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The mutation of the crucial genes such as tumor suppressors or oncogenes plays

an important role in the initiation and development of tumors. The non-

synonymous mutations in the tumor cell genome will produce non-autologous

proteins (neoantigen) to activate the immune system by activating CD4+ and CD8

+ T cells. Neoantigen-based peptide vaccines have exhibited exciting therapeutic

effects in treating various cancers alone or in combination with other therapeutic

strategies. Furthermore, antigen-loaded DC vaccines are more powerful in

inducing stronger immune responses than vaccines generated by antigens and

adjuvants. Therefore, neoantigen-based dendritic cell (DC) vaccines could achieve

promising effects in combating some malignant tumors. In this review, we

summarized and discussed the recent research progresses of the neoantigen,

neoantigen-based vaccines, and DC-based vaccine in pancreatic cancers (PCs).

The combination of the neoantigen and DC-based vaccine in PC was also

highlighted. Therefore, our work will provide more detailed evidence and novel

opinions to promote the development of a personalized neoantigen-based DC

vaccine for PC.
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Introduction

Cancer can be caused by the alteration of the expression of genes controlling cell growth.

The mutation of the crucial genes such as tumor suppressors or oncogenes plays an

important role in the initiation and development of tumors. The loss of function

mutations in tumor suppressor genes are frequently found in multiple cancers that will fail

to produce the protein or the protein will not function properly. Moreover, mutation, gene

amplification, and chromosome rearrangements are the three main genetic mechanisms to

activate oncogenes. The activation mutations of proto-oncogenes will cause structural

changes in their encoded proteins and lead to uncontrolled, continuous activation of the
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oncoproteins. The loss of the function mutations of tumor

suppressors and the activation mutations of oncogenes will cause

uncontrolled cell growth and ultimately contribute to tumorigenesis.

For example, Hui Cai et al. analyzed the mutational landscape of 153

gastric cancer patients by targeted next-generation sequencing and

identified 35 significantly mutated genes, and the tumor suppressor

TP53 was found to be the most frequently mutated gene (1).

Moreover, Kirsten rat sarcoma viral oncogene homolog (KRAS)

mutation is one of the most common gene mutations and is a

frequent driver in lung cancer, colorectal cancer, and pancreatic

cancer (PC). KRAS mutations drive 85%–90% of PC cases, and the

high prevalence of the oncogenic mutation of the KRAS gene is the

hallmark of PC that plays a crucial role in the initiation and

development of PC (2).

Importantly, non-synonymous mutations of the genes in the

tumor cell genome will produce non-autologous proteins that can

only be found in tumor cells (3, 4). These proteins have the capability

to activate the immune system and are now known as neoantigens,

which own strong immunogenicity and does not express in normal

cells. Neoantigens can activate CD4+ and CD8+ T cells to induce

immune response, and they are current novel and important targets

of cancer immunotherapy (5). Therapeutic vaccination is one of the

cancer immunotherapies and could regulate immune pathways to

induce or enhance the inadequate antitumor immune responses (6).

Therefore, the successful development of tumor vaccines targeting

neoantigens through nucleic acid, dendritic cell (DC)–based and

synthetic long peptide (SLP) vaccines might benefit the currently

used immunotherapeutic strategy. The safety and immunogenicity of

the personalized neoantigen vaccine NEO-PV-01 in combination

with PD-1 blockage was firstly investigated in the treatment of

advanced melanoma, non-small cell lung cancer, or bladder cancer

patients, and no adverse events of the regimen were found (7). DCs

are bone marrow–derived, morphologically and functionally

heterogeneous cells with the capability to activate primary immune

responses by presenting the antigens to naïve CD4+ and CD8+ T cells

(8). Therefore, given the critical function of DCs in modulating the

innate and adaptive immune responses and their high sensitization to

tumor-associated antigens (TAAs), DCs are considered crucial

players for the development of immunotherapies and a major focus

of cancer vaccine development (6). DC-based immunotherapies,

especially the DC-based vaccination, were widely studied in recent

years, and the clinical trials for different DC-based vaccinations have

exhibited positive effects on the induction of antitumor responses and

prolonged survival of patients with different types of tumors (6).

