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Identification and validation
of immune and oxidative stress-
related diagnostic markers for
diabetic nephropathy by WGCNA
and machine learning

Mingming Xu1†, Hang Zhou1†, Ping Hu2†, Yang Pan1,
Shangren Wang1, Li Liu1* and Xiaoqiang Liu1*

1Department of Urology, Tianjin Medical University General Hospital, Tianjin, China, 2Department of
Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
Background: Diabetic nephropathy (DN) is the primary cause of end-stage renal

disease, but existing therapeutics are limited. Therefore, novel molecular

pathways that contribute to DN therapy and diagnostics are urgently needed.

Methods: Based on the Gene Expression Omnibus (GEO) database and Limma R

package, we identified differentially expressed genes of DN and downloaded

oxidative stress-related genes based on the Genecard database. Then, immune

and oxidative stress-related hub genes were screened by combined WGCNA,

machine learning, and protein-protein interaction (PPI) networks and validated

by external validation sets. We conducted ROC analysis to assess the diagnostic

efficacy of hub genes. The correlation of hub genes with clinical characteristics

was analyzed by the Nephroseq v5 database. To understand the cellular

clustering of hub genes in DN, we performed single nucleus RNA sequencing

through the KIT database.

Results: Ultimately, we screened three hub genes, namely CD36, ITGB2, and

SLC1A3, which were all up-regulated. According to ROC analysis, all three

demonstrated excellent diagnostic efficacy. Correlation analysis revealed that

the expression of hub genes was significantly correlated with the deterioration of

renal function, and the results of single nucleus RNA sequencing showed that

hub genes were mainly clustered in endothelial cells and leukocyte clusters.

Conclusion: By combining three machine learning algorithms with WGCNA

analysis, this research identified three hub genes that could serve as novel

targets for the diagnosis and therapy of DN.
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Introduction

Diabetic nephropathy (DN), characterized by proteinuria,

hypertension, and progressive reductions in kidney function, is

the most common cause of end-stage renal disease in developed

countries and poses a serious social and economic burden (1–3).

According to studies, the number of individuals with DN is rising

along with the global prevalence of diabetes, which is predicted to

climb from 537 million to 783 million over the course of the next 20

years or so (4). The present course of therapy, in contrast,

emphasizes renin-angiotensin system blockage, blood pressure

management, and glycemic control (5). As a result, novel targets

for DN diagnosis and therapy are desperately needed. With the

advancement of bioinformatics, its research techniques have been

actively used in recent years to explore targets for numerous

illnesses, including DN.

A significant amount of data points to the importance of

immune and oxidative stress in the etiology of diabetic

nephropathy (6). In this research, we identified diagnostic genes

for DN by a bioinformatic approach combining immune infiltration

and oxidative stress and validated them with an additional external

dataset, as shown in Figure 1 for the specific study route.
Materials and methods

Source of data

We screened three diabetic nephropathy datasets: GSE30528

(GPL571) contained nine cases of diabetic nephropathy and

thirteen controls; GSE104948 (GPL22945) served as a validation
Frontiers in Immunology 02
set and contained seven cases of diabetic nephropathy and eighteen

controls; and GSE131882 (GPL24676) contained three early

diabetic nephropathy and three control samples for single nucleus

RNA sequencing. Additionally, using a relevance score of greater

than 7 as a screening criterion, we were able to extract 855 genes

associated with oxidative stress from the Genecard database. Table 1

displays the pertinent details.
Identification of DEGs

With |log2 fold change (FC)| > 0.5 and p < 0.05 as screening

criteria, differentially expressed genes (DEGs) from GSE30528 were

identified utilizing “Limma” R package, where log FC > 0.5, p < 0.05

was Up, log FC < -0.5, p < 0.05 was Down. The heat map and

volcano map of DEG were plotted using the “Pheatmap” R package

and “ggplot2” R package, respectively.

