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The conventional therapeutic approaches to treat autoimmune diseases through

suppressing the immune system, such as steroidal and non-steroidal anti-

inflammatory drugs, are not adequately practical. Moreover, these regimens

are associated with considerable complications. Designing tolerogenic

therapeutic strategies based on stem cells, immune cells, and their

extracellular vesicles (EVs) seems to open a promising path to managing

autoimmune diseases’ vast burden. Mesenchymal stem/stromal cells (MSCs),

dendritic cells, and regulatory T cells (Tregs) are the main cell types applied to

restore a tolerogenic immune status; MSCs play a more beneficial role due to

their amenable properties and extensive cross-talks with different immune cells.

With existing concerns about the employment of cells, new cell-free therapeutic

paradigms, such as EV-based therapies, are gaining attention in this field.

Additionally, EVs’ unique properties have made them to be known as smart

immunomodulators and are considered as a potential substitute for cell therapy.

This review provides an overview of the advantages and disadvantages of cell-

based and EV-based methods for treating autoimmune diseases. The study also

presents an outlook on the future of EVs to be implemented in clinics for

autoimmune patients.

KEYWORDS
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1 Introduction

An ever-increasing number of people worldwide suffer from

some form of autoimmune disease. These are clinical conditions

collectively defined by the loss of tolerance/immunological inertness

(1, 2), which is mainly accompanied by a simultaneous failure of

regenerative mechanisms (1, 3). Losing central or peripheral

tolerance could be resulted from genetic mutations, environmental

factors, and stochastic or epigenetic phenomena, with possible

devastating immunological consequences (4–6). Upon the

activation of innate immune responses, adaptive immune responses

are also triggered, which are significantly involved in determining the

“extension” and “persistence” of autoimmune diseases (7).

Furthermore, it was proposed that abnormal inflammatory

responses are correlated with chronic autoimmune diseases (8).

Activated T and B cells, inappropriately responding to self-

antigens, are responsible for cell death during autoimmune diseases

(1, 3).

According to some epidemiological studies, autoimmune

diseases affect approximately 5–8% of the world population (9).

They are associated with 80 chronic conditions (10). Autoimmune

diseases are classified as either organ-specific or systemic (11).

Autoimmune diseases could be considered monogenic, polygenic,

or mixed patterns and may originate from deregulations in innate

and adaptive immune responses (12, 13). It is unclear whether these

classifications will affect the treatment strategy or outcomes,

especially in cell-based therapeutics. However, these features

could be considered critical in deciding which cell source or the

administration route would be more suitable.

Immunosuppression is among the most common therapeutic

strategies to manage autoimmunity. However, the main barrier in

this approach is the complexity of the immune system and its exact

fine-tuning under different circumstances. Although over-activity

of the immune system is not desirable, some level of function is

essential for efficient defence against pathogens. Hence, a broad-

spectrum of the immune suppressants are undesirable as their long-

term use may result in serious side effects ranging from

susceptibility to infections to malignancies (11). Drug toxicity and

low penetration capacity are other obstacles limiting the efficacy of

routine therapeutic strategies (14, 15). Some pharmaceutical and

even biological strategies, applied to manage autoimmune diseases

in a target-specific mode, were reported to trigger new autoimmune

diseases and have significant side effects (16). As a general trend,

despite the cancer cases in which immunostimulatory features are

desirable to control immune-scape mechanisms, in regenerative

medicine, immunosuppressive features are the primary therapeutic

modality to manage exhaustive tissue inflammation for the benefit

of fundamental regenerative mechanisms (17, 18).

2 Cell-based therapies for
autoimmune diseases

Cell-based therapies have been delegated to overcome the limits

of conventional medicine in managing autoimmune disorders,

perhaps because they affect cell-cell interactions as fundamental
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players of the immune responses. Understanding the molecular

mechanisms and signaling pathways responsible for the

pathogenesis of autoimmune diseases has provided a basis for

employing cells with diverse abilities to compensate for various

functional defects of the immune system. The current scope of cell-

based therapies for managing autoimmune diseases has been

previously discussed (19). An overview of clinical trials registered

in ClinicalTrials.gov for leading prevalent autoimmune diseases

indicates that four main cell types have been assessed. These

include i) hematopoietic stem cells (± immune ablation); ii)
mesenchymal stem/stromal cells (bone marrow, adipose, umbilical

cord, placenta, Wharton’s Jelly); iii) tolerogenic dendritic cells

(TolDCs), and iv) T regulatory cells (Treg) (Figure 1). Other cell

sources/products were also reported, such as peripheral blood CD34+

stem cells, allogeneic lymphocytes, bone marrow aspirates, lipo-

aspirates, adipose stem cells secretome, MSC conditioned media,

the stromal vascular fraction (SVF) cells/vascular fraction from the

adipose tissue, adipose-derived regenerative cells, autologous

centrifuged adipose tissue, mesenchymal trophic factors (MTFs)

from the umbilical cord, autologous apoptotic cells, and third party

antigen-specific T-cells (ClinicalTrials.gov). A closer look shows that

in addition to the four main cell types, some tissue components or cell

suspension combinations have also been tested, containing one of

these cell types or their derivatives. Different administration routes

and the autologous vs. allogeneic application of the cells are other

variations observed among previously registered clinical trials. First, it

is necessary to highlight how much these disorders threaten global

health to better describe the significance of cells and their derivatives

in managing autoimmune diseases.
2.1 Hematopoietic stem cells

Hematopoietic stem cell transplantation (HSCT) is one of the

primary efficient cell-based therapies utilized to treat autoimmune

diseases (20, 21). They operate based on eliminating autoreactive

immune cells and reconstituting the self-tolerant immune system.

Although HSCT is an intensive one-off procedure, it brings a

treatment-free remission for the patients upon success. With

more than 3300 auto-immune patients registered for HSCT, the

European Society for Blood and Marrow Transplantation (EBMT)

Autoimmune Diseases Working Party (ADWP) has made

significant progress in the field (22, 23). HSCT is currently the

therapeutic modality for multiple sclerosis, systemic sclerosis, and

Crohn’s disease by the professional stem cell transplant societies of

America, Europe, and Brazil (24). The rationale and mode of action

of HSCT were reviewed by another group (22). Given the

prerequisites of this type of treatment, allogeneic HSCT is still

considered a high-risk strategy that is only prescribed for patients in

the very severe stages of autoimmune diseases (19, 25–27).
2.2 Tolerogenic DCs

Dendritic cells (DCs) are antigen-presenting cells (APCs) that

regulate innate and acquired immune systems, balancing antigen-
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specific immunity and promoting immune tolerance. Based on their

subtypes, DCs can play different and sometimes opposite roles. DCs

act as pro- or anti-inflammation inducers upon external

application. For instance, in the context of autoimmune diseases,

they can contribute to the worsening of the disease through the

production of pro-inflammatory cytokines and the activation of

autologous antigen-reactive T cells (28). In the context of organ

transplantation, donor DC-derived EVs can promote undesirable

allograft-targeting immune responses (29). At the same

time, tolerogenic DCs comprise a specific type of APCs with

immunoregulatory function (30, 31).

The function of DCs depends on several factors, such as pattern

recognition receptors (PPRs), specific cytokines and metabolites,

some TLRs agonists, dexamethasone, and vitamin A or vitamin D3,

which could be applied to maintain tolerogenic DCs stable and to

enhance their lymph node-homing capacity (32, 33). The situation

seems to be fine-tuned by their maturation status. Studies show that

immature and semi-mature DCs demonstrate tolerogenic features
Frontiers in Immunology 03
(34) through different mechanisms (35). In experimental models,

immature DC-derived EVs that carry tolerogenic content were

applied successfully in the context of rheumatoid arthritis (36–

38). DC-derived EVs maintain their producer cells’ features. Hence

they could be considered proper cell replacements (39).

