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Cancer cellular immunotherapy has made inspiring therapeutic effects in clinical

practices, which brings new hope for the cure of cervical cancer. CD8+T cells are

the effective cytotoxic effector cells against cancer in antitumor immunity, and T

cells-based immunotherapy plays a crucial role in cellular immunotherapy.

Tumor infiltrated Lymphocytes (TIL), the natural T cells, is approved for cervical

cancer immunotherapy, and Engineered T cells therapy also has impressive

progress. T cells with natural or engineered tumor antigen binding sites (CAR-T,

TCR-T) are expanded in vitro, and re-infused back into the patients to eradicate

tumor cells. This review summarizes the preclinical research and clinical

applications of T cell-based immunotherapy for cervical cancer, and the

challenges for cervical cancer immunotherapy.
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1 Introduction

Cervical cancer is a disease in which malignant tumor cells are formed in the female

cervix, and it is the most common malignant tumor in the female reproductive system. It

occurs more commonly in women aged 40 to 60 years old than female of younger

age groups.

At present, research on cervical cancer cannot fully explain the pathogenesis of cervical

cancer yet, however, the evidence shows the onset of cervical cancer may be related to a

series of factors such as early marriage, multiple births, cervical lacerations, poor local

hygiene, and smegma irritation. Since the nineties, research has further confirmed that

human papillomavirus (HPV) plays a significant role in the pathogenesis of cervical

cancer (1).

It is found that almost all (99%) cases of cervical cancer, patients have persistent

cervical HPV infection (2). There are more than 1,00 subtypes of HPV virus; among all, 40

subtypes are associated with reproductive tract diseases and 10 high-risk types are
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associated with cervical cancer. Particularly, infected by HPV-16

and/or HPV-18 would result in a higher risk of getting cervical

cancer. Similar to HPV-16 and HPV-18, HPV-31 and HPV-33

infections also increase the risk of cervical cancer, yet are relatively

less harmful (3).

It has been confirmed that persistent infection of HPV is a

critical condition for cervical cancer occurrence. However, HPV

infection alone cannot explain the abnormal cause of cervical

epithelium, and infection alone is not enough to cause complete

malignant changes in the cervical epithelium. More in-depth

research on the process involved in the change and molecular

mechanisms are needed.

Today, cervical cancer continues to have a high incidence in

low- and middle-income countries, and nearly ninety percent of all

cases of cervical cancers occurring in low- and middle-income

countries are due to a lack of tissue screening and HPV

vaccination for a variety of reasons (4, 5).

According to the different stages and specific conditions of the

progress of cervical cancer, five therapies will be adopted in clinical

practice including surgery, radiotherapy, chemotherapy, targeted

therapy and immunotherapy. Among all, T-cell immunotherapy

introduced in this article belongs to immunotherapy.

In recent years, the routine treatment of cervical cancer has

progressed. Medical workers have tried to use new chemotherapy

drugs and more effective radiotherapy methods and combined them

to find more effective treatments.

For example, for locally advanced cervical cancer (International

Federation of Gynecology and Obstetrics (FIGO) Phase IIB – IVA),

platinum radiochemotherapy has been the standard treatment in the

past two decades. There is evidence that it is superior to radiotherapy

alone. However, this treatment has been plagued by the negative

impact of disease recurrence and chemotherapy toxicity.

Several therapeutic plans that can help to change the clinical

outcome of locally advanced cervical cancer have been studied.

Gemcitabine, for example, is known to synergize with radiation and

cisplatin. However, the improvement of patients’ quality of life

achieved by new therapies is still limited by drug toxicity, for

instance. Currently, the clinical guidance is more inclined to

prevent cervical cancer from developing into a more malignant

stage (6). For advanced cervical cancer, many studies have turned to

palliative treatment to reduce the pain of patients, and to improve

the quality of life of patients such as palliative surgery, analgesia

drugs, or neurosurgery to prevent pain (6).Advanced cervical

cancer can only be treated with chemotherapy or radiotherapy,

but the prognosis is poor with the median survival rate of 16.8

months. For these patients, more effective treatment is urgently

needed (7).

