil elastase

facilitates pulmonary fibrosis through the activation and

proliferation of fibroblasts, inducing their differentiation into

myofibroblasts (57, 58). Some studies have indicated that

neutrophil extracellular traps also contribute to pulmonary

fibrosis (59–61). In fact, the role of neutrophils in IPF is still

unknown. Whether these cells exert protective or promotive

effects on the pathogenesis of IPF is controversial.

Overall, the effects of diverse immune responses and the roles of

different immune cells in IPF are elusive. However, it is clear that

immune regulation has both advantages and disadvantages in the

progression of IPF. Therefore, general anti-immune or anti-

inflammatory therapy alone is obviously not advisable. It might

be wiser to explore the roles of different immune responses and

immune cells in IPF, and then apply targeted immune regulation to

restrain the progression of IPF.

There were still potential limitations in our study. First,

although we validated that the three hub genes were differentially

expressed between IPF and healthy control samples in the GEO

cohort and animal model, we could not determine whether these

genes can act as specific indicators for IPF diagnosis. The clinical

application of the diagnostic model we constructed still needs more

clinical evidence for validation. Second, the effects of different

immune cells in IPF could not be demonstrated in our study. The

roles of adaptive and innate immune responses in the progression of

IPF are still elusive. Although we found that the three hub genes

showed strong correlations with neutrophils, whether neutrophils

truly contribute to IPF could not be confirmed.
Conclusion

In this study, through combined study of a GEO cohort and an

animal model, we identified three hub genes (ASPN, SFRP2 and

SLCO4A1) that were differentially expressed between IPF and

healthy control samples. Then, we constructed a diagnostic model

for IPF using the three hub genes. Through our validation cohorts

and statistical methods to verify the reliability of the model, we

demonstrated that our model had good diagnostic value.

Furthermore, by analyzing the changes in infiltrating immune

cells, we explored the possible roles of different immune

responses in IPF. We found that there was a significant

correlation between IPF and infiltrating immune cells. The levels

of most infiltrating immune cells involved in activating an adaptive

immune response were increased in IPF, while those of a majority of

innate immune cells were reduced. We then analyzed the

relationships between the hub genes and infiltrating immune

cells. We found that the expression of all hub genes showed

strong correlation with the decline in the neutrophil level.
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SUPPLEMENTARY FIGURE 1

(A) Volcano plot of DEGs between IPF and healthy control samples. (B-E)
ROC curve for each candidate gene (ASPN, SFRP2, SLCO4A1 and FCN3).
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SUPPLEMENTARY FIGURE 2

(A) Representative hematoxylin and eosin (H&E), Masson’s trichrome and
Sirius Red staining images obtained for the lungs of bleomycin-treated or

PBS-treated mice. (B–D) Differential analysis of mRNA (ASPN, SFRP2 and

SLCO4A1) expression levels using the meta-GEO cohort.

SUPPLEMENTARY FIGURE 3

(A-D) Correlation analysis between infiltrating immune cells and candidate
hub genes (ASPN, SFRP2, SLCO4A1 and FCN3). (E) Correlation analysis

between neutrophils and FCN3. (F) Clinical impact curve (CIC) of the
diagnostic model. (G) ROC curve of an external validation cohort

(GSE110147). (H) ROC curve of an external validation cohort (GSE10667).

SUPPLEMENTARY FIGURE 4

Analysis of infiltrating immune cells in IPF using themeta-GEO cohort. (A) The
proportions of different immune cells in IPF or healthy control lung samples.

(B) Differential analysis of infiltrating immune cells between IPF and healthy

control lung samples. (C) Correlation analysis of different infiltrating immune
cells in the immune microenvironment of IPF.
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