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Immunotherapy for
hepatocellular carcinoma
recurrence after liver
transplantation, can we harness
the power of immune
checkpoint inhibitors?

Jingyu Jiang1,2, Haitao Huang1,2, Ruihan Chen1,2,
Yimou Lin1,2 and Qi Ling1,2,3*

1Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine,
Hangzhou, China, 2National Health Commission (NHC) Key Laboratory of Combined Multi-Organ
Transplantation, The First Affiliated Hospital of Zhejiang University School of Medicine,
Hangzhou, China, 3College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related

death globally and liver transplantation (LT) can serve as the best curative treatment

option. However, HCC recurrence after LT remains themajor obstacle to the long-

term survival of recipients. Recently, immune checkpoint inhibitors (ICIs) have

revolutionized the treatment of many cancers and provided a new treatment

strategy for post-LT HCC recurrence. Evidence has been accumulated with the

real-world application of ICIs in patients with post-LT HCC recurrence. Notably,

the use of these agents as immunity boosters in recipients treated with

immunosuppressors is still controversial. In this review, we summarized the

immunotherapy for post-LT HCC recurrence and conducted an efficacy and

safety evaluation based on the current experience of ICIs for post-LT HCC

recurrence. In addition, we further discussed the potential mechanism of ICIs

and immunosuppressive agents in regulating the balance between immune

immunosuppression and lasting anti-tumor immunity.

KEYWORDS

hepatocellular carcinoma, liver transplantation, immune checkpoint inhibitor,
immunosuppression, transplant tolerance
Abbreviations: AFP, alpha-fetoprotein; CNIs, calcineurin inhibitors; CR, complete response; CsA, cyclosporine

A; CTLA-4, cytotoxic T lymphocyte antigen 4; HCC, hepatocellular carcinoma; ICIs, immune checkpoint

inhibitors; IFN-g, interferon-g; IL-2, interleukin-2; irAEs, immune-related adverse events; LT, liver

transplantation; MMF, mycophenolate mofetil; MPA, mycophenolic acid; mTOR, mammalian target of

rapamycin; NFAT, nuclear factor of activated T-cells; PD, progressive disease; PD-1, programmed cell death

protein-1; PD-L1, programmed cell death ligand 1; PR, partial response; RFA, radiofrequency ablation; SD,

stable disease; TAC, tacrolimus; TACE, trans-arterial chemoembolization; TKIs, tyrosine kinase inhibitors;

Tregs, regulatory T cells; TGF-b: transforming growth factor-b; TNF-a, tumor necrosis factor-a.
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Introduction

With almost 906,000 new cases and 830,000 deaths in 2020, liver

cancer has become the third leading cause of cancer death worldwide

(1). Hepatocellular carcinoma (HCC) is the most common primary

liver cancer, accounting for over 75% of cases (2, 3). Nowadays, liver

transplantation (LT) for early-stage HCC has become a standard

treatment and accounts for nearly 40% of all liver transplantations

performed at most centers worldwide (4). Although the prognosis of

HCC patients was markedly improved after LT due to the advances in

surgical techniques and immunosuppressive agents, HCC recurrence

remains the major obstacle to long-term survival.

In the past decades, numerous risk factors have been identified for

HCC recurrence, including the pre-transplant alpha-fetoprotein levels,

tumor number and size, etc. Therefore, some criteria, such as Milan

criteria (5), University of California San Francisco criteria (6) and

Hangzhou criteria (7), were advocated to select candidates who might

benefit from LT. These strict criteria can minimize the risks, while the

HCC recurrence rate after LT is still relatively high, approximately 10% to

30% (4). Several studies reported that the post-LT immunosuppressive

environment could be the key hazard factor for HCC recurrence (8, 9), as

it could promote tumor escape and cancer cell proliferation by

suppressing the proliferation, differentiation and effector functions of T

cells (10).