Among the traditional procedures for cervical cancer, surgery

can directly eradicate cancer lesions, but there is a risk of

recurrence, and the surgery is not effective when a cancer has

metastasized. Radiotherapy and chemotherapy use the different

sensitivity of cancer cells and normal cells to radiation and drugs

to treat cancer. However, the similarity between cancer cells and

normal cells makes a strong negative effect on normal tissues for

both therapies. To prevent excessive injury, their application is

greatly limited and cancer cells cannot be eradicated.
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Targeted drugs can target specific types of cancer cells to

achieve the goal of killing cancer cells without killing normal

cells. Targeted drugs have played a revolutionary role in specific

cancer treatments. However, only a small part of known cancer can

be treated by targeted drugs. Inventing new cancer drugs is slow and

costly, and the high cost also limits the application of targeted drugs.

As a new therapy, immunotherapy aims to make the human

immune system respond more effectively to cancer cells.

Immunotherapy includes immune checkpoint inhibitor,

monoclonal antibody, vaccine, immunomodulator and T cell

transfer therapy. Through in vitro editing, it cultivates T cells

with stronger response ability to cancer cells and imports them

into the body to treat cancer.

Adoptive T cell therapy (ACT) is a type of cancer

immunotherapy that uses a patient’s immune cells to find and

eliminate tumor cells, and donor immune cells can also be used in

some cases (8). These include Chimeric Antigen Receptor T cells

(CAR-T cells), T Cell Receptor-modified T cell (TCR-T) therapy,

and Tumor-Infiltrating Lymphocyte (TIL) therapy.

Among them, TIL therapy belongs to natural T cell therapy,

while CAR-T and TCR-T belong to engineering T cell therapy. The

difference between TCR-T and CART-Ts is that CAR-T have

weaker sensitivity and affinity to cancer cells. With MHC protein

TCR-T can recognize proteins in cancer cells, whereas for CAR-T,

CAR-T cells display target markers independently through MHC.

Due to such characteristic, CAR-T cells need multiple targets to get

triggered simultaneously to be effectitive. Compared to TCR-T cells,

the affinity of CAR-T cells is more controllable, but CAR-T cells can

only recognize proteins on the cancer cell surface but not those

inside. In addition, there is evidence that the cytokine release

syndrome caused by CAR-T cell therapy is more severe.

Some unconventional T cells and non-T cells, including NK,

CD4+CD25+ or FoxP3+ Tregs, Th17 cells, g-dT cells, and

acrophages, have also been used in adoptive immunotherapy for

cervical cancer.

NK cells are an important subset of TILs with emerging evidence

indicateing their ability in killing cancer cells with a wide spectrum of

cancer cells without the restriction of MHCmatch (9). An early study

reported the detection of TIA-2, a molecule that reacts with the

cytoplasmic domain of the zeta chain in CD3+ T and CD16+ NK

cells. A marked decrease (p < 0.01) in expression of the CD3 z chain
of PBLs in patients with cervical cancer (n = 22) as compared to PBLs

from healthy donors (n = 21) was found. Moreover, PBLs isolated

from patients (n = 23) with CIN, to a lesser but significant (p < 0. 01)

extent expressed reduced CD3z levels as compared to those from

healthy donors. This decreased expression of z chains was also

observed on CD16+ NK cells in PBLs from patients with cervical

cancer (10). These findings suggest that alterations of signal-

transducing z molecules commonly occur in TILs, including NK

cells of patients with cervical cancer, which may relate to their

functionality and prognostic value.

Both CD4+CD25+ and FoxP3+ Tregs were reported in TILs of

cervical cancer. They represent the opposite side of immunity by

effectors and negatively regulate effector TIL functions. A study

evaluated the FoxP3+ TILs in formalin-fixed paraffin-embedded

tissues from 96 cervical cancer patients. The immunostaining
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density and other clinicopathological features such as FIGO stage,

histopathologic type, Ki67 index, HPV status, lymphovasular

invasion status, lymph node metastasis, tumor size, stromal

invasion status, and parametrial invasion were evaluated for their

roles in risk stratification of cervical cancer patients. The patients

were stratified into low-, intermediate-, and high-risk groups, and a

Spearman’s correlation analysis demonstrated that FoxP3+ TILs in

the central tumor area showed a statistically negative correlation

with risk stratification (p = 0.009) (11). It confirmed the prognostic

value of Tregs in cervical cancer development.