Subsequently, the obtained DEGs were intersected with 855

oxidative stress-related genes to obtain differentially expressed

genes related to oxidative stress (DEOSGs).
Immune infiltration analysis and
construction of weighted gene
co-expression networks

CIBERSORT employs a deconvolution algorithm to estimate

the composition and abundance of immune cells in a mixture of

cells based on transcriptome data. In the present study, we first

assessed the proportion of 22 immune cell species in normal and

diabetic nephropathy samples in GSE30528 using the CIBERSORT

algorithm (7).
FIGURE 1

Flowchart for research.
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Weighted Gene Go-expression Network Analysis (WGCNA) is

performed to identify modules of highly correlated genes,

summarize the interconnections between modules and

associations with external sample traits, and identify candidate

biomarkers or therapeutic targets. In our research, WGCNA was

constructed by the R package “WGCNA” to identify the modules

with the highest relevance to immune cells in diabetic nephropathy

patients (8). Specifically, we preprocessed the sample data and

removed the outliers. Subsequently, the correlation matrix was

constructed by the “WGCNA” software package. The optimal soft

threshold was chosen to convert the correlation matrix into an

adjacency matrix, and a topological overlap matrix (TOM) was

created from the adjacency matrix. The TOM-based phase

dissimilarity metric was utilized to categorize genes with similar

expression patterns into gene modules using average linkage

hierarchical clustering. The two modules with the strongest

relevance to immune cells were selected as key modules for

subsequent analysis.

Finally, the genes in DEOSGs and key modules were intersected,

and the intersected genes were described as differentially expressed

immune-related oxidative stress genes (DEIOSGs) for further study.
Gene ontology (GO) and Kyoto
Encyclopedia of Genes Genomes (KEGG)
functional enrichment analysis

In this research, the “clusterProfiler” R package was

implemented to conduct GO and KEGG functional enrichment

analysis in R to assess gene-related biological processes (BP),

molecular functions (MF), cellular components (CC), and gene-

related signaling pathways.
Screening hub genes by machine learning
and PPI networks

Least Absolute Shrinkage and Selection Operator (LASSO)

logistic regression analysis is a data mining method that sets the

coefficients of less important variables to zero by applying the L1-

penalty (lambda) in order to filter out the significant variables and

construct the best classification model (9). Support Vector

Machine-Recursive Feature Elimination (SVM-RFE) analysis is a

supervised machine learning technique for identifying the optimal
Frontiers in Immunology 03
core genes by dropping the feature vectors generated by SVM (10).

Random Forest (RF) analysis is a decision tree-based machine

learning method that focuses on evaluating the significance of

variables by scoring the importance of each variable (11). In

combination with machine learning algorithms, the cytoHubba

plugin is frequently applied for the identification of key genes. On

the one hand, diagnostic genes from DEIOSG were assessed using

the three machine learning algorithms separately (12). After that,

the intersection of the three machine learning algorithms

was established.

On the other hand, the STRING database was exploited to

establish protein-protein interaction (PPI) networks, which

Cytoscape then visualized. The differential genes were then

evaluated using 12 algorithms in the cytoHubba plugin, and

finally the top 10 genes for each algorithm were taken as

intersection and visualized through the ImageGP platform (13).

Ultimately, the genes obtained by both methods in total were

identified as hub genes.
Clinical analysis

The Nephroseq v5 database (http://v5.nephroseq.org) (14) is a

comprehensive information platform for evaluating the correlation

between gene expression levels and clinical characteristics of kidney

diseases. To explore the correlation between the expression of hub

genes and clinical features, we mined the Nephroseq v5 database.
GSEA analysis

We performed a single-gene GSEA analysis to investigate the

possible roles of hub genes.
Regulatory network construction and
potential drug prediction

The JASPAR database (15) and the TarBase database (16) were

accessed by the NetworkAnalyst (https://www.networkanalyst.ca/)

(17) to predict transcription factors (TFs) and miRNAs,

respectively. Subsequently, the results were visualized using

Cytoscape software.
TABLE 1 Summary of the data sets utilized in this research and their features.