Post-LT HCC recurrence progressed with a predominant pattern of

extra-hepatic metastases, including lung, bone and abdominal lymph

nodes (4). For the treatment of these tumors, surgical interventions,

such as resection (11), trans-arterial chemoembolization (TACE) (12)

and radiofrequency ablation (RFA) (13), are meaningful when the

nodule is oligo-metastatic and local. For those unresectable nodules,

systemic therapy has attracted great attention. Tyrosine kinase

inhibitors (TKIs) such as sorafenib and lenvatinib, which are the

first-line treatment strategies for advanced HCC, have been applied

in recipients with HCC recurrence and proved to be of significant value

(14). Sorafenib and lenvatinib can significantly prolong the survival of

post-LT patients, and their safety and efficiency have been already

evaluated (15, 16). In a meta-analysis, Li Z et al. (15) reviewed 23

studies and concluded that recipients treated with sorafenib for post-LT

HCC recurrence had a median survival of 12.8 months and a pooled 1-

year survival of 56.8%, better than that observed in patients with the

best supportive care. In addition, Chen YY et al. (16) investigated the

efficacy of lenvatinib and found a disease control rate of 70%. They also

confirmed a comparable efficacy in both LT and non-LT patients in

clinical practice. Moreover, several studies have reported the real-world

application of immune checkpoint inhibitors (ICIs) in these patients.

Different from primary HCC, these relapsed tumors have a higher

immune evasion characteristic due to the accumulation of inhibitory

cytokines and molecules (17). Single-cell RNA sequencing further

revealed that the activation of T cells in recurrent HCC was

significantly inhibited by the up-regulation of immune checkpoints

(17), suggesting that ICIs-based immunotherapy was promising for the

treatment of recurrent HCC in LT recipients. Additionally, patients

with recurrent HCC usually have no other way but to try to use the

ICIs, due to distant metastasis and TKIs-resistance (18). Notably, while

ICIs activate the anti-tumor immunity, they also put grafts in danger of

rejection, resulting in limited use thus far. In this review, we appraise
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the current understanding of the immunotherapy for post-LT HCC

recurrence with special attention to the efficacy and safety evaluation

based on the current experience of ICIs. We also discussed the potential

mechanism underlying the role of ICIs in altering the balance between

cancer immunology and transplant tolerance.
The status of immunosuppressive
agents after LT

Currently, various immunosuppressive medications are used in

recipients after LT, including steroids, anti-metabolites, mammalian

target of rapamycin (mTOR) inhibitors and calcineurin inhibitors

(CNIs) (10). Immunosuppressive agents have resulted in decreased

incidence of acute rejection and to prolong graft survival of LT

recipients, but also cause adverse events (19). CNIs, such as

cyclosporine A (CsA) and tacrolimus (TAC), are the cornerstone of

immunosuppressive regimens with profound significance in

preventing graft rejection. Both TAC and CsA can inhibit the Ca2

+/Calcineurin/nuclear factor of activated T-cells (NFAT) pathway,

reduce the secretion of interleukin-2 (IL-2) and interferon-g (IFN-g),
and contribute to long-term allograft survival (10). However, studies

in human cohorts reported that overexposure to TAC and CsA

increased the risk of post-LT HCC recurrence (20, 21).

Furthermore, both in vitro and in vivo studies showed that CNIs

could enhance the expression of transforming growth factor-b (TGF-

b) and promote the proliferation of cancer cells (22, 23).

Mycophenolate mofetil (MMF) is an anti-metabolite purine

antagonist and its application in LT began in the late 1990s (24).

Given the lack of nephrotoxicity and neurotoxicity, MMF has been

used in CNI- or steroid- sparing regimens. However, it remains

controversial whether MMF will increase the risk of HCC recurrence

after LT. With clinically achievable concentrations, Chen et al. (25)

demonstrated that MPA, the active ingredient of MMF, could

effectively inhibit cancer cell proliferation and the growth of liver

tumor organoids. In addition, authors also found that the use of MMF

in LT recipients was significantly associated with less tumor recurrence

and improved patient survival. Notably, the result was reported with

low precision due to the small sample size (44 LT patients identified as

HCC-related LT were included). While a cohort study in Taiwan

showed the opposite conclusion, demonstrating that high-dose MMF

notably promoted HCC recurrence and reduced the overall survival of

recipients after LT (26). Additionally, as a popular immunosuppressive

agent, steroids have been reported to induce the proliferation of cancer

cells and increase the risk of HCC recurrence (27). Our previous study

demonstrated that recipients with steroids-free immunosuppressive

protocol had reduced post-LT HCC recurrence as compared to those

with steroids in a human cohort (28).

Nowadays, mTOR inhibitors (rapamycin), such as sirolimus and

everolimus, have been reported to be anti-recurrence/metastasis and

improve the prognosis of patients who underwent LT for HCC (29).