Th17 is a minority cell population in TILs, there are few studies

on Th17 cells. However, they may promote tumor progression by

fostering angiogenesis and are therefore worth noting. A review

article systemically summarized the roles of Th17 cells in cervical

cancer and stated that the viral infection alone was not sufficient for

the development and progression of premalignant cervical lesions

to cancer. The hypothesis was that Th17 cells might be involved in

the promotion of uterine cervical cancer (UCC), as high levels of IL-

17 expression were detected in the mucosa of the uterine cervix of

patients affected by the disease (12).

g-dT cells is a special subset of T cells. In a study, g-dT cells in

combination with galectin-1 antibody treatment, significantly

suppressed the growth of tumor xenografts in severe combined

immunodeficiency (SCID) mice (p < 0.05), although gd TILs alone

showed the ability to inhibit tumor growth in vivo. Thus, the in-

vitro expansion of this specific cell population may be necessary for

their clinical application as TIL therapy (13).

TME plays essential roles in cancer development, and TAMs are

a major player in the TME. A study investigated the density of

TAMs in intraepithelial and tumor stromal areas of 148 patients

with cervical adenocarcinoma, who were divided into two groups

showing high and low cell infiltration, using the median value as a

cutoff. Most cases (54.7%) were classified in stage IBb and 26

(17.6%) had recurrent disease. The density of stromal CD68+ or

CD204+ macrophages that had infiltrated invasive adenocarcinoma

(n = 127) was significantly higher than in adenocarcinoma in situ (n

= 27). The Kaplan-Meier survival analyses revealed that a higher

density of tumor-infiltrating CD204+ M2 macrophages was

significantly associated with shorter disease-free survival (p =

0.0027) (14). Tumor-infiltrating CD204+ M2 macrophages are a

prognostic factor for patients with cervical adenocarcinoma.
2 TILs and engineered T cells

2.1 TIL therapy

In the process of cancer, cancer cells can escape from \ the

immune system, which is a necessary condition for tumor

malignancy. However, many lymphocytes have detected

abnormalities in tumors and infiltrated and existed in tumor

tissues.These cells are tumor-infiltrating lymphocytes (TILs). They

are characterized by more HPV specific T cells in TIL.

Although TILs do not play a sufficient role in the human body

due to various immune escape mechanisms of cancer cells, they]

identify multiple immune sites of cancer cells. Therefore, through
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screening, culture, and expansion of these immune cells, we can

obtain many immune cells with strong aggressiveness to them.If it is

infused back into the body, it can cure cancer.

In addition, gene editing can also enhance the ability of immune

cells to recognize and kill cancer cells. At the same time,

immunomodulators can be used to combat the inhibition of

cancer cells on the immune system and enhance the

therapeutic effect.

Prior to TIL therapy, there had been therapies to obtain

immune cells from peripheral blood. However, experiments have

proved that tumor infiltrating lymphocytes can produce better

results (15). The advantage of TIL therapy for the following two

other immunocellular therapies is that TILs naturally contain

multiple sites to recognize cancer cells, while CAR-Ts and TCR-

Ts need to be modified to adapt to a certain site. Therefore, TILs can

prevent cancer cells from escaping from treatment through the

mutation failure of a certain site (15).

At present, TIL therapy is primarily used for treating

melanoma, and it has achieved effective results. In recent years,

this therapy has been used for a variety of solid cancers, including

cervical cancer, which will be introduced in this article and explored

in more indications (16).
2.2 T cell receptor-modified T cell therapy

Tumor-specific T cell receptor T cell therapy is a therapy that

enables T cells to kill cancer cells by transferring specific genes into

T cells of patients to express specific receptors that can recognize

tumor cells.