Dataset Database Platform Sample

GSE30528 GEO GPL571 9 cases of DN and 13 controls

GSE104948 GEO GPL22945 7 cases of DN and 18 controls

Oxidative stress-related genes Genecard Genecard Obtaining oxidative stress-related genes from Genecard

GSE131882 GEO GPL24676 3 cases of DN and 3 controls
GEO, Gene Expression Omnibus; DN, Diabetic Nephropathy.
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We used the Enrichr platform (https://amp.pharm.mssm.edu/

Enrichr/) (18) to access the DSigDB database (19) for potential

drug prediction.
Single nucleus RNA sequencing

A single-cell sequencing database for kidney disease called the

Kidney Integrative Transcriptomics (K.I.T.) database was developed

by Ben Humphrey’s lab at Washington University (http://

humphreyslab.com/SingleCell/) (20). To explore the distribution

of hub genes in cell groups, we applied the database for analysis and

visualization of the results. In one of them, we used single nucleus

RNA sequencing data from diabetic nephropathy that was initially

taken from the GSE131882 dataset.
Statistical analysis

GraphPad Prism 8.0 (GraphPad Software, CA, USA) was

implemented to conduct the statistical analysis. The diagnostic

value of hub genes was evaluated with ROC curve analysis. Hub

genes were analyzed for correlation with clinical features via

Pearson analysis. An unpaired t-test was performed for the

assessment of hub gene differential expression. P < 0.05 was

defined as statistically significant.
Results

Identification of DEGs

A total of 1696 DEGs were acquired from GSE30528, and

another 855 oxidative stress-related genes were mined from the

Genecard database, and 111 DEOSGs were generated by taking the

intersection of the two (Figures 2A–C).
Immune infiltration analysis and
construction of weighted gene
coexpression networks

Five immune cell types, including T cells CD4 naive, T cells

gamma delta, NK cells resting, Dendritic cells resting, and mast cells

resting, were demonstrated to be comparable between DN and

control samples using the CIBERSORT algorithm (Figure 3A).

The soft-threshold power in this research was calibrated to 14

(scale-free R2 = 0.85) (Figure 3B). Last but not least, a sum of 11

modules was revealed by the WGCNA analysis (Figure 3C). In

particular, the green module and the magenta module had strong

positive correlations with T cell CD4 naive and gamma delta

subsets, respectively. Due to their significance in association with

immunological infiltrating cells, the green and magenta modules

were considered for additional investigation.
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Acquisition and functional enrichment
analysis of DEIOSGs

DEIOSGs are the genes that overlap DEOSGs with the magenta

and green modules generated by WGCNA, and a total of 24

DEIOSGs were identified (Figure 4A).

Furthermore, we performed the functional enrichment of 24

DEIOSGs via GO and KEGG. In the BP assessment, DEIOSGs were

mostly engaged in superoxide metabolic processes, neutrophil

activation, and other functions. DEIOSGs have been localized to

the external side of the plasma membrane, endocytic vesicle, and

other structures in CC. DEIOSG changes associated with MF

include amide binding, integrin binding, and superoxide-

generating NAD(P)H oxidase activity (Figure 4B). According to

KEGG analysis, DEIOSGs are particularly abundant in leukocyte

transendothelial migration, neutrophil extracellular trap formation,

lipid and atherosclerosis, diabetic cardiomyopathy, natural killer

cell mediated cytotoxicity and other pathways (Figures 4C, D).
Screening hub genes by machine learning
and PPI networks

Firstly, 6 genes were extracted from DEIOSGs using the LASSO

regression algorithm (Figure 5A). Secondly, the SVM-RFE

algorithm identified 6 genes (Figure 5B). Then, 7 genes were

selected by the RF algorithm (Figure 5C). Subsequently, the three

were overlapped by the Venn diagram and finally two genes were

obtained, namely CD36 and SLC1A3 (Figure 5D). Meanwhile, from

the PPI network, we obtained a gene, namely ITGB2, through the

cytoHubba plugin (Figures 6A, B). Finally, a total of 3 hub genes

were identified by both methods, all of which were up-regulated.
Expression of hub genes and validation of
external datasets