These EVs may be enriched with either immunoregulatory or

immunostimulatory content to target a particular subset of the

immune cells, resulting in their suppression, reprogramming or

activation. As well-known anti-inflammatory molecules, EVs with

tailored anti-inflammatory content are shown to be produced by

DCs, modified for the benefit of IDO1, TGF-b1, IL-10, IL-4, Fas-L,
and CTLA-4 (40).
2.3 Regulatory T cells

Regulatory T cells (Tregs) actively maintain peripheral immune

tolerance (41). Two major types of Treg cells (polyclonal and
A B

FIGURE 1

Conventional vs. modern cell based therapeutic approaches for autoimmune diseases. (A) Conventional therapeutic approaches are mostly depend
on disruption of antigen presentation, blocking cytokine production, and/or the prescription of immunosuppressive regimens. (B) Modern cell-based
therapeutics. Hematopoietic stem cells, tolerogenic dendritic cells, regulatory T cells, and mesenchymal stem cells are the four main cellular sources
that have been proposed to treat autoimmune diseases. Autoimmunity is accompanied by abnormal accumulation of activated immune effector
cells (mostly cytotoxic T lymphocytes; CTLs) and concurrent decrease/functional deficiency of the inhibitory/regulatory cells (FOXP3+) of the
immune system; otherwise it is defined as the failure of the self-tolerance. Hence, effective therapeutic strategies are those with the capacity to re-
induce the homeostatic state of the immune system. While hematopoietic stem cell transplantation can reconstitute the immune system, the effects
of the other three cell types are attributed to their capacity for rebuilding autoimmune tolerance. Unlike the conventional methods which are
typically temporary, and are accompanied by harsh side effects, cellular toxicity, and single-effect mechanism of action, cell-based methods are
provide the patients with a long-lasting alleviative effects.
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antigen-specific Tregs) have been investigated based on their

immunomodulatory capacities. Pre-clinical studies indicate that

antigen-specific Tregs have superior tolerogenic properties

compared to polyclonal Tregs as they have more defined

specificity (42). Potential applications, large-scale production,

safety and efficacy of Tregs produced via good manufacturing

practice (GMP) were recently described (43, 44).

An alternative approach to deploying tailored Tregs is via their

genetic engineering, known as chimeric antigen receptors (CAR)-

Tregs. Tregs are engineered as an improved version of the cells,

which facilitates the design of advanced therapeutic procedures to

induce immune-tolerogenic responses (43, 45, 46). The biology of

Treg cells, advantages, challenges, and some technical details were

discussed by Raffin and Bluestone (47). The possible role of these

cells in effectively managing autoimmune diseases remains to

be elucidated.
2.4 Mesenchymal stem/stromal cells

MSCs possess high regenerative capacities and special

immunoregulatory functions affecting all types of innate and

adaptive immune cells (48). MSCs, trans-differentiated to a

macrophage-like profile in vivo, were shown to carry secretory

capabilities that resembled phagosomes. This functional shift in the

injury site is accompanied by the overexpression of CD45 and

major histocompatibility complex (MHC) class II while

maintaining their MSC-specific surface marker expression (49).

Due to their unique features, MSCs are currently widely applied

in the late phases of clinical trials. Previous clinical studies regarding

the application of MSCs for immune-related diseases are classified

based on criteria, including disease type, donors, and tissue sources

(50). A brief timeline for significant events in studying the

immunosuppressive effects of MSCs and the progress in their

clinical applications was discussed in detail by Wu et al.,

confirming their safety and efficacy (51).

The consequences of autologous/allogeneic MSC therapy are

heavily investigated in clinical trials to treat autoimmune and

inflammatory diseases along with transplant rejection, including

graft versus host disease (GvHD), acute respiratory distress

syndrome (ARDS), acute lung injury (ALI), ankylosing

spondylitis, autoimmune hepatitis, type 1 and 2 diabetes,

refractory autoimmune thrombocytopenia, skin diseases,

inflammatory bowel disease (IBD), MS, CD, Stevens-Johnson

syndrome (SJS), systemic lupus erythematosus (SLE), rheumatoid

arthritis (RA), osteoarthritis (OA), and even in coronavirus disease

of 2019 (COVID-19) as an immune-dysregulating infectious

disease. As dysfunctional MSCs were proposed to be involved in

the pathogenesis of some autoimmune diseases, such as SLE or

immune thrombocytopenia (ITP), the utilization of MSC-based

therapeutics could be considered more seriously as an effective

treatment strategy (52–55).

In addition to the intrinsic capacity for migration towards

inflammatory tissues, MSCs possess different immunomodulatory

properties, including the inhibition of apoptosis, induction/

maintenance of immune tolerance, and immunosuppression (10).
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The beneficial properties of MSCs, which play a role in modulating

inflammatory responses and infiltration processes, have been

attributed to a synergy by i) MSC-released signaling molecules, ii)
the reaction of immune cells and other target cells to these signaling

molecules, and iii) feedback in the MSC-molecule-target cell axis

(56). However, the precise way MSCs act is still under investigation.

MSCs produce and release extracellular vesicles (EVs) enriched

with immunomodulatory factors as long as their cellular resources

are kept in proper and defined conditions (57). Furthermore, they

can induce tolerogenic Treg cells and even tolerogenic DCs

following their administration (58, 59). The immunomodulatory,

pro-angiogenic, and tissue-tropic activities of MSCs-secretome and

-EVs are comparable to the producer cells, and they were proposed

as valuable sources for treating inflammatory disease (60, 61).

Hence, based on their paracrine effects, the potential to alter the

function of immune cells, and considerable potential for EV

production, we focus on these cells and their EV counterparts.

The potential of MSCs for large-scale production of EVs with

immunomodulatory content was compared with HEK293, ESCs,

iPSCs, and ESC/iPSC-derived MSCs from different aspects in a

previous publication (62). We highlight some open issues regarding

the differences between cells and EVs to compare their applications.

3 Extracellular vesicles, a new
therapeutic paradigm for autoimmune
diseases

The application of cell-free products secreted by the stem and

progenitor cells has been proposed to lower the risks of direct cell

injection while maintaining good efficacy (63). Among several

cell-free products, EVs are gaining closer attention as novel anti-

inflammatory therapeutics (64). These vesicles are involved in key

innate and adaptive immunity processes, including but not limited

to antigen presentation, inflammation, anti-microbial defence,

development and activation of B- and T-cells, and allergic,

autoimmune or anti-tumor responses (65). EVs have raised a

good deal of promise for the efficient treatment of autoimmune

diseases, as they carry the analogous advantages of their producer

cells (66). While EVs from CD3+, activated CD8+, or engineered

T-cells, natural killer cells, and M1 macrophages are mostly

considered immune-active nano-vesicles, EVs from regulatory

T-cells, MSCs, and M2 macrophages, as well as erythrocytes,

neutrophils, platelets or cancerous cells are reported to have

immunosuppressive features. The key consideration is that they

exert immunosuppressive or immune-active properties in a

producer- and target-cell-dependent manner (67).
3.1 The biological properties of EVs

EVs of 30 nm to 1 µm in diameter are described as

“heterogeneous bilayer membranous vesicles lacking a functional

nucleus” and as “multi-signal messengers” which are enriched with

a variety of biomolecules (68, 69). The biogenesis, intracellular

trafficking, and secretion of EVs are tightly regulated by specific
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1090416
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Haghighitalab et al. 10.3389/fimmu.2023.1090416
proteins, including the RAB family of small GTPases (70) and

lipids, and need the molecular motors- (myosin, kinases, dynein,

and GTPases) mediated cytoskeleton rearrangement (68, 71). These

vesicles share characteristics regarding their membrane organizers,

lipid content, cell adhesion molecules, intracellular trafficking

mediators, enzymes, signal transduction, biogenesis factors,

chaperones, and nucleic acids, while they are different in some

others (72). Identifying these commonalities and differences

between EV types will help to better understand their biology

and function.

Different classification criteria and nomenclature have been

applied to define various types of vesicles (73), including

exosomes, microvesicles/ectosomes, apoptotic bodies, migrasomes,

and oncosomes that are released by the cells under normal

physiological and pathological conditions (74–76), amongst

exosomes are the most well-known cellular nano-vesicles (77)

(Figure 2). The most recently introduced member of the secreted

nano-particles family includes exomeres [with a dot-shaped
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morphology], which are smaller than 50 nm and are enriched

with metabolic pathways [glycolysis and mTORC1 signaling

regulatory proteins such as b-galactoside a2, 6-sialyltransferase 1

(ST6Gal-I) and the EGFR ligand, amphiregulin (AREG) (76, 78,

79). Supermeres are the other new class of extracellular particles,

indicating a different protein and RNA cargo than EVs and

exomeres. Although similar to EVs and exomeres, they have the

potential to carry extracellular RNA in a protected mode and play a

role during chronic disease conditions (80–82). It was proposed that

supermeres may be functionally involved in the immune

supervision of cell-death-derived ribonucleoprotein complexes (83).