Given the high tumor specificity and immunogenicity of

neoantigens, neoantigens were thought to be one of the ultimate

targets for tumor immunotherapy. Neoantigen-based peptide

vaccines have exhibited exciting therapeutic effects on the treatment

of glioblastoma (9). It was reported that antigen-loaded DC vaccines are

more powerful in inducing stronger immune responses than vaccines

generated by antigens and adjuvants (10). Therefore, neoantigen-based

DC vaccines could achieve promising effects in combating some

malignant tumors (11). In this review, we summarized and discussed

the recent research progresses of the neoantigens and DC-based

vaccines and the potential roles of neoantigens in the generation of

neoantigen-based DC vaccines in the treatment of PC.
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Neoantigens of pancreatic cancer

Pancreatic ductal adenocarcinoma (PDAC), a highly aggressive

cancer type, accounts for 85% of PCs with a 5% of 5-year survival rate

(12). Surgical resection is the only effective approach to prolong the

survival time of PDAC patients if PDAC is diagnosed. However, the

surgical resection is no longer beneficial for the PDAC patients with

metastasis. Moreover, chemotherapy, radiotherapy, or immunotherapy

could block the development of PDAC but the survival time of treated

patients can only be extended to several months. Due to the poor early

detection and the specific invasiveness of PDAC, further in-depth

investigations for additional therapeutic strategies with high

selectivity are need to eradicate PDAC (12).

It was well known that the mutations of oncogenes and tumor

suppressors are critical factors for tumorigenesis including PC. The

most frequently mutated genes of PDAC are KRAS, CDKN2A, TP53,

and SMAD family member 4 (SMAD4), which are also considered

driver genes and correlated with the poor outcomes of resected PDAC

patients (13). Furthermore, the other germline mutations in

mismatch repair genes (MLH1, etc.), the partner and localizer of

BRCA2 (PALB2), cationic trypsinogen-gene (PRSS1), serine/

threonine kinase 11 (STK11), ATM serine/threonine kinase (ATM),

and breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) are

correlated with a high risk of PC (14–16). As early as 2008, the

coding regions of more than 29,000 genes in pancreatic

adenocarcinomas were sequenced and 63 genomic alterations were

identified that covered a core set of 12 cellular signaling pathways.

These pathways included KRAS signaling, cell cycle regulation, DNA

damage, TGF-beta signaling, RNA processing, and WNT signaling

(13, 17) (Table 1). Further analysis of the KRAS types indicated that

the most frequent mutations of KRAS are G12VD (31%), G12V

(31%), and G12R (21%). Importantly, multiple concurrent KRAS

mutations were detected in approximately 4% of PDACs, and,

interestingly, these different KRAS mutations could be presented in

different cells of the same tumor (19). As a tumor suppressor, TP53 is

the top frequently mutated gene in multiple tumors. Based on the

results of the MSK-IMPACT study and the GENIE project, TP53

mutations have been identified in approximately 70% of PDACs (20).

The missense mutations of TP53 occurred at approximately 190

codons, and the “hotspot” mutation codons included 175, 245, 248,

249, 273, and 282 whose mutation leads to abnormal conformational

changes in the DNA-binding surface of TP53 (21). The mismatch

repair–deficient cancers usually generate a large amount of

neoantigens that are beneficial for their sensitivity to immune

checkpoint blockage (22). It was reported that those pancreatic

patients with longer survival time usually have stronger T-cell

activity and less immunogenic mutations (neoantigens), which

implied that the quality of neoantigens is important biomarker for

tumor immunotherapy (18). Moreover, in addition to the location

proximity of cytotoxic T cells to cancer cells, the neoantigen number

in combination with the CD8+ T-cell infiltration status is correlated

with the survival of patients with PDAC (23, 24). It was reported that

the mis-splicing of exons and errors in microsatellite (MS)

transcription could generate highly immunogenic frameshift (FS)

neoantigens whose sequence could be predicted and used to build

the peptide array that covers all possible FS neoantigens (25).
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Given that PDACs are highly associated with several mutations of