Tumor-specific T cell receptor is a kind of T cell receptor. T cell

receptor is a key feature of T cells that distinguishes them from

other lymphocytes. The tumor-specific T cell receptor can recognize

specific antigen sites on the surface of tumor cells so that T cells can

kill cancer cells.

By collecting naturally produced TCRs and selecting TCRs

according to the characteristics of patients’ cancer cells and

transferring them into T cells obtained from patients, screening

and amplifying T cells that successfully express TCR, and then

transferring them back to patients. Such a process shows to be

effective in curing cancer.Because these TCRs are natural sources,

they have a good ability to bind cancer cells.At the same time, TCR

on TCR-T can recognize peptide complexes and human leukocyte

antigens (HLA), which helps them distinguish normal cells in the

human body from diseased cells, such as cancer cells. In this way,

TCR-T will not affect normal tissues.

In most clinical trials, peripheral blood T cells for genetic

modification are obtained via leukapheresis and are transduced

by gamma-retroviral or lentiviral vectors that incorporate the TCR

genes into the host genome, which results in high-level expression

of the introduced TCR (17). Other means of genetic engineering

that are currently in development include the transposon/

transposase system, such as Sleeping Beauty (18), or Crispr/Cas9

based technology (19). These technologies do not require the

production of lenti- or gamma-retroviral vectors and may

therefore provide a more flexible and cheaper platform.
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The difference between TCR-Ts and TIL therapy is that TIL

therapy is based on TIL naturally existing in tumors, while TCR-T

therapy is based on peripheral blood T cells isolated and genetically

modified in vitro to express TCR targeting specific tumor antigens.

And the difference between TCR-Ts and CART-Ts is that TCR-T

have weaker sensitivity and affinity to cancer cells, and because the

MHC they recognize can present proteins in cells, TCR-T can

recognize proteins in cancer cells (20).
2.3 Chimeric antigen receptor
T cell therapy

The treatment of chimeric antigen receptor T cells is similar to

TCR-T, which is also transforming the patient’s T cells in vitro to

become T cells with a specific ability to recognize cancer cells, and

then expand and deliver them back to the patient.

The difference is that the chimeric antigen receptor (CAR) is an

artificial hybrid receptor. At present, after genetic construction,

scFv containing monoclonal antibody is used as antigen binding

extracellular domain, and intracellular CD3z chain acts as a TCR

signal domain and an additional co signal domain, mainly CD28

and 4-1BB (CD137) or others, to provide co-stimulation.

There are multiple ways to transfer the CAR genes into T cells.

So far, the most common method is using retrovirus-infected cells.

Evidence suggests that this method is effective and safe enough.

After nearly 30 years of development, CAR-T cells can be

divided into four stages of development according to the different

CARs: non-costimulatory signal CAR-T cells (the first generation),

single-costimulatory signal CAR-T cells (the second generation),

double/multiple costimulatory signal CAR-T cells (the third

generation) and precise CAR-T cells (the fourth generation). The

extracellular recognition region and transmembrane region of these

four generations of CAR-T cells are not very different, so their

stages are divided according to the structure of the intracellular

segment of CAR.

In the first generation of CAR-T, the structure of CAR

intracellular segment is relatively simple, mainly composed of the

ITAM of CD3 molecule z Chain (21).

The second generation of CAR-T, based on the first generation

of CAR-T cells, added an ITAM region from the costimulatory

molecule CD28 or CD137 (4-1BB) in the intracellular segment.

After the antigen recognition region outside the cell is combined

with the target antigen, the T cells can obtain the antibody

stimulation signal and the costimulatory signal at the same

time (22).

The third generation CAR-T, the main structure of it is like that

of the second-generation CAR-T cells, but the third generation

CAR-T cells use lentivirus as the transfection vector, which can

carry larger gene fragments into T lymphocytes. In theory, the third

generation of CAR-T cells should have more activation and killing

ability than the second generation of CAR-T cells (23).

The fourth generation CAR-T, also known as Precision CAR-T.