When compared to the normal control sample, we discovered in

the GSE30528 dataset that these genes were expressed more highly in

DN (Figures 7A–C).We next confirmed the expression of these genes

using another dataset, and the results revealed that these genes were

likewise more strongly expressed in DN than control in GSE104948,

and they were all statistically significant (Figures 7D–F).
ROC curve analysis

To explore the diagnostic efficacy of the 3 hub genes, we

implemented a ROC curve analysis in which hub genes with an

AUC value > 0.7 were used as diagnostic markers. In the GSE30528

dataset, the AUC values were 0.8215 for CD36, 0.9402 for SLC1A3,

and 0.9060 for ITGB2 (Figures 8A–C).

In the GSE104948 dataset, the AUC values of CD36 were 1.000

(95% CI: 1.000-1.000), AUC values of SLC1A3 were 0.7937 (95%
frontiersin.org
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CI: 0.5244-1.000), AUC values of ITGB2 were 0.9921 (95% CI:

0.9669-1.000) (Figures 8D–F).

GSEA analysis

According to GSEA findings, the CD36 high expression group

was highly enriched for primary immunodeficiency and viral

protein interaction with cytokines and cytokine receptors

(Figure 9A). The ITGB2 high expression group was mostly

concentrated in the citrate cycle (TCA cycle) and proteasome

(Figure 9B). Allograft rejection, primary immunodeficiency, and
Frontiers in Immunology 05
systemic lupus erythematosuswere all associated with increased

SLC1A3 expression (Figure 9C).
Clinical analysis

In DN patients, correlation analysis revealed a negative correlation

between CD36 expression and glomerular filtration rate (GFR) (r =

-0.860, p < 0.001) and a positive correlation between CD36 expression

and serum creatinine (r = 0.887, p < 0.001) (Figures 10A, B). ITGB2

expression was negatively correlated with glomerular filtration rate
A B

C

FIGURE 2

Screening for DEGs. (A) Volcano plot of DEGs in GSE30528. (B) Heatmap of DEGs in GSE30528. (C) Venn diagrams of DEOSGs. DEGs, differentially
expressed genes; DEOSGs, differentially expressed genes related to oxidative stress.
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(GFR) (r = -0.2031, p = 0.6002) but not statistically different, whereas

ITGB2 expression was positively correlated with serum creatinine (r =

0.5590, p = 0.020) (Figures 10C, D).
Regulatory network construction and
potential drug prediction

Using the JASPAR database, 31 TFs were finally obtained,

among which, there were 9 TFs with degree≥2, and they were

FOXC1, FOXL1, YY1, PPARG, STAT3, HINFP, MAX, USF1, USF2
Frontiers in Immunology 06
(Figure 11A). Possible miRNAs were predicted by the TarBase

database with 10 miRNAs of degree≥2 (Figure 11B).

Eighty-seven potential therapeutic agents were screened in the

DSigDB database with a cut-off value of Adjusted p-value < 0.05

(Supplementary Table 1).
Single nucleus RNA sequencing

By single nucleus RNA sequencing, we determined the

distribution of CD36, ITGB2 and SLC1A3 in 12 cell groups
A

B

C

FIGURE 3

Immune infiltration analysis and construction of weighted gene co-expression networks. (A) 22 immune cells in samples with normal and diabetic nephropathy in
GSE30528. (B) Choosing the best soft-threshold power. (C) 11 modules revealed by the WGCNA. WGCNA, weighted gene co-expression network analysis.
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A B

DC

FIGURE 4

Acquisition and functional enrichment analysis of DEIOSGs. (A) Venn diagrams of DEIOSGs. (B) The GO outcomes are displayed with a bubble plot.
(C) A bubble plot was constructed to illustrate the KEGG outcomes. (D) Results of KEGG are depicted on circle charts. DEIOSGs, differentially
expressed immune-related oxidative stress genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological process;
CC, cellular component; MF, molecular function.
A