Using mTOR inhibitors as an anti-rejection strategy has been

accompanied by numerous studies, and the properties of mTOR

complex have been emphasized. By targeting complex 1, the

rapamycin could inhibit the thymic T cells proliferation and

differentiation (30). Interestingly, considerable evidence showed that
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https://doi.org/10.3389/fimmu.2023.1092401
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jiang et al. 10.3389/fimmu.2023.1092401
TOR inhibitors could not only prevent allograft rejection (30) but also

represent potent anti-cancer effects by directly targeting the cancer

cells (31). In a prospective, randomized, open-label, multicenter trial,

Geissler EK et al. (32) enrolled 525 patients who underwent LT for

HCC and found that broad-based practical incorporation of sirolimus

into an immunosuppressive regime could improve outcome in the first

3 to 5 years after LT, while the outcome advantage is eventually lost

after 5 years. Subsequently, Schnitzbauer et al. (33) performed a

multivariate analysis based on the above trial data and concluded

that those patients treated with sirolimus ≥ 3 months had better

outcomes, especially in the group with higher alpha-fetoprotein levels.

On the other hand, the everolimus-based regimen was also proved to

be effective in patients with post-LTHCC recurrence. Patients who had

high serum trough levels of everolimus (more than 5 ng/ml) had better

survival compared to those treated with less than 5 ng/ml (34). In

addition, early introduction of everolimus with reduced-CNIs is also

associated with a significant renal benefit compared with CNsI-based

immunosuppressive regime (35).
Immune checkpoint inhibitors

The discovery and clinical implementation of ICI has achieved

remarkable clinical outcomes and revolutionized the treatment of

cancer, as recognized by the 2018 Nobel Prize for Medicine and

Physiology (36). There are three main classes of ICIs approved by

FDA for clinical application, the inhibitors of programmed cell death

protein-1 (PD-1), programmed cell death ligand 1 (PD-L1) and

cytotoxic T lymphocyte antigen 4 (CTLA-4). Despite the promising

results with immunotherapy in HCC, the safety of using ICIs for post-

LT HCC recurrence remains disputed. Different from

immunotherapy for primary HCC, post-LT ICIs treatment must be

undertaken with caution due to the risk of allograft rejection or graft

loss. Here we include all published 27 cases of LTs with ICI treatment

for post-LT HCC recurrence (Table 1). The median patient age was

49.4 (range: 14-70) years and 81.5% were males. The median time

from LT to ICIs was 2.7 years. The immunotherapy regimens

included PD-1 inhibitors (16 nivolumab, 4 toripalimab, 2

pembrolizumab, 1 camrelizumab), PD-L1 inhibitors (2

atezolizumab), CTLA-4 inhibitor (1 ipilimumab) and combination

therapy (1 nivolumab followed by atezolizumab). There were 8

(29.6%) patients with disease control, which was defined by stable

disease (SD, n=3), partial response (PR, n=1) and complete response

(CR, n=4). Ten (37.0%) patients were found to be progressive disease

(PD). Of note, graft rejection was reported in 6 out of 27 patients

(22.2%), a much higher rate than in patients without ICIs treatment

(53), and all of them were treated with nivolumab. To further evaluate

the safety of ICIs in recipients, we next reviewed the records of using

ICIs in patients with de novo malignancies after LT (Table 2). The

median age of these patients was 59.4 (range: 35-72) years and 78.57%

were males. Melanoma was the main indication for ICIs therapy

(n=7), which is followed by lung cancer (n=2). The median time from

LT in this setting was longer than that in those with HCC recurrence

(7.3 years versus 2.7 years). Among the liver recipients with de novo

malignancies, 2 patients achieved CR, 4 patients with PR and 4

patients with PD. The graft rejection rate in this group was 21.4%,

similar to that in the post-LT HCC recurrence setting.
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Several factors may be related to the risk of acute rejection after

ICIs treatment based on the current data. First, we observed the

rejection rate was lower in anti-PD-L1 group (0/2) than that in anti-

PD-1 (8/32) and anti-CTLA-4 (1/4) groups. However, due to the

limited cases, the current evidence is not certain to conclude that anti-

PD-L1 therapy is relatively safe for post-LT HCC recurrence. Second,

a longer interval from LT to initial ICIs treatment and a lower dose of

ICIs might be related to a lower incidence of rejection. We found that

patients without graft rejection after ICIs treatment have a longer

interval from LT to drug exposure (4.65 yr vs. 2.52 yr), which is

consistent with the previous studies (65). In addition, a series of cases

demonstrated that patients receiving liver grafts with a high level of

PD-L1 were prone to develop graft rejection after ICIs therapies (65,

66). Given that, Shi et al. (50) designed a pilot study to evaluate the

rejection risk in liver grafts with different PD-L1 expressions. Among

5 recipients who suffered HCC recurrence and were treated with anti-

PD-1 therapy (toripalimab), 4 with PD-L1-negative graft did not have

rejection, while the other with PD-L1-positive graft developed

rejection (50), suggesting that pathological assessment of the graft’s

PD-L1 status may serve as a selection criterion to decrease the risk of

graft rejection before ICIs treatment. Herein, we summarized the

efficiency and side effects based on the existing data in the Table 3.