genes such as KRAS, TP53, and CDKN2A, the development of

neoantigen-based immunotherapy might be a promising

therapeutic strategy for the treatment of PDAC. There are two

kinds of neoantigens: shared neoantigens and personalized

neoantigens (26, 27). Shared neoantigens are common antigens that

are present in different cancer patients. Wenyi Zhao et al. found that

10 neoantigens were shared by approximately 50% of pancreatic

patients that can be the potential targets for off-the-shelf

immunotherapy (27). Personalized neoantigens are the unique

mutated antigens from other most frequently used neoantigens, and

the targeting of personalized neoantigens is specific personalized

therapy (28). More importantly, the hallmarks of carcinogenesis are

the accumulation of genetic and epigenetic mutations that are

commonly classified as a ‘driver’ or ‘passenger’ mutation according

to their roles in promoting cell proliferation and invasion (29). Driver

mutations have the capability to drive the cell lineage to cancer, but

passenger mutations do not exhibit the proliferation-promoting

benefit to cell lineage (30). Moreover, due to the large fraction of

passenger mutations compared with driver mutations, the passenger

genes contribute to the majority of experimentally confirmed

neoantigens that showed high immunogenicity (31). More notably,

PCs have a limited number of neoantigen expressions due to their

markedly low mutational burden, which is highly associated with the

efficiency of immunotherapy (32). In line with this finding, the KPC

pancreatic mice models showed that low mutation burden is highly

associated with deficient immunoediting, but the ectopic expression

of a neoantigen Ovalbumin (OVA) could rescue the tumor

elimination ability (33). Therefore, these findings indicated that

mutation burden can be considered a potential predictive

biomarker of clinical response to checkpoint inhibition therapy (34).

A comprehensive analysis was performed on the genomic profiles of

221 PDAC cases, and the results indicated that the targetable

neoantigens were expressed in almost all PDAC samples. Importantly,

the top promising targetable neoantigens are KRAS codon 12 mutations

(35). It was reported that T-cell receptors (TCRs) that are reactive to

KRAS G12V and G12D neoantigens could be isolated for the

immunized HLA-A*11:01 transgenic mice. Furthermore, these TCR-
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transduced peripheral blood lymphocytes (PBLs) could recognize plenty

of HLA-A*11:01(+) tumor cell lines expressing the KRAS G12V and

G12D mutations (36). Moreover, the genetically engineered T cells

ectopically expressing two allogeneic HLA-C*08:02-restricted TCRs

targeting KRAS G12D neoantigens were injected into the patient with

metastatic PC and regressed the visceral metastases of the patient (37).
Neoantigen-based vaccines in
pancreatic cancer

In recent years, immunotherapeutic strategies including various

immune-checkpoint blockage, chimeric antigen receptor T-cell

therapies are well studied in the treatment of multiple cancer types

including PC. Importantly, as a novel cancer immunotherapy, the

development and application of the personalized vaccines based on

tumor-specific neoantigens attracted increasing attention in treating

diverse cancers by enhancing the endogenous repertoire of tumor-

specific T cells (38). Given that the neoantigens are expressed only on

the tumor cells but not normal cells and they are unique epitopes of

somatic mutations, the neoantigen-based vaccines could avoid the

“off-target” damage to normal cells and prevent the T-cell central

tolerance caused by self-epitopes and subsequently induce the tumor-

specific T-cell response (38). Early studies showed that the

neoantigen-based personalized cancer vaccines proved promising

outcomes in prolonging the overall survival (OS) of cancer patients.

The advances of next-generation sequencing and the bioinformatics

for the prediction of major histocompatibility complex class I (MHC

I)–binding epitopes promote the identification of tumor-specific

mutations and the generation of personalized therapeutic cancer

vaccines based on neoantigens.

Notably, the feasibility, safety, and immunogenicity of neoantigen-

based personalized cancer vaccines were fully measured in patients with

melanoma and glioblastoma (39, 40). The effect of iNeo-Vac-P01, a

personalized neoantigen-based peptide vaccine, was examined in the

treatment of PC, and the iNeo-Vac-P01 could enhance the clinical

efficacy of PC (41). Recently, Li L et al. combined next-generation

sequencing, novel predictive modeling techniques, and computational
TABLE 1 The list of mutated genes and the related pathways in pancreatic cancer (PC).