However, the isolation steps or the characterization methods for

a definite type of vesicles are not convincing enough. For instance,

essential controls for the different subtypes are not considered while

comparing the functional immune-related properties. On the other

hand, it was shown by experimental studies that their

immunomodulatory characteristic is prominently diminished upon

removing EVs from MSC-secretome. Although several subtypes of
FIGURE 2

Extracellular vesicles classification. (A) Different criteria have been proposed to classify Extracellular vesicles (EVs) including production mechanism
(biogenesis, transport, release), morphology, markers, density, half-life, molecular composition, and functional properties; among which their origin
(B), and size (C) are more applicable due to their quantitative modality and functional consequences, respectively. (B) As it is shown, exosomes are
the nano-entities released upon the exocytosis of multivesicular bodies while ectosomes/microvesicles are produced upon the assembly of plasma
membrane into the membranous vesicles. (C) Live cells, apoptotic cells, and cancerous cells produce nano-size extracellular vesicles with different
characteristics. These vesicles have an overlapping size distribution, gradually increased from exomeres to oncosomes. EVs are also classified as
small (<200 nm) and large EVs (>200 nm).
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nano-vesicles are currently recognized, due to the recent

bibliographic studies (2002-2021), two terms, “exosomes” and

“extracellular vesicles”, are yet the most frequent keywords applied

to describe the role of these cell-derived membranous nano-vesicles

in autoimmune diseases (84, 85). Despite the initial trend, it is now

evidenced that the impact of EV subtypes and their versatility is so

critical compared to what it inferred at first (86, 87) and should not

be underestimated during designing and performing future pre-

clinical experiments and clinical trials. Here, following the

International Society for Extracellular Vesicles (ISEV) consensus

recommendation (88), we apply the term “extracellular vesicles” as

the representative for the nano-sized natural and non-replicative

particles focusing on membranous exosomes and ectosomes, which

are produced by almost all cell types (68, 76, 89–92).

Isolation (93), characterization (94), labeling, and quantification

strategies of different EV subtypes are constantly evolving (95). It

should be noted that the various isolation methods of EVs end with

different characteristics and potencies in terms of application (96,

97). It was shown that EVs from 3D cultures are functionally

different and are more similar to the patient-derived EVs

compared to those obtained from traditional 2D-culture

conditions (98–100). These imply that spending time for

optimization of isolation method/s (101, 102) to reach pure EVs

with higher efficiency (103) in a reproducible manner (104) is of

great importance. This way, it would be possible to compare the

results more accurately (102).

EVs’ biogenesis, biological properties, and contents have been

comprehensively discussed over the last few years and shown that

they are essential for their function and clinical applications (68).

The quality of endogenous EV preparations (105), from body fluids,

tissues, or intracellular spaces (40), is affected by the circadian clock

(106). In addition, isolation method, purity, storage protocol (107),

time and temperature (108), presence or absence of anti-coagulants,

isotonic buffers, other reagents such as cryoprotectants (109), pH,

and ionic strength (110–112) are the other influencing factors. The

concentration and content of EVs are influenced by demographic

factors, including sex, age and race to some extent (113) and more

than that, the EV cargo could be deliberately engineered through

microenvironment modifications (114).

EVs are considered a powerful means for short- and long-

distance communications (juxtacrine, autocrine, paracrine, and

endocrine modes (65)) of the cells (115–117). These cross-talks

have remained conserved throughout evolution and play a role in

“inter-kingdom” mutual communications (118). This way, EVs can

mediate (attenuate or promote) cell death, inflammation, and

immune responses in a context-dependent mode (119, 120).

Extracellular matrix-bound EVs are a recently-introduced subset

of EVs with predicted roles in tissue repair and regeneration, which

may be mediated by their active or passive tissue traversing or

extracellular matrix (ECM) remodeling capacity (121). While cells

are changing entities, EVs do not change following their release.

Their biological function could, however, be impaired upon

exposure to hostile microenvironments (122). In other words,

EVs are membranous packages that carry various DNA-, RNA-,

protein-, lipid cargoes and metabolites to their target cells (69, 123–

125). They transfer active components to their target cells via
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different mechanisms, including receptors (integrins, tetraspanins,

lectins, proteoglycans)-mediated binding, plasma membrane

fusion, macropinocytosis, and lipid raft-mediated endocytosis,

clathrin-mediated endocytosis, phagocytosis, and caveolae-

dependent endocytosis, and trigger certain downstream events.

Tissue-derived EVs (Ti-EVs) reflect the tissue of origin

microenvironment and cell-to-cell intercommunications and are

critically important in studying and monitoring some

developmental events. Like cell-culture-derived EVs, optimized

and standardized protocols should be applied for efficient

isolation and enrichment of Ti-EVs (126). Examples of the

importance and usability of Ti-EVs have been reported in the

pathogenesis, diagnosis, and treatment of Alzheimer’s disease

(127, 128). EVs from individuals diagnosed with AD possess a

specific protein content and miRNAs profiles which could be

applied for early detection of the disease. In a recent experiment,

NMDAR2A was identified as a CNS-specific EV surface marker,

and it was shown in a multicenter study, including both discovery

and validation cohorts, that the number of plasma EVs with

NMDAR2A and L1CAM expression is lower in patients with AD

in comparison to the healthy controls (129). On the other hand, as

EVs are responsible for the “spread of tau pathology”, their

secretion inhibition could be proposed as a novel targeted

therapeutic strategy for patients with Alzheimer’s disease (126,

130, 131). Bone marrow MSC-EVs can decrease BACE-1 and Ab,
increase sphingosine-1-phosphate and exert amenable results in the

context of Alzheimer’s disease (66, 132, 133).

Preparing qualified endogenous EVs from bio-fluids as the

primary source is more complex, as several factors interfere with

efficient EV isolation and purification (134). The quality of the final

sample will be determined as a consequence of donor-related

factors in addition to the biophysical and chemical properties of

the fluid. The material of the sample collection tube, the application

of coagulant or anticoagulants, the initial volume of the sample,

mixing or agitation steps, the duration of pre-processing or pre-

storage steps, and hemolysis degree or other depletion strategies are

among the essential determinants of the quality of EVs. It is also

essential to manage possible contaminations (111, 135).

Among their broad applications, EVs are sometimes utilized

based on their nano-sized features and ability to pass through blood

barriers (136). In such cases, EVs could be applied as a new

paradigm with amenable priorities (137, 138). EVs can achieve

most features of the synthetic nano-carriers (i.e., liposomes and

nano-particles). Moreover, they have higher biocompatibility,

chemical stability, longer-distance intercellular communications,

and cell fusion capacity (139). As non-toxic nano-carriers, EVs

demonstrated better pharmacokinetics and pharmacodynamics

features (absorption, distribution, metabolism, and excretion)

than synthetic nano-carriers (140, 141). However, there are

controversies regarding their application as drug delivery systems

(DDSs) like nano-shuttles (142). Some technical limitations have

been raised regarding their flexibility in applying different reagents,

preparation procedures, and surface functionalization strategies

(139). Also, they have widely been recognized as natural and

valuable means for diagnosing and monitoring various disease

conditions and novel therapeutic agents (111, 143).
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3.2 Therapeutic potential of EVs

Therapeutic applications of EVs in managing different

inflammatory and autoimmune diseases and their immuno

modulatory features and composition were discussed in recently

published articles (144–146). Extensive parallel research during the

last decade has revealed new aspects in the biology of MSCs, leading

to changes in our orientation regarding their applications. These

changes highlighted the importance of the paracrine effects of MSCs

and proposed the possibility of replacing the cells with their cell-free

products, especially in the allogeneic context (147). “Secretome” is the

common term that represents all substances released by MSCs,

including free-soluble factors (various growth factors, chemokines,

and cytokines) and insoluble EVs (148–150). Different aspects of the

pleiotropic therapeutic effects of MSCs and their paracrine action

were discussed in a recent publication, emphasizing the active

components of the MSCs’ secretome (116). The paracrine strength

of these cells is so significant that it has been suggested that the name

of these cells would be changed to the medicinal signaling cells (151,

152). Munoz-Perez et al. reviewed the latest trends regarding the

potential of MSC-secretome to treat immune-encountered

inflammatory diseases (153).