More well-designed preclinical and clinical studies with a large

sample are required to determine the fundamental mechanisms of

acute rejection after ICIs treatment.
The potential mechanism of
immune checkpoint inhibitors in
altering immune microenvironment
and interplaying with
immunosuppressive agents

As described above, ICIs showed clinical benefits for the

treatment of HCC recurrence but increased the risk of transplant

rejection (Figure 1). Therefore, we summarized the potential

mechanisms of PD-1/PD-L1 and CTLA-4 inhibitors in boosting the

anti-tumor immunity and inducing transplant rejection.

Physiologically, the non-parenchymal cells in liver graft,

including regulatory T cells (Tregs), macrophages and dendritic

cells (DCs), played vital roles in promoting a tolerogenic

microenvironment (67). These cells could secrete anti-inflammatory

cytokines (e.g., PGE2, IL-10 and TGF-b) and induce the death of

cytotoxic T cells through the increased expression of immune

checkpoints, such as PD-1 and CTLA-4 (67). Specifically, with

these immune checkpoint molecules phosphorylated, the

downstream co-stimulatory pathways would be inhibited in various

immune cells, dampening the immune response (68–70).

PD-1 is mainly expressed on T cells and acts as a negative regulator

of T-cell activation through the PI3K/AKT/mTOR and RAS/MEK/

ERK pathway (69). It was reported that blocking the PD-1 pathway

could reduce the apoptosis of CD8+ T cells and increase the granzyme B

expression by enhancing the mTOR signaling, further activating the

immune system (71). Moreover, the administration of PD-1 inhibitors

could up-regulate the proliferation marker Ki67, enhance the

expression of the transcription factor T-bet and the secretion of IFN-
frontiersin.org
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TABLE 1 Case reports with the application of ICIs in HCC recurrence patients after LT.

therapy
efore ICIs

IS
therapy
during
ICIs

Rejection Outcome Ref

AC TAC NO PD (37)

irolimus Sirolimus AMR/
TCMR

- (38)

AC TAC AMR/
TCMR

- (38)

AC TAC NO PD (39)

AC – NO CR (40)

Sirolimus/MMF – NO PD (40)

AC – NO PD (40)

AC – NO - (40)

irolimus – YES - (40)

rednisone/MMF/
verolimus

Everolimus/
MMF

TCMR - (41)

– – TCMR - (42)

AC/MMF
teroid

TAC/
Sirolimus

NO CR (43)

– – TCMR - (44)

AC TAC NO PD (45)

AC TAC NO SD (45)

AC TAC NO PD (45)

AC/MMF – NO CR (46)

(Continued)
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No. Age Gender Malignancy TFTI Treatment
before ICIs ICIs Dose Duration I