Pathway Mutated Gene Global Frequency (%)

KARS KRAS, MAPK4 92

Cell Cycle TP53, CDKN2A 78

TGF-beta Signaling SMAD3, TGFBR1, ACVR1B, SMAD4, TGFBR2, ACVR2A 47

DNA Repair BRCA1, BRCA2, PALB2, ATM, ATF2 17

Chromatin MLL2, MLL3, KDM6A, SETD2 26

SWI/SNF ARID1A, ASD1B. PBRM1, SMARCA4 20

Notch Signaling JAG1, BCORL1, NF2, FBXW7 10

WNT Signaling RNF43, MARK2, TLE4 5

RNA Processing RBM10, SF3B1, U2AF1 15

ROBO SLIT Pathway ROBO1, ROBO2, SLIT2, MYCBP2 5
The table is modified from the paper (18). The top frequent drivers of pancreatic tumorigenesis are indicated in bold.
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algorithms based on bioinformatics to build and optimize a DNA

vaccine platform to target multiple neoantigens in a metastatic

pancreatic neuroendocrine tumor (42). In their study, the positive

effect of the optimized polyepitope neoantigen DNA vaccine on the

induction of antitumor immune responses and neoantigen-specific

TCRs were confirmed in preclinical and clinical trials. Moreover, their

findings also suggested that the neoantigen DNA vaccine can target

multiple neoantigens at the same time and the longer epitope fragments

could markedly extend the immune responses. Importantly, they found

that the addition of a neoantigen-tagging mutant marker on the end of

the epitope could dramatically enhance the immune responses (42). A

neoantigen-targeted vaccine was generated using the synthesized 20-mer

peptides according to the mutation of 12 genes: Myo1g, Ace, Glb1L12,

Map2k5, Rasa3, Clcn7, Notch2, Bsg, Pnpla7, Ppp2r3a, Tg, and Ttn (43).

The effect of the triple immunotherapeutic strategy, the combined

administration of neoantigen-targeted vaccine PancVAX, anti-PD-1,

and agonist OX40 antibodies, was investigated on the treatment of

xenograft mice bearing pancreatic adenocarcinoma (Panc02) cells (43).

The results indicated that PancVAX led to the transient regression of the

tumor by inducing markedly the tumor infiltration of neoepitope-

specific T cells. The addition of anti-PD-1 and agonist OX40

antibodies decreased the exhausted T-cell number, induced a durable

tumor regression, and prolonged the survival time (43). Furthermore,

TG01, the first injectable antigen-specific tumor immunotherapy

targeting KRAS mutations, was designed by including seven synthetic

RAS peptides that covered seven KRAS common mutations that

occurred in codon 12 and 13 (44). The design aimed to activate both

MHC-I CD8+ and MHC-II CD4 T-cell functions because the activation

of CD4+ cells plays important roles in promoting the DC- meditated

cross-presentation of neoantigens and TAAs on the tumor surface and

further enhances the antitumor effect of CD8+ T cells (44, 45).

Moreover, the safety, immunological responses, and clinical effect for

TG01 in combination with recombinant human granulocyte

macrophage–colony-stimulating factor and gemcitabine (GEM)

chemotherapy were firstly examined on the resected pancreatic

adenocarcinoma by Daniel H. Palmer et al., and the result indicated

that the vaccination strategy can be well tolerated and trigger remarkable

immune responses (45).

Currently, different personalized neoantigen-based cancer

vaccines for the treatment of patients with PC are in the clinical

trials (Table 2). With the advanced development of tumor mutation

identification tools, neoantigen-prediction algorithms, vaccine

delivery platforms, novel immunogenomic tools, and other

bioinformatics technologies, the more effective, long-lasting

personalized neoantigen-based immunotherapeutic strategies,

especially the neoantigen-based vaccines, will be explored and

benefit the patients with PC.
Dendritic cell vaccines of
pancreatic cancer

DC–mediated antigen presentation plays essential roles in

modulating immune responses. The dysregulation of antigen

processing and presentation is a critical mechanism facilitating

tumor escape from the immune surveillance by the immune

system. However, it was reported that DCs and other antigen-
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processing and -presenting molecules such as human leukocyte

antigen (HLA) class I and transporter for antigen presentation

(TAP) were downregulated in PCs (46). Moreover, accumulating

evidence indicated that tumor antigen–based DC vaccines exhibited

effectiveness to induce the T-cell-mediated adaptive cytolytic immune

responses in PC (46).The development of DCs vaccines aimed to

connect the DCs with TAA to present the antigen and subsequently

activate cytotoxic T cells. Currently, various types of DC-based

vaccines were developed and in the clinical trial stage (47).