There is a growing tendency toward local administration of EVs

employing diverse scaffolds from acellular tissues to solid patches

and hydrogels (154–158). One good reason favoring the local

administration of EVs is the lower amount required, making their

utilization much more cost-effective. Furthermore, their gradual

and sustained release following the administration is a positive

point (87). Moreover, the application of scaffolds/biomaterials

increases the bioavailability, homing, and/or biocompatibility of

EVs at the site of injection, while they are also effective in avoiding

the side effects of the injection procedure (159). This preference

may be pronounced when dealing with local inflammatory

conditions or tissue-specific autoimmune diseases.

It was confirmed that MSC-EVs are therapeutically efficient in

30 animal models mimicking various human diseases (111). While

different roles were described for EVs during the pathogenesis/

immunopathology of Rheumatoid arthritis and joint impairment of

RA patients, the therapeutic impact of MSCs- and non-MSCs-EVs

(dendritic cells, polymorphonuclear neutrophils, myeloid-derived

suppressor cells) were confirmed in animal studies (160). The first

case report regarding the benefits of the MSC-EVs was related to a

patient with GvHD (161). The high significance of MSC-EVs, as a

novel therapeutic for managing Alzheimer’s disease, has been

thoroughly discussed recently in mice and human cases,

emphasizing the mechanisms of the disease progression (66).

Similar to their producer cells, MSC-EVs eventually found their

place in pre-clinical and clinical studies (162). However, each step of

scalable EV manufacturing under GMP compliance is still exposed

to several challenges (163, 164). These challenges exist not only in

upstream and downstream stages (165, 166) of EV production and

isolation, such as cell culture and purification steps, respectively, but

also during EV storage (108), quality control (167), and functional

evaluation steps (148, 168).
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EVs were previously enriched from the conditioned media of

different immune cells, including dendritic cells, T regulatory cells,

M1/M2 macrophages, and CD4+ T cells (169–171), and their

potential was evaluated in the context of autoimmune diseases

(44). However, despite the initial trend, it is now evident that these

vesicles, regardless of their producer cell type, are produced with

different biological content under different circumstances (172), and

their application is accompanied by several challenges and

complications (173–175). One remaining question could be: How

can we learn from the long-term and extensive research on their

producer cells to make EVs-based therapeutics safe and efficient in

the frame of translational medicine? Finally, the main questions

considered to be addressed by this review are the level of superiority

of EVs to intact cells in reducing patients’ symptoms of

autoimmune disorders and the maturity of techniques for

preparing clinical-grade EVs (176).
4 MSC-EVs vs. MSCs: Open issues

4.1 Interaction with the immune system

MSCs have immunosuppressive and immune privilege

properties; hence, their interactions with the immune system are

expected to benefit immune homeostasis and restore immune

tolerance. However, there is concern regarding their allogeneic

and repeated administration (177). MSC-EVs, like their original

cell sources (MSCs), are believed to have low immunogenicity as

well as lower carcinogenic risk (178). They do not release certain

inflammatory factors (IL-1, IL-6, and IL-8), which may be vastly

released from dead cells following cell injection procedures,

especially in tissues lacking adequate blood/nutrients (179). In

addition, EVs demonstrate enhanced circulation stability due to

the immune system’s evasion (39). Although similar to allogeneic

cells, these particles may potentially carry some immunogenic

proteins (e.g., MHC molecules), it is open to question whether

these proteins are transferred from the vesicles to other cells in

communication and if they can trigger alloimmune responses

(Table 1) (29, 177, 180).

MSCs‐EVs exert their immunomodulation through a similar

mechanism known for MSCs‐associated tolerance. This process is

mediated by programmed death ligand‐1, galectin‐1, and TGF-b
(206) . They impose immunomodula t ion ins tead o f

immunosuppression, leading to reduced immune reactions and

homeostasis (188, 189). MSC-EVs contain many parental

biomolecules, including chemokines, cytokines, and growth factors

(207). Suh et al. described the mechanisms responsible for the

therapeutic effects of EVs in the context of different inflammatory

diseases. Similar to the cells, the mechanisms responsible for the

therapeutic effects of the EVs in the context of different

inflammatory diseases are reducing the microglia/macrophage

activation, oxidative stress, pro-inflammatory cytokine and

chemokine release, T-cell activation, tissue fibrosis, viral infectivity,

immune cell infiltration, and apoptosis/necrosis (146). Moreover, EVs
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regulate M1/M2 macrophage polarization for the benefit of M2 cells,

induce collagen regeneration, and prevent scar generation (181).

Despite similar immunomodulatory properties, differences in

the two entities’ level and mechanism of action have been reported.

The way EVs communicate with the effector cells of the immune

cells is not as simple as it sounds and the mediators of MSC-EV-

based immune modulation are yet remained incompletely described

(182). In comparison to MSCs, EVs have less cell-dependent and

independent mechanisms to exert their immunomodulatory

properties upon exposure to various immune system cells (183–

187). On the other hand, EVs can penetrate deeper into the tissues

(208, 209), so they may have a higher chance of regulating the
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immune cells (183). In addition, the therapeutic anti-inflammatory

properties of EVs could be more pronounced due to their capacity

for passing through blood barriers (210). Also, the immune

rejection rate of EVs is considerably low compared to the

producer cells, as they have a low-level expression of membrane

histocompatibility molecules (187). EVs have been shown to carry,

mediate, and regulate cytokine transport from cells to members of

the immune system (190).

Unlike the cells, MSC-EVs cannot impact the production of

CD3+ T cells. Allogeneic EVs could bind to T cells, but they do not

stimulate these cells during in vitro experiments unless in the

presence of APCs in the culture media. In addition, EVs do not
TABLE 1 EVs have differences in comparison to their producer cells.

Open issues Significant differences

Interaction with the
immune system

Stability - More stable in the circulation (39).

Allogeneic
Administration

- Carry immunogenic proteins with questionable ability for transferring the proteins to the recipient cells (29, 177,
180).
- The immune rejection rate of EVs is considerably low compared to the cells (181).

Heterogeneity
- Heterogeneous temporal, spatial, or disease-associated nature.
- Have more common features in comparison to the cells.

Mechanism of
Tolerance Induction

- The way EVs communicate with the effector cells of the immune cells is incompletely described (182).
- EVs can penetrate deeper into the damaged tissues, so they may have a higher chance of regulating the immune
cells (183).
- EVs have less cell-dependent and independent mechanisms to exert their immunomodulatory properties (183–
187).
- EVs immunoregulatory properties leading to reduced immune reactions, increased tolerance, and homeostasis
(188, 189).
- EVs have been shown to carry, mediate, and regulate cytokine transport from cells to members of the immune
system (190).
- Allogeneic EVs do not stimulate T cells during in vitro experiments unless in the presence of APCs.
- MSC-EVs cannot impact the production of CD3+ T cells. They do not change the ratio of B cells and plasma cells
in vitro (182, 191–193).
- MSC-EVs inhibit the complement activation in a CD59-mediated manner (194).
- EVs are less functional against DCs in comparison to the cells (185, 195).
- Allogeneic EVs would activate T cells in vivo only if delivered into an inflammatory microenvironment (196).

Homing capabilities

Systemic
Administration

- Proteins and glycoproteins on the surface of EVs and the recipient cells mediate EV-cell interactions.
- EVs interact with recipient cells through various targeting mechanisms to transmit selective biological
information.
- Superficial cytokines on EVs could act as barcodes recognized by the recipient cell cytokine receptors (197).
- On the contrary, some studies suggest that EV uptake is not cell-specific (198).

Uptake Mechanism

- The interactions between EVs and the neighboring or distant acceptor cells occur through diverse mechanisms
(115).
- It is proposed that MSC-EVs have the same receptors of MSCs on their membrane, and that could be why MSC-
EVs could find the injury site, perhaps through a similar mechanism (199).
- EV size and surface components affect their recognition and capture by acceptor cells (115).
- EVs content could randomly be released into the cytoplasm upon fusing vesicles with the cell membrane.
- Acceptor cells may internalize vesicles to intracellular specific molecular targets.

Communication with
the Environment

- Although different from their producer cells, EVs also alter the microenvironment.
- It is possible for EVs to acquire soluble proteins from the surrounding extracellular milieu (200–202).
- EVs harbor their cargo from enzymatic degradation while trafficking through the extracellular milieu (203).
- EVs preserve normal tissues, support tumorigenesis, provide nutrition, and facilitate immune escape (204).