b

1 41 M HCC 1 yrs TACE/MWA Nivolumab 3 mg/kg/2
wks

15 cycles T

2 20 M HCC 4 yrs Sorafenib/Capecitabine Nivolumab – 2 cycles S

3 14 M HCC 3 yrs Gemcitabine/Oxaliplatin Nivolumab – 1 cycle T

4 70 M HCC 8 yrs Sorafenib/Capecitabine/
External bean radiation

Pembrolizumab 3 mg/kg/2
wks

3 mths T

5 56 M HCC 5.5
yrs

Sorafenib Nivolumab – – T

6 55 M HCC 1.8
yrs

Sorafenib Nivolumab – –

7 34 F HCC 3.7
yrs

Sorafenib Nivolumab – – T

8 63 M HCC 1.2
yrs

Sorafenib Nivolumab – – T

9 68 M HCC 1.1
yrs

Sorafenib Nivolumab – – S

10 53 F HCC 3 yrs Sorafenib Nivolumab 200 mg/2
wks

1 cycle P
E

11 61 M HCC 2 yrs Sorafenib Nivolumab – 1 mth

12 57 M HCC 3 yrs Sorafenib Pembrolizumab 200 mg/3
wks

10 mths T
/

13 64 M HCC 2 yrs Sorafenib Nivolumab – 0.25 mths

14 70 M HCC 3 yrs Sorafenib/Gemcitabine/Oxaliplatin Nivolumab 240 mg/2
wks

4 cycles T

15 62 F HCC 2 yrs Sorafenib/Regorafenib/5Fluorouracil/
Oxaliplatin

Nivolumab 240 mg/2
wks

5 cycles T

16 66 M HCC 2 yrs Sorafenib/Regorafenib
Gemcitabine/Oxaliplatin

Nivolumab – 6 cycles T

17 62 F HCC 2 yrs TACE Nivolumab – 16 mths T
S

S

https://doi.org/10.3389/fimmu.2023.1092401
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


TABLE 1 Continued

Dose Duration IS therapy
before ICIs

IS
therapy
during
ICIs

Rejection Outcome Ref

3 mg/kg/3
wks

13 mths Everolimus/TAC Everolimus
/TAC

NO PR (47)

ab 200 mg/3
wks

5 cycles TAC Sirolimus NO CR (48)

200 mg/2
wks

12 cycles TAC TAC NO PD (49)

240 mg/3
wks

6 cycles Sirolimus Sirolimus NO PD (50)

240 mg/3
wks

2 cycles Sirolimus Sirolimus NO SD (50)

240 mg/3
wks

– Sirolimus Sirolimus NO - (50)

240 mg/3
wks

– Sirolimus Sirolimus NO - (50)

ab – 6 mths – – NO PD (51)

b/
ab

– 7 cycles – – NO SD (52)

ab 2 cycles – – NO PD (52)

HCC, hepatocellular carcinoma; TACE, transarterial chemoembolization; MWA, microwave ablation; TAC, tacrolimus; AMR, antibody-mediated
l; RFA, radiofrequency ablation; PD, progressive disease; CR, complete response; SD, stable disease; PR, partial response.
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No. Age Gender Malignancy TFTI Treatment
before ICIs ICIs

18 54 F HCC 7 yrs Sorafenib/Nanoknife
/Ethanol ablation

Ipilimumab

19 54 M HCC 4 yrs Sorafenib/RFA
/Lenvatinib

Camrelizum

20 54 M HCC 2 yrs Sorafenib/mFolfox-6/
Gemcitabine/TACE

Nivolumab

21 46 M HCC 1 yrs Sorafenib/Lenvatinib Toripalima

22 46 M HCC 1 yrs TACE/PEI/Resection
/Sorafenib/Lenvatinib

Toripalima

23 62 M HCC 1 yrs Sorafenib/Lenvatinib
/TACE/PEI

Toripalima

24 66 M HCC 1 yrs Sorafenib/Lenvatinib
/Regorafenib

Toripalima

25 35 M HCC 4 yrs Surgical/Gemcitabine/Oxaliplatin/
Fluorouracil/
IFN alfa-2b

Atezolizum

26 53 M HCC – Sorafenib/Resection/
External radiotherapy

Nivolizuma
Atezolizum

27 55 M HCC 1 yrs Ablation/TACE/
External radiotherapy

Atezolizum

TFTI, time from transplant to ICIs; ICI, immune checkpoint inhibitor; IS, immunosuppressive; Ref, references; M, male; F, female;
rejection; TCMR, T cell–mediated rejection; IFN, interferon; PEI, percutaneous ethanol injection; MMF, mycophenolate mofeti
b

b

b

b
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TABLE 2 Case reports with the application of ICIs in de novo malignancy after LT.

ion
IS therapy
before ICIs

IS therapy
during ICIs

Rejection Outcome Ref

s Sirolimus Sirolimus NO PR (54)

s Tacrolimus Tacrolimus NO PD (55)

ths Sirolimus/MMF – YES PD (56)

les MMF/Steroid Steroid NO CR (57)

les Tacrolimus/Everolimus/
Prednisone

Tacrolimus/Everolimus/
Prednisone

NO PD (58)

MMF/Everolimus – NO CR (40)

MMF/Prednisone – YES – (40)

les/
cles

Prednisone/Tacrolimus Prednisone NO PR (59)

cles Tacrolimus/MMF/
Prednisone

Tacrolimus NO PR (60)

– – YES – (61)

2 Tacrolimus/Prednisone Tacrolimus/Prednisone/MMF NO PR (62)

les Cyclosporine/MMF Cyclosporine/MMF NO – (63)

les MMF/Budesonide MMF/Budesonide NO – (64)

les Sirolimus Sirolimus NO PD (50)