In a phase I study, the effect of allogeneic tumor lysate–loaded

autologous monocyte-derived DCs was evaluated in the treatment of

resected PDAC and the vaccination treatment indicated a feasible and

safe immune reactivity induction capability (48).The prophylactic DC

vaccination strategy used DC vaccines generated by ex vivo

differentiation, and the maturation of bone marrow–derived

precursors was investigated in PDAC tumor mice models and

exhibited a significant effect in inhibiting recurrent tumor growth

and extending the survival time (49). It was well known that in PCs,

the telomerase [human telomerase reverse transcriptase (hTERT)] is a

promising target antigen and it mainly expresses in cancer stem cells

that are difficult to eliminate by common therapeutic strategies (50).

PC patients who received the vaccination of DCs transfected with

hTERT full-length mRNA exhibited an induction of hTERT-specific

immune responses but have not experienced serious adverse issues.

This study therefore provided positive evidence for the generation of

DC vaccines loaded with mRNA for a specific antigen with clinical

relevance by inducing the antigen-specific immune responses (51).

However, although DCs are well known for their antigen presentation

function in the immune system and could induce the TCR specific to

tumor antigens, the immunotherapeutic efficacy of DCs in combating

PCs is still limited. Therefore, the combination immunotherapy of

DC vaccines with other therapies to improve the efficacy of DC

vaccination is a promising research topic. In line with this notion, the

efficacy of peptide-pulsed DC vaccines in combination with the Toll-

like receptor (TLR)-3 agonist poly-ICLC was tested in the murine

orthotopic Panc02 cell models. The combination vaccination method

showed a significant antimetastatic effect via CD8+ T-cell activation

(52). The DC vaccines could also dramatically induce the cytotoxic T-

lymphocyte (CTL) responses and block the migration of PC (53).

Given that numerous antitumor strategies including checkpoint

inhibitor treatments are less sensitive to PDAC, the combined

therapeutic method by inducing tumor-specific T cells via DC

vaccination and remodeling the desmoplasia of the tumor

microenvironment (TME) via CD40-agonistic antibody

administration could reduce the tolerance to PDAC. Therefore, the

effect of mesothelioma-lysate loaded DCs coupled with FGK45 (CD40

agonist) was tested in immune-competent PDAC mice models and

the novel approach induced a significant change in the tumor

transcriptome including the inhibitory markers on CD8 +T cells

and dramatically enhanced patient survival (54). Notably, the survival

of patients with advanced pancreatic carcinoma who received the DC-

based immunotherapy combined with GEM and/or S-1 was

dramatically prolonged by the administration of lymphokine-

activated killer (LAK) cell therapy. However, immunotherapy alone

could increase the number of cancer antigen–specific cytotoxic T cells

and reduce the regulatory T cells (55). The antitumor effect of DCs

loaded with alpha-galactosylceramide (alpha-GalCer) was evaluated
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in PC C57BL/6 mice models, and tumor growth was inhibited, which

might be correlated with the increased number of IFNg-producing
NKT cells (56).

Currently, most of the efforts of DC-based vaccination were

focused on MUC1, WT1, and KRAS antigens. The TAA MUC1, a

glycoprotein, is ubiquitously expressed in PC cells. The effect of

MUC1-DCs vaccine that was generated by transfecting the

liposomal MUC1 cDNA into DCs was investigated in PC patients,

and the result indicated that MUC1-DC vaccination was well

tolerated and enhanced the CTL response (57). However, MUC1

peptides-loaded/pulsed DC vaccines were well tolerated in treating

PCs in two separate studies but the clinical benefit is controversial,

which might be caused by the different patients (58, 59). Importantly,

the efficacy of triple therapy for MUC1-mRNA-transfected DCs in

combination with MUC1-CTLs and GEM was examined in PCs and
Frontiers in Immunology 05
the addition of MUC1-DCs and MUC1-CTLs dramatically prolonged

the survival time (60). TheWilms tumor gene (WT1) is overexpressed

in many PCs, and WT1 peptide–pulsed DC vaccines were reported to

dramatically prolong the median OS of PC patients in combination

with standard chemotherapy (61).
Neoantigen-based dendritic cell
vaccines in pancreatic cancer

Generally, neoantigens belong to antigens, but they are specific

novel antigens to each patient’s cancer and produced by random

mutations in the cancer genome. Therefore, DCs still own the

capability to present the neoantigens to T cells and subsequently

induce a specific immune response to each patient with related
TABLE 2 Clinical trials of neoantigen-based therapies on PC.