Application
Clinically Relevant

Superiorities

- EVs mediate a significant part of the paracrine action of stem cells and most of their functional properties (139).
- Unlike cells, there is no concern regarding the possibility of necrosis or abnormal differentiation (181).
- They do not show self-replicative and tumor-formation properties (139).
- They are not seriously affected by the surrounding inflammatory microenvironment (186).
- They reach deeper into injured tissue layers (183).
- EVs are highly bio-stable, hence their contents are protected from macrophage-based phagocytosis (205).
- EVs have a more straightforward pre-banking capacity and are more stable during freeze-thaw cycles.
- EVs can be combined with existing compositions or drug delivery methods (66).
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change the ratio of B cells and plasma cells following their co-

culture with human peripheral blood mononuclear cells (PBMCs)

in vitro (182, 191–193). Allogeneic EVs would activate T cells

following their in vivo administration in mice only if delivered

into an inflammatory microenvironment (196). MSC-EVs can

interfere with the feed-forward loop between complements and

neutrophils via the inhibition of the complement activation in a

CD59-mediated manner. Hence, MSC-EVs are influential players

able to modulate inflammatory status spatially and temporally

(194). While MSCs and their cell-free counterparts can increase

the ratio of FOXP3+CD25+CD4+ T regulatory cells, EVs are less

functional against DCs (185, 195).

The therapeutic effects of extracellular vesicles as new

biologicals for immune regulation have been supported by pre-

clinical studies. Native or modified MSC-EVs were used to regulate

the immune-associated cells while focusing on their mechanism of

action (211, 212). There is almost no doubt that MSC-EVs can

trigger anti-inflammatory responses based on restoring the balance

action in the milieu or immune cells. This could be attributed to

their miRNAs, other non-coding RNAs, or protein cargo; otherwise,

surface EV-associated proteins may pave the role by activating the

downstream intracellular pathways in recipient cells (211, 213). The

heterogeneous nature of producer cells, diverse EV isolation,

quantification and standardization strategies and the critical role

of disease-specific pathways are considered the main challenges to

introducing unique regulatory mechanisms (212, 214). Moreover,

the clinical practice of EVs is challenged by their heterogeneity to

some extent. Optimization of current digital assays has been

proposed to do single-vesicle-resolution studies, especially during

the clinical analysis of liquid biopsies (215). Immune

biocompatibility of EVs is the other criterion to be investigated in

autoimmune diseases. It was shown in a previous study that

although both autologous and allogeneic small EVs may have

efficient therapeutic effects, autologous EVs are more viable and

impactful in damaged tissues (216, 217).

Recent updates unravel the crucial role of EVs and vesicular

trafficking in the immune system (65) and during the pathogenesis

of immune-based diseases, in addition to their therapeutic

perspectives (218). An accurate understanding of the mechanisms

by which tumors or other pathological statuses induce immune cell

dysfunction via their extracellular particles will allow a better

understanding of how vesicles interact with the cells of the

immune system. These data would potentially facilitate

developing novel methods to face the overactive immune system

and the associated diseases.
4.2 MSC-EVs vs. MSCs: Homing capabilities

The migratory capacities of MSCs towards ischemic and

damaged sites have received substantial consideration for treating

diffuse and localized inflammatory and degenerative conditions

(219). However, low homing efficiency is a significant drawback

associated with temporary therapeutic benefits (220). Hence,

diverse approaches have been employed to enhance the

entrapment rate of systemically infused MSCs (221). EVs must
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also follow the route to the affected areas as membrane-bound cell-

derived structures. Various cell-to-cell communication functions

are ascribed to EVs, including autocrine and paracrine missions

(222). Sung et al. discovered that EVs could even contribute to

directional cell migration. They confirmed that malignant cells

could find their path toward EV deposits, resulting in EVs’

endocytosis (223). In specific migration paths, cells use almost

the same delivery process as depicted for growth factors and

peptides, in addition to their active migration (224). Here, we

raise some open issues to compare MSCs and EVs concerning

their homing capabilities.

When systemically administered, exogenous MSCs imitate the

delivery route via which endogenous MSCs reach their destination

(225). As tissue injuries often coincide with inflammation or

ischemia, inflammatory factors could provide cues to mobilize

cells towards the damaged tissues. The expression of homing

receptors on the cell surface is proven to mediate MSCs’

migration towards their ligands at the ischemic target

microenvironment (226). Upon arriving at the damaged site,

circulating MSCs or their bioactive components need to leave the

vasculature and transmigrate across the endothelium to get into the

stromal region, where they exert their primary function both in

passive and active manners (220, 227). Paracrine interactions of

culture-expanded cells and the target milieu necessitate

reciprocating various bioactive determinants (228). Furthermore,

the bio-distribution of exogenous MSCs has always been

challenging, as many infused MSCs are entrapped in other

organs, particularly the lungs, liver, and spleen (220).
4.2.1 Are EVs capable of finding their targets too?
The capability of MSCs to desirably home in insulted tissues is

of substantial cell-based treatment advantages. It has been shown

that some migratory axes, such as chemokines at the site of injury

and chemokine receptors on the surface of cells, namely the SDF-1/

CXCR4 axis, orchestrate the stem cells’ homing process (229, 230).

Regarding the selective EV uptake, proteins and glycoproteins on

the surface of EV and the recipient cell mediate EV-cell interactions.

Hence, most strategies that were applied to increase the tissue

specificity of EVs are trying to reconfigure the surface glycoproteins

of the vesicles (231). Through various targeting mechanisms, EVs

interact with recipient cells to transmit selective biological

information. Superficial cytokines on EVs could act as barcodes

recognized by the recipient cells’ cytokine receptors (197). On the

contrary, some studies suggest that EV uptake is not cell-

specific (198).
4.2.2 How do the uptake process mechanism and
homing, about extravasation and transmigration
of vesicles, differ from that of stem cells?

Homing of stem cells is described as the arrest of cells within the

vasculature of a tissue followed by transmigration across the

endothelium, usually in response to a chemokine gradient in the

target region. The leading role of receptor/ligand axes, e.g., VLA-4/

VCAM-1, is highlighted in its contribution to tethering, rolling,

firm adhesion, and transmigration of the cells (220).
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EVs were reported to demonstrate cell and tissue-specific

autonomous targeting capabilities (139, 215). The interactions

between EVs and the neighboring or distant acceptor cells occur

through diverse mechanisms. EVs’ size and surface components

affect their recognition and capture by the acceptor cells (115). The

literature is inconsistent on whether EVs can target specific tissues,

mainly due to the diverse tracking methods. It is proposed that

MSC-EVs have the same receptors of MSCs on their membrane,

which could be why MSC-EVs could find the injury site, perhaps

through a similar mechanism (199, 232). While some studies depict

no specific in vivo biodistribution of EVs, others show they tend to

accumulate in tumors or injured tissues, which could explain EVs’

therapeutic effects (233).

The receptor-mediated binding of EVs to cells could stimulate a

signaling cascade to transmit information without delivering their

content. Upon the fusion of vesicles with the cell membrane, EVs

content could be randomly released into the cytoplasm.

Additionally, acceptor cells may internalize vesicles to

intracellular specific molecular targets. Clathrin-dependent,

clathrin-independent pathways such as caveolin-mediated uptake,

macropinocytosis, phagocytosis, and cholesterol-rich lipid rafts

mechanisms are among the numerous endocytosis processes

outlined in the literature (203).

Clathrin-mediated endocytosis requires adaptins, which

connect membrane cargo to clathrin, forming a polyhedral lattice

surrounding the vesicle. Clathrin-mediated endocytosis involves the

assimilation of receptors based on their ligands in clathrin-coated

pits on the plasma membrane, collapsing into a vesicular bud and

forming clathrin-coated vesicles. The subsequent intracellular

vesicle goes through clathrin uncoating and then integrates with

the endosome to deposit its contents. Some treatment approaches,

e.g., cancer, prevent clathrin-coated pits, resulting in decreased EVs’

uptake (222). Caveolae-mediated endocytosis evolved from the

oligomerization capacity of caveolin proteins. Oligomerization of

caveolins mediates the formation of caveolin-rich rafts in the

plasma membrane. Caveolae are tiny cave-like introversions in

the cell membrane that can become internalized into the cell

(203, 222).

4.2.3 How do EVs communicate with their target
microenvironment?

To segregate EVs from soluble mediators, MISEV-2018 has

suggested that cell-cell-contact could be regarded as necessary for

signaling, but it may also happen by exchanging plasma membrane-

enclosed signals between EV-donor and EV-recipient cells (91).

These vesicles harbor their cargo from enzymatic degradation while

trafficking through the extracellular milieu (203). EVs, are not the

same as their parent cells but contribute to altering the

microenvironment. EVs are shown to manage specific paracrine

intercommunication in the tumor microenvironment (234).