C, hepatocellular carcinoma; ICI, immune checkpoint inhibitor; MMF,mycophenolate mofetil; SCC, squamous cell carcinoma;
sclerosing cholangitis; MCC,merkel cell carcinoma; PD, progressive disease; CR, complete response; PR, partial response.
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No. Age Gender Reasons for LT
Malignancy
After LT

TFTI ICIs Dose Dura

1 67 M HCC Melanoma 8 yrs Ipilimumab – 3 mth

2 59 F Cirrhosis Melanoma 8 yrs Ipilimumab – 3 mth

3 67 F LMFM Melanoma 1.5
yrs

Ipilimumab 3mg/kg 0.75

4 35 M Biliary atresia Melanoma 20
yrs

Pembrolizumab – 2 cyc

5 54 M Cirrhosis NSCLC 13
yrs

Nivolumab 3mg/kg 3 cyc

6 57 M HCC Melanoma 5.5
yrs

Pembrolizumab – –

7 63 M CC Melanoma 3.1
yrs

Pembrolizumab – –

8 62 F HCC MPNST-like
melanoma

6 yrs Ipilimumab/
Pembrolizumab

– 4 cyc
25 cy

9 61 M Cirrhosis Colon
adenocarcinoma

3 yrs Pembrolizumab 200 mg/3
wks

15 cy

10 66 M Cryptogenic liver
disease.

Lung
adenocarcinoma

3 yrs Nivolumab 3 mg/kg 0.5M

11 58 M PSC-related liver
disease

Cutaneous scc 21
yrs

Nivolumab/
Cemiplimab

240 mg/2
wks;
350 mg/3
wks

15M/
cycle

12 52 M Alcoholic liver
injuries

Hypopharyngeal
cancer

2.7
yrs

Nivolumab 240mg/2
wks

4 cyc

13 72 M – MCC 7 yrs Nivolumab 3mg/kg/2
wks

2 cyc

14 59 M ICC Recurrent ICC 1 yrs Toripalimab 240 mg/3
wks

7 cyc

LT, liver transplantation; TFTI, time from transplant to ICIs; ICI, immune checkpoint inhibitor; IS, immunosuppressive; Ref, references; M, male; F, female; HC
TFTI, time from transplant to ICIs; CC, cholangio carcinoma; LMFM, liver metastases from melanoma; NSCLC, non-small cell lung cancer; PSC, primary
t

m

s
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g of cytotoxic CD8+ T cells (72). Those cytotoxic CD8+ T cells could not

only eliminate the cancer cells but also lead to acute graft rejection (73,

74). In the absence of PD-1 expression, the cytotoxic CD8+ T cells

would differentiate into an effector memory phenotype, further prolong

the interaction with CD11c+ cells and cause harm to transplant

tolerance significantly (75).

Apart from effector T cells, the regulatory T cells (Tregs) could

mediate immune response in the pro-inflammatory microenvironments

and maintain tolerance in organ transplant models (76). Differently, the

immune checkpoint signaling played a controversial role in regulating

Treg induction and maintenance. Up to now, several studies have

reported that blockade of the CTLA-4 pathway (such as the

downstream signaling molecule PP2A) could activate the mTOR

signaling (77) and decrease formation of Tregs (78). However, some

studies got opposite results and found that inhibition of either PD-1 or
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CTLA-4 contributes to the proliferation of Tregs and increase the

secretion of anti-inflammatory cytokines (79, 80). We summarize the

effect of ICI’s on Tregs based on current studies in Table 4, and there

certainly need more exhaustive studies to figure out the exact role of

immune checkpoints in Tregs.

As the ligands of PD-1, PD-L1 is frequently observed in

macrophages, DCs, parenchyma cells as well as cancer cells and was

found to induce graft tolerance (89). For instance, PD-L1 expressed

on the anti-inflammatory phenotype macrophages (M2) was proved

to be related to preventing chronic allograft rejection after LT (67).

Specifically, these M2 macrophages could increase the number of

Foxp3+ Tregs in the liver grafts, contributing to tolerance induction

and further prolonging the survival time of recipients (90). Graft-

infiltrating DCs, another potent antigen-presenting cell with high PD-

L1 expression, have also been shown to contribute to the maintenance
TABLE 3 The efficiency and side effects of each drug based on the existing data.

Drugs
efficiency side effects

mTOR’s
The graft rejection rate in those treated with sirolimus is 22.2% (2/9).