NCT
Number

Intervention/
treatment

Phase Start
date

Completion
date

Enrollment Status Sponsor

NCT03645148 iNeo-Vac-P01 + GM-CSF I 10/24/
2017

04/01/2021 7 completed Zhejiang Provincial People’s
Hospital

NCT05111353 Neoantigen peptide vaccine: Poly-ICLC I 10/10/
2022

12/31/2027 30 Recruiting Washington University School
of Medicine

NCT03122106 Personalized neoantigen
DNA vaccine

I 01/05/
2018

08/13/2022 15 Terminated Washington University School
of Medicine

NCT03956056 Neoantigen peptide vaccine: Poly-ICLC I 02/13/
2020

06/21/2023 12 Active, not
recruiting

Washington University School
of Medicine

NCT04810910 iNeo-Vac-P01 + GM-CSF I 03/30/
2021

03/30/2025 20 Recruiting Zhejiang Provincial People’s
Hospital

NCT03558945 Personalized neoantigen
vaccine

I 04/02/
2018

04/30/2023 60 Recruiting Changhai Hospital

NCT04799431 Neoantigen vaccine with Poly-ICLC
adjuvant: retifanlimab

I 01/01/
2023

01/01/2028 12(estimated) Not yet
recruiting

Sidney Kimmel Comprehensive
Cancer Center at Johns Hopkins

NCT04161755 Personalized tumor vaccines (PCVs) + PD-
L1 blocker: atezolizumab + mFOLFIRINOX

I 12/13/
2019

11/01/2023 29 Active, not
recruiting

Memorial Sloan Kettering
Cancer Center

NCT03953235 GRT-C903/GRT-R904 + nivoluma/
ipilimumab

I/II 07/18/
2019

12/00/2023 144 Recruiting Gritstone bio, Inc.

NCT03871790 Peptide-based immunization N/A 04/01/
2019

11/01/2021 100
(estimated)

N/A CENTOGENE GmbH Rostock

NCT03662815 iNeo-Vac-P01 + GM-CSF I 02/07/
2018

12/30/2022 30(estimated) Active, not
recruiting

Sir Run Run Shaw Hospital

NCT05013216 KRAS peptide vaccine
Hiltonol® (Poly-ICLC)

I 04/11/
2022

05/01/2026 25(estimated) Recruiting Sidney Kimmel Comprehensive
Cancer Center at Johns Hopkins

NCT03468244 Personalized mRNA tumor vaccine N/A 05/01/
2018

12/31/2020 24(estimated) N/A Changhai Hospital

NCT05292859 Neoantigen-specific TCR-T-cell drug
product

N/A 09/00/
2022

06/00/2039 180
(estimated)

Not yet
recruiting

Alaunos Therapeutics

NCT04117087 KRAS peptide vaccine, nivolumab,
ipilimumab

I 05/29/
2020

06/01/2024 30(estimated) Recruiting Sidney Kimmel Comprehensive
Cancer Center at Johns Hopkins

NCT05194735 Neoantigen-specific TCR-T-cell drug
product + aldesleukin (IL-2)

I/II 04/04/
2022

03/00/2029 180
(estimated)

Recruiting Alaunos Therapeutics

NCT02600949 Synthetic tumor-associated peptide vaccine:
imiquimod

I 05/11/
2016

05/31/2025 150
(estimated)

Recruiting M.D. Anderson Cancer Center
All clinical trial data were collected from ClinicalTrials.gov by the keywords neoantigen and pancreatic cancer (https://clinicaltrials.gov/ct2).
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mutations. The high level of neoantigen expression is positively

correlated with pathogenic TCR and PDAC progression. The

dysregulation of conventional DCs (cDCs) is highly correlated with

abnormal immune surveillance and hampered the response of early

TH1 and CTL to the neoantigens of PDAC (62). Moreover, the function

and amount of cDCs in PDAC could be considered as a biomarker for

the adaptive immune responses to tumor neoantigens in PDAC (63).