B

D

C

FIGURE 5

Screening hub genes by machine learning. (A) LASSO regression algorithm. (B) SVM-RFE algorithm. (C) RF algorithm. (D) Venn diagrams for three
algorithms. LASSO, Least Absolute Shrinkage and Selection Operator; SVM-RFE, Support Vector Machine-Recursive Feature Elimination;
RF, Random Forest.
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(Figure 12A), among which CD36 was mainly distributed in

endothelium and ITGB2 and SLC1A3 were highly expressed in

leukocyte (Figures 12B-D).
Discussion

Diabetic nephropathy is triggered by a combination of several

factors (21). However, its specific mechanisms remain to be
Frontiers in Immunology 08
explored. Due to the heterogeneity of individuals, the present

therapeutic effects for diabetic nephropathy are constrained,

making the necessity for novel molecular pathways that

contribute to DN therapy and diagnosis essential. The

progression of DN has been determined to be significantly

controlled by immune infiltration and oxidative stress (22, 23).

Meanwhile, with the progression of a diverse range of informatics

technologies, machine learning algorithms and WGCNA have

become more mature and are widely applied for the prediction of
frontiersin.o
A B

FIGURE 6

Screening hub genes by PPI network. (A) PPI network. (B) Venn diagrams for 12 algorithms in cytoHubba plugin. PPI, protein-protein interaction.
A B

D E F

C

FIGURE 7

Expression of hub genes and validation of external datasets. (A-C) Expression of hub genes in the GSE30528 dataset. (D-F) Expression of hub genes
in the GSE104948 dataset. * p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001.
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A B

D E F

C

FIGURE 8

ROC curve analysis. (A–C) Hub genes in the GSE30528 dataset were analyzed using ROC curves. (D–F) Hub genes in the GSE104948 dataset were
analyzed using ROC curves.
A

B

C

FIGURE 9

(A-C) GSEA analysis of hub genes.
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disease markers and therapeutic targets. In this research, we

retrieved transcriptomic datasets from the GEO database and,

combining machine learning, WGCNA, and PPI networks,

identified a set of three immune and oxidative stress-related hub

genes, namely CD36, ITGB2, and SLC1A3, and validated them with

an additional dataset. We implemented ROC curve analysis to

assess the diagnostic value of hub genes, and the results showed

that all three hub genes had excellent diagnostic efficacy.

CD36, commonly regarded as a scavenger receptor, is located in a

wide range of renal cells (24), which is consistent with our single

nucleus RNA sequencing analysis. Lipid metabolism, immunological

inflammation, and renal fibrosis are its key areas of involvement.

According to research, a possible therapeutic target for the prevention

of renal fibrosis may be CD36 (25). Little research has been

performed on the function of CD36 in immune-related oxidative

stress, even though CD36 is broadly investigated in the pathogenesis

of DN. In this research, we discovered that CD36 expression was

elevated in the renal tissues of individuals with diabetic nephropathy

and had a diagnostic accuracy value (AUC > 0.80). Cohort studies

revealed that sCD36 levels in plasma and urine were raised in DN
Frontiers in Immunology 10
patients and correlated with DN severity, indicating that sCD36 may

be a diagnostic marker for DN progression (26). Furthermore, the

mechanism of CD36 engagement in DN is mostly attributed to

oxidative stress triggered by lipid deposition (27), which is consistent

with the results of our functional enrichment analysis. Hou Y. et al.

revealed that CD36 contributed to DN progression by triggering

epithelial-mesenchymal transition (EMT) through the induction of

reactive oxygen species (ROS) production (28). Additionally, the

outcomes of animal studies suggested that inhibiting CD36 might

shield diabetic mice from kidney harm and oxidative stress (29).

ITGB2, a member of the integrin family, is mostly expressed in

immune cells and is connected to a variety of metabolic pathways

as well as immune functions such as leukocyte extravasation (30).