As tumor progression starts to develop, the surrounding

microenvironment performs anti-tumor immunity and aims to

subside tumorigenesis. Once the tumorigenesis progresses, the

microenvironment evolves into tumor-conducive. Cancer cells

take advantage of EVs’ paracrine intercommunication through
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conversion from a normal milieu to a tumor microenvironment.

EVs are used to preserve normal tissues then support tumorigenesis,

provide nutrition, and facilitate immune escape (204). It is possible

for EVs to acquire soluble proteins, and hence new biological

functions, from the surrounding extracellular milieu. The main

determinants are the physical and biochemical characteristics of

their surface and protein concentration-based environmental

changes. For example, during the pathogenesis of autoimmune

diseases and innate and acquired immune responses, autoantigens

may be packaged in EVs prior to or post-release (200–202).
4.3 Shifting from MSCs to MSC-EVs
regarding their application

Differences between cells and their extracellular descendants

have put a debate regarding their potential applications (see Table 2

for a detailed comparison). The preparation of characterized EVs

and their standardization needs more interdisciplinary knowledge,

as they are nano-sized entities (273). In the case of cells, there is less

concern regarding the preparation of a determined number, while

in the case of EVs, it is not as easy due to the differences in the

availability and sensitivity of the quantification methods (274).

Different criteria have been applied to quantify EVs, including the

number of producer cells in the culture, the protein content of EV

preparations, and the number of EVs/ml of the final preparation.

This puts a big hurdle in comparing the results of different

experiments (185). Unlike cells that need vascular structures to

receive essential nutrients and survive, EVs could be administered

in tissues with a lower capillary network, such as intervertebral

discs. Also, as EVs do not release toxic or harmful metabolites, there

is no concern regarding their utilization in such tissues (179).

Having mentioned these differences, EVs generally have some

clinically relevant superiorities to cell therapy (185, 264, 265). The

immune rejection rate of EVs is considerably low compared to the

producer cells (181), so they have an increased half-life and are more

stable in circulation (39). EVs demonstrate an innate tropism to

specific tissues (76) and exert cell-targeting properties (111). Unlike

cells, there is no concern regarding the possibility of necrosis or their

abnormal differentiation (181). They do not show self-replicative and

tumor-formation properties (139) and are not seriously affected by

the surrounding inflammatory microenvironment (186). They reach

deeper into injured tissue layers (183). Moreover, EVs have a more

straightforward pre-banking capacity, are less sensitive to low

temperatures, and are more stable during freeze-thaw cycles. EVs

can also be combined with existing compositions or drug delivery

methods (66). These vesicles would provide the scientists with a

suitable manipulative platform (269).
5 EVs from modified cells and EV
modification strategies

EV secretion is likely affected by different pharmacologic and/or

environmental insults that target producer cells’ cytoskeleton
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TABLE 2 Comparison between the cells and EVs regarding their intrinsic and application properties.

Properties Cells Extracellular vesicles

Intrinsic

Nature
- Natural, bilayer membranes with heterogeneous & cell-
dependent distribution of glycolipids and glycoproteins

- Natural or synthetic, biomimetic (235), bilayer membranes

Morphology - Highly heterogeneous - Heterogeneous

Physicochemical - Large - Small, higher resistance to low temperatures (185)

Prone to change - Responsive to the environment (185, 186) - Non-responsive to the environment (185)

Proliferation - Proliferative/self-replicative (185) - Non-proliferative (185)

Functional

- Self-renewal and differentiation capacity (in vitro) (236)
- Secrete active compounds, can initiate tumorigenesis (237)
- Senescence may induce thrombosis by obstruction of small
blood vessels (237)

- Mediators of intercellular signaling/communication (238–
240)
- Paracrine and autocrine actions on stemness maintenance
or cell differentiation (241)
- Exhibit producer cell-dependent phenotypes (242–244)
- EVs’ cargo can be drastically altered by culture conditions
(243, 245)
- EVs can mediate tumor initiation, progression,
angiogenesis, and metastasis (235, 246)
- EVs play role as disease biomarkers (239, 247, 248)
- EVs demonstrate an age-related content (249)
- MSC-EVs have prothrombotic effects (237)

Administration

Size - Because of their size (10 µm), they can obstruct capillaries
- Pass through capillaries and BBB, and spinal cord barriers
(250–253)

Dosage
- Their potential for proliferation can limit the dose of
administration

- They can have a wide range of administered doses

Route
- Intravenous, intrathecal, intraventricular, subarachnoid,
intra-arterial, intraperitoneal

- Intranasal, intravenous, intraperitoneal, intracranial,
intracochlear, inhalation, oral, subcutaneous (141, 253–255)

In the body

Immunogenicity - Low risk of immune rejection

- Lower risk of immune rejection (185, 187)
- EVs are involved in antigen presentation (256)
- Pathogenic EVs contain autoantigens (241)
- Regulate the migration, proliferation, activation, and
polarization of various immune cells (257, 258)
- Promote a tolerogenic immune response (259, 260)
- Inhibiting inflammatory response (259, 260)
- Stimulate or suppress anti-cancer immunity

Circulation time - Short circulation life - Longer circulation life (137, 261)

Target cell
selection

- Homing capability to some target sites, such as ischemic
tissues

- Innate tropism to specific sites, which can also be
engineered (76)
- Exhibit cell-targeting properties (111)

Long term effects - Limited proliferation potential - Not clear yet

Tracking
strategies

- X-ray–based methods (plain films and computed
tomography (CT), optical imaging (bioluminescence and
fluorescence), ultrasound/echocardiography, single-photon
emission computed tomography (SPECT), positron emission
tomography (PET), magnetic resonance imaging (MRI) (262)
- Single-cell Tracking of cells (175)

- Membrane labelling, vesicle interior labelling, labelling EV-
specific cargoes (1, 69)

Manufacturing

Isolation - Relatively simple isolation and characterization methods - More complicated isolation steps (263)

Storage
- Not possible to store them at room temperature, reduced
viability after freeze and thaw

- Long-term preservation and storage stability (241)

Off the shelf - Not an off-the-shelf product
- Potent to be stored as lyophilized material (112)
- Easier scale-up (185, 264, 265)

Biopharmaceutical
- Biocompatible (137)
- Biodistribution preference to lungs, liver, and kidneys (137)
- Suitable for multi-drug delivery (137)

- Biocompatible (181)
- Biodistribution preference to the liver, administration
route-dependent biodistribution (266)
- Untargeted accumulation in tumor tissues (137)
- Intelligent Nano-carriers (267)
- Multifunctional drug delivery systems (266)

(Continued)
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(115, 275). Furthermore, another specific priming/stimulating

strategy may be applied as one of the most convenient strategies

to persuade the cells to produce and secrete EVs with desirable

features/contents (276–278). In a hybrid approach, to facilitate the

large-scale production of EVs with determined properties,

Gomzikova et al. evaluated the immunomodulatory properties of

the cytochalasin B-induced membrane vesicles (CIMVs). They

demonstrated that human MSC-EVs prepared with this approach

could inhibit the activation and proliferation of human PBMCs

(279). Yuan et al. demonstrated the beneficial consequences of a 3D

dynamic culture of aggregated hMSCs for the efficient generation of

3D-hMSC-EVs regarding their size, concentration (EVs/Cell/2

days), common exosomal markers (CD63, Alix, Flotillin-2, and

CD81), and immunomodulatory capacity (IDO activity) in the

presence or absence of interferon-gamma (280).

EV modification strategies could also be utilized to enhance the

accumulation of the particles in desirable target organs, change their

surface properties, or reduce their phagocytosis and endocytosis by

macrophages (62). To reduce immune cell recognition,

polyethylene glycol (PEG) is a practical approach to increase the

circulation time of EVs (178). It was shown that preparing

engineered EVs (EEVs) with surface expression of CD47, due to

their bio-inertness and immune-evasive properties (178), will

provide us with vesicles that are less prone to systemic clearance

(281). Engineered EVs were also innovatively equipped with

receptors that adsorb pro-inflammatory cytokine IL-6 from

diseased muscle tissue with chronic inflammatory status (282).

A successful example of engineered EVs as autoimmune disease

therapeutics was proposed by Zampieri et al. in a pre-clinical study.

To induce immune tolerance via molecular farming, they designed

plant virus nano-particles displaying recombinant peptides

associated with autoimmune diabetes and rheumatoid arthritis.