Therefore, DCs may play essential roles in neoantigen presentation and

inducing the neoantigen-specific TCR because the neoantigen-loaded

DC vaccines can directly present neoantigens to T cells.

Due to the unclear mutational load of specific cancers, the large

amount of DC vaccines was designed to induce the immune response

by targeting predetermined and universal antigens. However, the

neoantigen-based DC vaccine is considered a personalized DC

vaccine because the patient-specific neoantigens could be identified

through novel genomic sequencing technologies and bioinformatics

(64). Given that PC is characteristic for lower tumor burden and a

limited number of neoantigen and DCs, the effect of neoantigen-

pulsed DC vaccines was firstly examined in other cancers including

melanoma and lung cancer. The induction of the neoantigen-specific

TCR repertoire of neoantigen-pulsed DC vaccination was firstly

investigated in advanced melanoma (65). Moreover, the feasibility,

safety, immunogenicity, and efficacy of a peptide vaccine targeting 20

predicted neoantigens were further investigated in melanoma

patients, which provided a newly possible rationale to optimize the

neoantigen-based vaccine and the development of novel therapeutic

strategy in combination with commonly used immunotherapies (39).

Notably, the effect of neoantigen-pulsed DC vaccines on the patients

with advanced NSCLC was evaluated in a trial in 2021 (11). They

generated the personalized DC vaccines based on the 13-30 peptide of

the neoantigens identified in the tumor tissues of 12 patients. Upon

the personalized neoantigen-pulsed DC vaccine treatment, 25% of

patients responded to the vaccination and 75% of patients showed a

disease inhibition, which indicated a favorable therapeutic outcome

for the vaccination strategy (11). Furthermore, Changbo Sun et al.

found and designed a neoantigen short peptide L82 based on the

result from the whole-exome and RNA sequencing on the LLC1 cell

line. This candidate neoantigen short peptide L82 can both trigger

CD8+ T-cell responses and suppress the LLC1 growth in vivo. THE

L82-pulsed DC vaccination in combination with anti-CD38 antibody

treatment effectively inhibited the tumor growth by reducing the

tumor- infiltrated regulatory T cells (66). Furthermore, the effect of

the combination of DC-loaded with MART-1 peptide vaccine with

tremelimumab and the anti-CTLA-4 antibody was tested in

melanoma, and the treatment strategy achieved a stronger and

durable tumor response than each treatment alone (67). Moreover,

the patients with metastatic gastric cancer have received the

administration of neoantigen-pulsed DC (Neo-MoDC) vaccines

combined with immune checkpoint inhibition (ICI). Although the

Neo-MoDC vaccine alone could trigger neoantigen-specific CD4+

and CD8+ TCRs, the combination therapy induced a higher immune

response and significant elimination of tumors (68). Notably, a phase

Ib trial (CHUV-DO-0017_PC-PEPDC_2017) was also conducted on

a DC vaccine pulsed with personalized neoantigen peptides (PEP-

DC) coupled with the treatment of chemotherapy and the anti-PD-1

antibody. The study comprehensively evaluated the feasibility, safety,
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immunogenicity, and efficacy of the combination therapy of the DC

vaccine in PCs (69). Therefore, these findings suggested that the

neoantigen-based DC vaccine combined with other therapeutic

strategies enhanced the effects of cancer treatment by inducing

highly patient-specific immune responses and provided novel

therapeutic opportunities for cancer treatment.