Similarly, ITGB2 is crucial for the growth of tumors. For instance,

it is primarily in charge of the invasion and metastasis of tumor

cells in gliomas, which is closely connected to the immune

microenvironment (31). The engagement of ITGB2 in DN

development, however, has received relatively little research. In

our research, we observed that ITGB2 with upregulated expression

also has excellent diagnostic efficacy (AUC > 0.90). Based on the
A B

DC

FIGURE 10

Correlation analysis. (A, B) Correlation analysis of CD36 with GFR and serum creatinine. (C, D) Correlation analysis of ITGB2 with GFR and serum
creatinine. GFR, glomerular filtration rate.
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most recent experimental research, ITGB2 is essential for the

progression of diabetes, and the ITGB2 gene deficiency may

hopefully prevent the disease (32). This paves the way for

ITGB2 to become a diagnostic marker for DN. Furthermore,

there is a growing consensus that EMT is essential for the

development of DN (33, 34). And ITGB2 is also closely related

to the regulation of EMT (35, 36).

SLC1A3, an aspartate and glutamate transporter, is abundantly

expressed in cerebral and tumor tissues and is associated with

immune inflammation as well as proliferation and metastasis of

tumors (37). It has also been proposed that SLC1A3 is involved in

the amino acid-related metabolism of adipocytes (38). Furthermore,

insulin has been demonstrated to regulate the expression and

activity of SLC1A3 (39). And SLC1A3 is mainly involved in

diabetic retinopathy in diabetic complications (40). In our results,
Frontiers in Immunology 11
SLC1A3 is expressed more strongly in DN patients than in

healthy controls.

According to the results of our investigation, CD36, which was

upregulated in renal tissue, was significantly linked to reduced GFR

and increased serum creatinine, implying that CD36 expression

may be associated with reduced renal function in patients with DN.

ITGB also has a similar presentation.

As we all know, the two key mechanisms in the progression of

DN are oxidative stress and immunity, and they are inexorably

intertwined. Hyperglycemia is a central factor in kidney damage in

DN patients (41). On one hand, hyperglycemia induces oxidative

stress by activating the renin-angiotensin-aldosterone system

(RAAS), which leads to renal injury (42). On the other hand, the

stress caused by persistent hyperglycemia can lead to a high

production of inflammatory molecules and the accumulation of
A

B

FIGURE 11

Regulatory network. (A) Interaction network of TFs and genes for the hub genes. (B) Network of interactions between miRNAs and the hub genes.
TF, transcription factors; miRNA, microRNA.
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immune complexes, a process that is closely related to immune cells

such as mast cells (43). The results of immune infiltration analysis

also suggest that mast cells, NK cells and T cells are closely

associated with the development of DN. In addition, the results of

our functional enrichment analysis also suggest that DEIOSGs are

mainly enriched in immune and oxidative stress-related pathways.

Therefore, therapeutic strategies targeting immune and oxidative

stress are particularly important and promising.

However, this study has several limitations. The evidence is

based on publicly available data, and although we performed

expression validation with another dataset, further experiments

are needed to validate these 3 diagnostic markers before they can

be applied to the clinic.

In conclusion, by combining three machine learning

algorithms with WGCNA analysis, this research identified three

hub genes that could serve as novel targets for the diagnosis and

therapy of DN.
Frontiers in Immunology 12
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FIGURE 12

Single Nucleus RNA Sequencing. (A) The distribution of hub genes in 12 cell groups. (B) CD36. (C) ITGB2. (D) SLC1A3. PCT, proximal convoluted
tubule; CD, collecting duct; ICA, Type A intercalated cells; ICB, Type B intercalated cells; PEC, parietal epithelial cells; PC, principal cell; DCT, distal
convoluted tubule; CT, connecting tubule; LOH, loop of Henle; PODO, podocyte; ENDO, endothelium; MES, mesangial cell; LEUK, leukocyte.
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