They demonstrated that the virus structure could play carrier

roles for the recombinant peptide and adjuvant, as tomato bushy

stunt virus (TBSV) demonstrated intrinsic immunomodulatory

properties. However, to a lesser extent, the viral particles carry

the recombinant peptides (283).

Cargo pre-loading and post-loading could be considered a

primary classification for EV modification (284–286)(Figure 3).

Natural or specific packaging could be applied to pre-load EVs with
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target cargo. The producer cells are loaded with the molecules of

interest during natural packaging through cell conditioning, cell

and cargo incubation, or common cell modification methods, such

as transfection, transduction, and electroporation (124, 287).

Moreover, exogenous materials could be introduced to the EVs

based on liposome or micelle-mediated mechanisms. For more

efficient drug delivery, EV bilayer membranes are commonly

permeabilized to allow the dynamic loading of the vesicles (288,

289). In specific loading, the basis of cargo enrichment lies in

protein-protein interactions, the fusion of proteins, protein-

ubiquitin, and protein-RNA interactions. EV post-loading is

achievable via physical and chemical modifications, which are the

two major ways for transfering the cargo of interest to EVs.

Incubating EVs with the cargo of interest (passive loading) is a

convenient and effective way, which was applied to load EVs with

nucleic acids, proteins or peptides, drugs, and nano-materials (205,

290, 291). Different methods are proposed for direct loading of EVs

with cargos of interest, such as the application of transfection

reagents, electroporation, incubation, sonication, freeze/thaw

cycles, saponin, extrusion and dialysis (205, 270). The loading

efficiency of EVs depends on several factors, mainly the quality of

the starting material, the physical and biochemical properties of

cargo, and its stability and functional maintenance during the

loading process (286). Covalent and non-covalent interactions are

proposed as active chemistry method subsets to modify the inner or

outer surface of EVs, each of which includes a variety of methods,

gradually updated based on recent innovations (292).

Three models were proposed as the primary cell-mediated

packaging of EVs with desirable nucleic acids (293): induced

packaging, cellular protein-assisted packaging, and engineered

protein-mediated packaging. To reach therapeutic-grade EVs,

they are prepared from specific producer cells (294). Otherwise,

modified molecules (proteins or chemical compounds) with organ-

specific tendencies are introduced to the EV surfaces (295). Various

interfering mechanisms also play significant roles, including

intracellular calcium level, external stress, cytoskeletal blocking,

and the consequences of specific gene expression could be

highlighted (124). Following the entry to target cells, EVs,

enriched with coding or non-coding oligonucleotides, trigger gene

expression pathways or regulate specific gene transcription
TABLE 2 Continued

Properties Cells Extracellular vesicles

Manipulation Loading methods - Various drug encapsulation methods (137, 268)
- Suitable manipulative platform (269)
- Various exogenous and endogenous loading (205, 270)
methods (235, 271, 272)

Regulations

Regulatory bodies
and international
communities

- FDA (Food and Drug Administration)
- ISCT (International Society for Cell and Gene Therapy)
- ISBT (International Society of Blood Transfusion)
- ISSCR (International Society for Stem Cell Research)

- FDA (Food and Drug Administration)
- ISCT (International Society for Cell and Gene Therapy)
- ISEV (International Society for Extracellular Vesicles)
- ISBT (International Society of Blood Transfusion)

GMP standards
and guidelines

- Well-defined GMP standards
- Lacking good manufacturing standards (137, 142)
- Guidelines for novel EV-based therapeutics (111)
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procedures. However, the risk of EV internalization in the

endosomal compartment, degradation, and re-release of intact

vesicles should be considered (296).

Protein-loaded EVs are mainly administered as fluorescent

reporters or targeting moieties (288). Regardless of the

engineering or priming strategy applied to prepare modified EVs,

one should consider the immunogenic potential of surface-

engineered EVs. For example, tumor-targeting antigenic (TTA)

peptide glycoprotein 100 (gp100) engineered EVs are rapidly

internalized by APCs and are highly immunogenic for stimulating

cytokine production (297). Engineered EVs were applied in pre-

clinical studies and have found their way into engineered EV-based

therapeutics (269, 298).

A deep molecular understanding of various biogenesis

pathways and structural properties is essential for designing

desirable EVs. Further, we should consider the variety of

molecules that are involved in the specific sorting of various

cargoes to the small and large EVs, including Ras-related (RAB)
Frontiers in Immunology 13
GTPases in the brain, glycosphingolipids, flotillins, chaperone

HSC70, and small integral membrane proteins of the lysosome/

late endosome (SIMPLE) (299–301).

Clinical translation of the EVs is affected by different issues,

including isolation, purification, standardization, yield, and

functional heterogeneity (287, 302). Accordingly, a field for EV

engineering has emerged to augment their natural properties (165)

and recapitulate their function in semi-synthetic and synthetic EVs.

In recent work, Xu et al. introduced a novel peptide-equipped EV

platform to enhance the efficiency of EV penetration and

oligonucleotide loading capacities (303). More translational

examples of the application of EVs to facilitate personalized

cancer therapeutic methods were provided by a previous

publication (304). Also, the other recent review summarized most

of the available examples regarding the administration of native and

engineered EVs from various sources, including MSCs, immune,

and tissue-specific cells for inflammation therapy in different tissues

such as brain, eye, lung, heart, liver, bowel, bone, and skin (181).
FIGURE 3

A schematic representation of the methods has been proposed to prepare engineered extracellular vesicles. (Top) Cargo pre-loading (in-direct) path
is subdivided to cell-mediated and specific packaging fashion. The latter one could be designed based on protein-protein, protein-RNA, protein-
ubiquitin interactions or the production of fusion proteins. (Bottom) Direct EV post-loading is achievable via physical and chemical modifications
which are the two major ways for transferring the cargo of interest to EVs. Physical alterations mostly include passive and active loading techniques.
Incubating EVs with the cargo of interest (passive loading) is a convenient and effective way, which was applied to load EVs with nucleic acids,
proteins or peptides, drugs, and nano-materials. Electroporation, sonication, extrusion, thermal shock, detergent permeabilization, dialysis, and
transfection are the main active loading techniques for intensifying the content of EVs in the benefit of desirable molecule/s. Covalent and non-
covalent interactions are proposed as active chemistry methods to modify the inner or outer surface of EVs.
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6 Safety and risk factors associated
with cells or EV administration

The administration of cells or EVs should be considered

rigorously according to many associated risk factors. All ethical

considerations, scientific aspects, and guidelines proposed for cell-

based therapies should be considered before EV application (305).

In this piece, we try to highlight some issues to sensitize and

promote more efforts in evaluating the safety of cells or EV-

based therapies.
6.1 Contaminations

Both cells and EVs can be contaminated with bioactive

components, including but not limited to viruses, bacteria, and

endotoxins, that should be checked before any administration.

Considering similarities between viruses and exosomes (306–309),

viral contaminations for EV preparations are one of the main

concerns. Usually, the size of bacteria and fungi are larger

than EVs; however, infections specifically by intracellular

contaminations such as mycoplasma can change both cell and

EVs properties (310–313).
6.2 Proliferation

The risk of uncontrolled proliferation of cells is associated with

cell-based therapies. Unlike cells, EVs cannot proliferate, and

multiple administrations are usually required to reach comparable

results. However, more studies are required to show if EVs have

machinery like viruses to propagate.
6.3 Transfer of genetic materials

Similar to cells, EVs carry DNA (314–316) and mitochondria

content (317–319). Recently, it has been shown that genetic

materials can also be incorporated into the EV bio-corona (63,

319–321). Therefore, safety concerns are associated with

administering both cells and EVs regarding their genetic materials.
6.4 Cross-species contaminations

Considering the danger of cross-species contaminations, cells

are cultured using human-derived components in xeno-free culture

systems. The same issues for EVs should be considered even more

rigorously. Firstly, cells can uptake materials from the medium

during the culturing process and re-packing them into their EVs

derivatives. Second, EVs or particles originating from bovine-

derived serum supplements cannot be efficiently removed based

on current methods (321–324). Therefore, the risk of cross-species

contaminations should be assessed in both cel ls and

EV administration.
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6.5 Passing through the barriers

Unlike cells, EVs can cross barriers, including but not limited to

the blood-brain barrier (325–327). The risk of passing through the

barriers is another issue that should be considered explicitly in the

EV administration.