In a phase I pilot study, the feasibility and efficacy of a DC vaccine

pulsed with the Wilms tumor gene-1 (WT1) peptide in combination

with GEM were evaluated in the treatment of advanced PC as a first

line of treatment. The WT1 peptide–pulsed DCGEM is feasible and

effective in triggering the antitumor TCRs but showed less effect in

treating the PC with live metastasis and elevated levels of

inflammatory markers (70). Furthermore, a phase Ib trial (CHUV-

DO-0017_PC-PEPDC_2017) was conducted to test the safety,

immunogenicity, feasibility, and efficacy of the DC vaccine pulsed

with personalized neoantigen peptides (PEP-DC) in PDAC and the

efficacy of combination with aspirin, nivolumab, and adjuvant

chemotherapy was further evaluated (69). NeoDisc, a novel

proteogenomics antigen discovery pipeline, was used to find and

optimize the candidate neoantigen in PDAC, and, furthermore, the

long peptides of relative neoantigens were designed. Due to the

possibility of low immunogenic capability, the p53 (TP53), mucin-1

(MUC1), prolyl endopeptidase FAP (FAP), TAAmesothelin (MSLN),

outer dense fiber protein 2 (ODF2), coiled-coil domain-containing

protein 110 (CCDC110), and the testis-specific protein bromodomain

testis-specific protein (BRDT) were excluded in the design of the DC

vaccine (69). Shikhar Mehrotra et al. generated a DC vaccine pulsed

with three specific A2-restricted peptides: 1) hTERT (TERT572Y), 2)

carcinoembryonic antigen (CEA; Cap1-6D), and 3) survivin

(SRV.A2). The neoantigen-pulsed DC vaccine in combination with

the Toll-like receptor (TLR)-3 agonist poly-ICLC was used to treat the

metastatic or locally advanced unresectable PC (52). The results of the

study indicated that the combination therapeutic strategy is safe and

could effectively induce the tumor-specific TCR (52). Furthermore,

the MUC1 peptide-pulsed DC vaccines were used to treat the

advanced PC patients and the results indicated that the vaccination

is safe and effective to trigger the immunological response to the

tumor antigen MUC1 (58, 59).

Importantly, the effects of the mDC3/8-KRAS vaccine that

included a DC vaccine loaded with KRAS mutation peptides on the

resected PDAC patients is evaluated in the ongoing phase I study

(NCT03592888). For each vaccine dose in the trial, all subjects will

receive autologous DCs pulsed with mutant KRAS peptides

corresponding to the subject’s specific tumor mutation and HLA

type. In addition, the inclusion criteria included pathologically

confirmed KRAS(G12D-), KRAS(G12V-), KRAS(G12R-), or KRAS

(G12C-mutated) PDAC who are at a high risk of relapse and have no

evidence of disease (NCT03592888). A terminated phase II trial on a

DC vaccine against defined neoantigens expressed by autologous

cancers had been performed in patients with epithelial cancers

including PDAC, but only one patient was enrolled (NCT03300843).

Therefore, given that PDAC is one of the poorly immune-

responsive cancers and some currently used immunotherapies are

also less effective in treating PDAC, it is urgent to develop novel

therapeutic strategies including alone administration or the

combinations of chemotherapy, radiation, vaccines, and ICIs and
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the development of personalized neoantigen-pulsed DC vaccines to

fully induce antitumor TCRs.
Conclusion and outlook

Recently, immunotherapies have proven their effectiveness in

multiple types of cancers but the efficacy is limited in the treatment

of PC partially due to the immune-tolerant state, lower mutational

burden, and decreased amount of DC. The high tumor specificity and

immunogenicity make neoantigens an exciting and promising target of

tumor immunotherapy. Neoantigens, the novel and specific antigens,

could also be presented by DCs. Neoantigen-based DC vaccines

illustrated promising effects in multiple cancers, but few are

investigated in PCs, which is possibly due to low mutation burden

and limited neoantigens. Given that the feasibility, safety,

immunogenicity, and efficacy of neoantigen-based DC vaccines were

evaluated in various cancers, it is an urgent need to put more effort on

the development of suitable neoantigen-based DC vaccines for PC and

evaluate their efficacy in clinical trials, which will provide precise

treatment for more PC patients. However, high costs, longer time for

manufacturing, difficulty in large-scale DC cell maturation, the low

efficiency of DC migration, the lack of a better method for accurate

identification of immunogenic neoantigens, and a less optimized

vaccine delivery platform limited the development of personalized

immunotherapy, which warrants further in-depth investigation in the

future (38). Fortunately, with the advances and optimization in whole

exome sequencing and neoantigen-prediction algorithms, the in-depth

understanding of the molecular mechanisms underlying the immune-

tolerant state of pancreatic cancer, the development of neoantigen-

based DC vaccines will be significantly improved. The combined

immunotherapy approach using neoantigen-based DC vaccines,

chemotherapy, and ICIs showed exciting therapeutic benefits to

various cancer patients. Therefore, the novel therapeutic strategies

including combination immunotherapy for PC should also be

explored and optimized to benefit more PC patients.
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