Not mentioned.
The graft rejection rate in those treated with everolimus is 50.0% (1/2).

TKI’s
81.5% (22/27) patients use TKI’s and most of them change to ICI’s due to
disease progression.

Proteinuria (44); Nausea, Emesis
(41)

ICI’s

PD-1 inhibitors 28.5% (4/14) patients with disease control.

Graft rejection; Abnormal liver
function (38)

PD-L1 inhibitors 0% (0/2) patients with disease control.

CTLA-4 inhibitors 100% (1/1) patients with disease control.

combination therapy (PD-1 inhibitors +PD-L1
inhibitors)

100% (1/1) patients with disease control.
mTOR, mammalian target of rapamycin; TKI, Tyrosine kinase inhibitors; ICI, immune checkpoint inhibitors; PD-1, programmed cell death protein-1; PD-L1, programmed cell death ligand 1; CTLA-
4, cytotoxic T lymphocyte antigen 4.
FIGURE 1

The balance between cancer immunology and transplant tolerance. Through the activation of effector T cells, the ICIs can not only reduce tumor
burden but also increase the risk of graft rejection. IL-2, interleukin-2; IFN-g, interferon-g; TNF-a, tumor necrosis factor-a.
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of graft tolerance (91). These cells could induce the CD8+ T cells

exhaustion, subvert anti-donor T cell immune responses and increase

the percentage of Tregs (91). However, blockade of the PD-1/PD-L1

interaction by targeting PD-L1 would aggravate the cytotoxic damage

caused by CD8+ T cells and enhance the secretion of inflammatory

cytokines, such as IL-2, INF-g and tumor necrosis factor-a (TNF-a)
(91). Recently, studies based on the heart and intestinal

transplantation models further reported that the blockade or

absence of PD-L1 expression on endothelial cells would also result

in acute graft rejection by increasing the CD8+ T cells infiltration

(92, 93).

We speculate that there could be the following possible reasons.

Firstly, PD-L1 is mainly expressed on antigen-presenting cells

(including macrophages and DCs) and tumor cells, therefore, PD-

L1 antibodies always target these cells, unlike PD-1 antibodies, which

directly target T cells to completely block T cell exhaustion. However,

macrophages and DCs could also inhibit the activation of T cells by

expressing other immune checkpoints, such as TIM-3 and LAG-3 (94,

95). Secondly, the preservation of PD-L2 (another ligand of PD-1)

after PD-L1 inhibitor treatment, could partially activate the PD-1

pathway and suppress the immune response, which was proved to be

associated with a lower incidence of immune-related adverse events

(96). The PD-1 inhibitors could entirely block the interaction between

PD-1 and PD-L1/PD-L2, which may lead to T cell over-activation and

a higher rejection rate.

To reduce the risk of graft rejection, the combination therapy of

ICIs and immunosuppressive agents was proposed, which has

attracted great attention recently. Herein, Figure 2 demonstrated

the known pathways that control the activation of immune cells

and the crosstalk between ICIs and immunosuppressive agents.

Recent study revealed that anti PD-1 therapy could activate CD8+

T cells through PI3K-AKT-mTOR pathway and then induces colitis

in melanoma patients. Blockade of the pathway with sirolimus not

only inhibit tumor growth, but also suppresses the T cell infiltration in
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colitic lesions, showing a promising strategy for balancing immune

overactivation and effective anti-tumor immunity (97). In a kidney

transplant case, Esfahani et al. (98) reported that ICI-induced kidney

allograft rejection was also associated with cytotoxic CD8+ T cell

activation in the periphery, a subset of cells with a well-established

role in renal allograft rejection on anti-PD-1 therapy (99). After

combination with sirolimus, T cell activation and proliferation was

reduced, although IFN-g-producing CD4+ T cells and cytotoxic CD8

+ T cells persisted in circulation. These results further suggested that

ICIs and mTOR inhibitors combination therapy promoted a state of

functional tolerance without a loss of immune-mediated anti-tumor

activity. However, to our knowledge, there are no clinical trials

assessing the combination of ICIs and mTOR inhibitors in HCC

recurrence after LT. In addition, the protocol of combination therapy

still in question. For example, did immunosuppressants need to adjust

when combined with ICIs? What is the optimal level of

immunosuppressants compared to those without HCC recurrence?
Conclusion and future expectations

In this review, we summarized the existing research on the

immunotherapy of post-LT HCC recurrence and discussed the

experience of using ICIs in this setting. We believed that it’s better

to adopt a steroids-free and mTOR-based regimen in patients with

post-LT HCC recurrence instead of the CNIs. Compared to CsA and

TAC, sirolimus and everolimus showed a promising role in anti-

tumor with mild side effects. Additionally, based on the available data

and cases mentioned above, we recommend that physicians should

consider cautiously before the application of ICIs. The risks and

benefits of ICIs-based immunotherapy must be fully assessed

individually, depending on the circumstances of each patient. There

are several factors should be taken into account to minimize the risks

of graft rejection. Firstly, before the ICIs treatment, negative PD-L1
TABLE 4 The effect of each ICI on each cell type.