The issues raised about the enclosed risk of EV administration

belong to unmodified EVs. In cases where there is a need to expose

the cells to different physical or chemical agents or to engineer the

producer cells or EVs, more details should be taken into account

(328). Maybe that is why a debate is being opened about whether

exosomes could be considered a medicinal product rather than a

biological product similar to their producer cells. The point here

remains to be done is the release of internationally accepted

guidelines, designed explicitly for EVs and their clinical applications.
7 Prospective future: MSC-EVs
vs. MSCs

Immunosuppression is among the most favorable therapeutic

strategies for managing autoimmune diseases (329–332). Stem cells

have been proposed as promising biologicals with superior properties

compared to conventional methods (1, 11, 333). Mesenchymal stem

cells (MSCs) could be considered one of the safest and most

commonly used advanced therapy medicinal products (ATMPs)

(334, 335) due to their high regenerative capacities and special

immunoregulatory functions (336, 337) affecting all types of innate

and adaptive immune cells (338). However, some reviews and meta-

analyses questioned why translational outcomes were not as efficient

as we expected throughout these years (339). In most cases, short-

term effects and the heterogeneous responses of patients to treatment

are considered the main challenges. Despite current concerns, MSCs

have found their way to treat autoimmune diseases by alleviating

the symptoms.

Extensive parallel researches during the last decade has

highlighted the importance of MSCs’ paracrine effects (85) and

proposed the possibility of replacing the cells with their cell-free

products, even in the allogeneic context (147). Here, we debated the

potential applications and limitations of extracellular vesicles (EVs)

compared to their producer cells, especially in relation to

autoimmune diseases. Despite the initial trend, it is now proposed

that several challenges and complexities accompany these vesicles

(174, 340). Some critical challenges are defining the optimal culture

conditions, large-scale production, reproducibility of the isolation

procedures, homogenous content of the final prep, efficient and

aim-specific functional characterizations, storage, and

standardization (148, 341–347). One of the most crucial concerns

regarding EVs application is a possible viral infection (348, 349). In

addition, viral components can affect EV biogenesis, composition,

and secretion of unknown “off-target” side interferences (350).

The other criteria that highlighted the potential of EVs for future

therapeutic applications are their ability to be engineered or modified

(269, 271, 272, 351, 352). They could be loaded with unexpected

target/s or encapsulated with different bio-scaffolds upon the urgent
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need (237, 353). Furthermore, EVs could be recovered easily

following their freeze-thaw cycles (109). These features facilitate

their application as a good platform for cellular products in

emergencies. Moreover, recent progress in the fields has made their

room temperature storage, characterization and maintenance more

straightforward and friendly than before, and therefore a significant

step closer to their extended application, pharmaceuticalization, and

commercialization (163, 354, 355). As it was inferred from the

literature, EVs have a broad spectrum of applications. Some

applications focus on their ability to pass through blood barriers or

other unique properties versus the cells or other synthetic nano-

carriers (261, 356). As non-toxic nano-carriers, EVs demonstrated

better pharmacokinetics and pharmacodynamics features

(absorption, distribution, metabolism, and excretion) than synthetic

nano-carriers (140, 141, 357). This may pave the way for application

of EVs as the smart carrier for conventional drugs in the context of

autoimmune diseases (267).

Although EVs are reported to be efficient in dampening the

symptoms of different immunological and non-immunological

diseases, sometimes with a completely different mechanism of

action (182, 242), they may not seem as efficient as their parent

cells. We noted that it is not already possible to assess the exact

amount of EVs which are functionally equal and comparable to a

specific number of transplanted cells. Nevertheless, EVs have the

potential for repeated rounds and off-the-shelf applications. To

increase the efficiency of the treatments, in the case of some acute

or chronic diseases, including autoimmune disorders, the

simultaneous application of cell- and EV-therapy procedures were

proposed and are currently under clinical investigation

(ClinicalTrials.gov Identifiers: NCT05387278, NCT05520125). It is

assumed that the combinatorial strategy may provide the patients with

enhanced and prolonged effectiveness of the biological treatments

(358, 359). Future research will determine whether EVs are efficient

enough or if we still need the cells to reach the proper efficiency.

Regardless of the safety, the central morality of the EV

application is of the same importance. The efficiency of the

treatments and the cost-benefit aspect of EVs administration for

patients is critical when physicians allocate patients to new

treatment strategies. Many questions need to be addressed in this

regard. Whether this method is applied as an effective treatment or

only as a palliative method? Does the patient have enough

knowledge and a good idea about this treatment method and its

effectiveness? Undoubtedly, having their consent is necessary when

participating in a clinical trial.

As we focused on autoimmune diseases in the current piece, we

should emphasize the pathogenesis of the disease, the current status

of the patients, the disease status, and the availability of strong

support from previous pre-clinical and clinical studies are essential

before referring the patients. Fortunately, among different diseases

and conditions, clinicians are provided with more valid data from

pre-clinical studies (360–363), clinical trials (50, 364–366), and

comprehensive reviews (257, 367, 368) on the efficiency of EVs in

the frame of different autoimmune diseases (369). Although it is

inferred from pre-clinical and clinical data that MSC-EVs are safe

and efficient (51, 370), and great promise is accompanied by their

future applications for treating life-threatening autoimmune
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diseases, this is of particular importance that we avoid

generalization and prejudice regarding their overall efficiency.

Other than personalized medicine aspects, it should be considered

that each disease has its unique pathogenesis, grading, and

mechanisms of spread/progression, which is crucial when we

decide to apply EVs for their treatment. Moreover, our current

knowledge is not equivalent in the case of different autoimmune

diseases regarding the consequences of MSC-EVs administration.

Further, although, based on the current data, small extracellular

vesicles (sEVs) could be enriched with immunomodulatory

components (371, 372), it should be confirmed practically in

proper autoimmune disease models and human cases that it has a

real functional impact. Despite increasing data that EVs are potent

immunomodulators in mimicking their producer cells (146, 207,

373), it is yet to be confirmed whether EVs are superior to their

producer cells and, if so, which subtype of EVs is preferred for

different autoimmune diseases. Upon defining the GMP-compatible

protocols and standardization, the next step will be designing the

procedures for preparing modified disease-specific EVs with ideal

functional properties (374). These EVs may carry a higher level of

immunoregulatory genes, RNAs, miRNAs, lipids, and proteins or

target specific molecules, cells, or tissues.
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(ADWP) Autoimmune diseases working party

(FDA) Food and drug administration

(AD) Adipose tissue-derived

(ALI) Acute lung injury

(AMI) Acute myocardial infarction

(APCs) Antigen-presenting cells

(ARDS) Acute respiratory distress syndrome

(AREG) EGFR ligand, amphiregulin

(ATMPs) Advanced therapy medicinal products

(AU) Autoimmune uveitis

(BBB) blood-brain barrier

(BM) Bone marrow

(BMA) Bone marrow aspirate

(CD34) Cluster of differentiation 34

(CD47) Cluster of differentiation 47

(CD63) Cluster of differentiation 63

(CD81) Cluster of differentiation 81

(CD) Crohn’s disease

(CIMVs) Cytochalasin B-induced membrane vesicles

(DDS) Drug delivery system

(EBMT) European society for blood and marrow transplantation

(ECM) Extracellular matrix

(EVs) Extracellular vesicles

(GMP) Good manufacturing practice

(GvHD) Graft versus host diseases

(HSC) Hematopoietic stem cell

(HSC70) Heat shock protein 70 family

(IBD) Inflammatory bowel disease

(ISBT) International society of blood transfusion

(ISCT) International society for cell and gene therapy

(ISEV) International society for extracellular vesicles

(ISSCR) International society for stem cell research

(ITP) Immune Thrombocytopenia

(MSC) Mesenchymal stem/stromal cell

(MTF) Mesenchymal trophic factor

(MS) Multiple sclerosis

(OA) Osteoarthritis

(PBMC) Peripheral blood mononuclear cells

(Continued)
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(PPRs) Pattern recognition receptors

(RA) Rheumatoid arthritis

(SIMPLE) Small integral membrane proteins of the lysosome/late endosome

(SjS) Sjogren’s syndrome

(ST6Gal-1) b-galactoside a2,6-sialyltransferase 1

(SVF) Stromal vascular fraction

(SLE) Systemic lupus erythematosus

(Ti-EVs) Tissue-derived EVs

(tolDCs) Tolerogenic dendritic cells

(Tregs) Regulatory T cells

(UC) Umbilical cord.
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