Cells ICIs Models Function reference

DCs PD-L1 inhibitors

MC38 colon cancer
model

Activating DC function to enhance T cells killing effect. (81)

Increasing the number of activated (IFN-g+) CD8+ T cells and reactivating tumor-infiltrating
T cells.

(82)

Inflammatory skin
reaction

Inhibiting DCs migration from the skin to draining lymph node. (83)

Macrophage

PD-1 inhibitors MC38 colon cancer mode Enhancing the capacity for phagocytosis. (84)

PD-L1 inhibitors

B16 melanoma model Upregulating mTOR pathway activity and promoting proliferation and survival. (85)

MC38 colon cancer
model

Inducing T cell activation (more IFN-g production and higher CD 69 expression). (81)

Tregs

PD-1 inhibitors
Gastric cancer model promoting the proliferation and immunosuppressive function. (80)

Osteosarcoma model Decreasing the percentage of Tregs in CD4+ T cells. (86)

CTLA-4
inhibitors

Glycolysis-low tumor
model

Enhancing the function of glucose-uptake and IFN-g production. (87)

MC38 colon cancer
models

Reducing the number of intra-tumoral Tregs. (88)
f

Tregs, regulatory T cells; DCs, dendritic cells, PD-1, programmed cell death protein-1; PD-L1, programmed cell death ligand 1; CTLA-4, cytotoxic T lymphocyte antigen 4; IFN-g, interferon-g.
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expression in liver biopsy and increased length of time from LT may

contribute to lowering the risk of rejection. Secondly, compared to

PD-1 and CTLA-4 inhibitors, PD-L1 therapy is a promising strategy

to reduce the risk of graft rejection in post-LT HCC recurrence.

Thirdly, the combination protocol (ICIs plus mTOR inhibitors) is a

potential strategy to balance cancer immunology and graft tolerance.

Moreover, close monitoring of immune status is mandatory during

the ICIs therapies, such as the number of CD4+ and CD8+ T cells and

the serum of IFN-g, which were already proved to be helpful for the

prediction of graft rejection in kidney and lung transplantation.

Finally, once the acute graft rejection occurred, treatments such as

ICIs withdrawal, high high-dose steroids and thymoglobulin should

be taken immediately to improve patients’ outcomes. Further studies

about the mechanism of the crosstalk of ICIs and immunosuppressive

agents are necessary to improve the therapeutic effect for post-LT

HCC recurrence.
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FIGURE 2

The co-stimulatory and co-inhibitory pathways in T cells. The PD-1 axis could phosphorylate ITIM and ITSM, recruit SHP1 and SHP2, and further inhibit
ZAP 70. Similarly, CTLA-4 pathway recruited SHP2 and PP2A, and attenuated the mTOR signaling. Fyn is another motif on the cytoplasmic tail of Tim-3,
promoting the inhibitory function by inhibiting the NFAT and mTOR activity. The unique KIEELE motif is essential for the inhibitory function of Lag-3.
When implemented with ICIs, the co-inhibitory pathway is inhibited and T cell is activated. Immunosuppressive agents, such as CNIs and mTOR
inhibitors, can obstruct T cell activation by different mechanisms. PD-1, programmed cell death protein-1; PD-L1, programmed cell death ligand 1;
CTLA-4, cytotoxic T lymphocyte antigen 4; PP2A, protein phosphatase 2A; ITIM, immune-receptor tyrosine based inhibitory motif; ITSM, immune-
receptor tyrosine based switch motif; ZAP 70, zeta-chain-associated protein kinase 70; SHP, src homology 2 domain- containing protein tyrosine
phosphatase; NFAT, nuclear factor of activated T cells; mTOR, mammalian target of rapamycin; Tim-3, T cell immunoglobulin-3; Lag-3, lymphocyte
activation gene-3; TIGIT, T cell immunoglobulin and ITIM domain; TAC, tacrolimus.
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