The design of this generation of CAR-T cells is considered from the

perspective of precise treatment of tumors and other diseases. Some

studies have added suicide genes or controllable suicide genes (such
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as some drug-sensitive genes) to the structure of CAR, to control the

survival time of CAR-T cells in vivo (24). Some studies have added

the receptor structure of cytokine or chemokine in the design of

CAR to increase the infiltration of T lymphocytes in tumor tissue,

thus achieving the effect of enhancing the killing of solid

tumors (25).

At the same time, there is also an emerging CAR-T called the

fifth generation CAR-T, namely Ready-use CAR-T.

Ready-use CAR-T is a CAR-T prepared from allogenic T cells.

Normally, T cells are collected from healthy donors or directly used

from stem cells. After HLA matching, the designed CAR is loaded

onto the surface of the T cells. The use of universal CAR-T therapy

may provide a way to simplify the manufacturing of engineered cells

and promote faster and cheaper treatment. But at the same time, it

also has higher technical barriers and higher requirements for

security. Therefore, there are few Ready-use CAR-T products

entering the clinical development stage (26, 27).

The difference between CARs receptors and TCRs is that CAR-

T cells display target markers independently through MHC. Due to

such characteristic, CAR-T cells need multiple targets to get

triggered simultaneously to play a role, but compared to TCR-T

cells, the affinity of CAR-T cells is more controllable. In addition,

CAR-T cells can only recognize proteins on the cancer cell surface

but not those inside. In addition, there is evidence that the cytokine

release syndrome caused by CAR-T cell therapy is more severe.

In addition, CAR-T cell therapy is currently mainly used for the

treatment of blood tumors, but the treatment and research of solid

tumors are still extremely limited, and the prospect is

pessimistic (2).
3 Studies of engineered T cells in
cervical cancer

3.1 E6 and E7 oncoproteins are the
attractive therapeutic targets for ACT

Cervical cancer is one of the most common cancers among

women, and the vast majority of cervical cancer (99%) is related to

the persistent infection of HPV. Among them, 70% of cervical

cancer can be confirmed to be caused by HPV type 16 and 18, and it

is HPV infection that gives the common characteristics of cervical

cancer cells: E6 and E7 oncoproteins.

After a virus invades human cells, it will control normal cell

structure to synthesize a series of proteins according to its genetic

information to replicate itself. E6 and E7 oncoproteins are closely

related to cancer among the proteins synthesized after the HPV

virus invades human cells, and the expression level of E6 and E7 is

related to the type of cervical lesions that may eventually occur.

E6 and E7 oncoproteins are expressed in the early life of HPV

and affect the normal physiological function of cells by affecting

normal signal proteins in cells. E6 binds to host E6-related proteins

with ubiquitin ligase activity and acts on the ubiquitination of p53,

leading to its proteasome degradation. E7 (in carcinogenic HPV) is

the main transforming protein. E7 competes for the binding of
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retinoblastoma protein (pRb) and releases the transcription factor

E2F to activate its target, thus promoting the cell cycle forward (2,

28). This allows infected cells to escape from the cell checkpoint

under influence, resulting in abnormal proliferation (29). Thus, the

differentiated host keratinocytes are kept in a state conducive to the

replication and expansion of the virus genome.

The experiment shows, all HPV can induce transient

proliferation, but only strains 16 and 18 can immortalize cell lines

in vitro (28). Combined with clinical evidence, it can be considered

that E6 and E7 oncoproteins are the keys to the carcinogenicity of

HPV16 and 18. Therefore, these proteins, which can be found in all

cancer cells that cause cancer by this mechanism, have become

highly promising targets for cervical cancer treatment (30).

Today, great progress has been made in therapies that target E6

and E7 oncoproteins in a variety of ways, including targeted

vaccines, genome editing technology targeting, nucleic acid-based

therapies, and genome editing using programmable nucleases,

phytotherapy, and the various immune-targeted therapies

described below (31).
3.2 The ongoing therapy and study about
T cells therapy against HPV cervical cancer

According to the NCCN Guidelines, nowadays, no adoptive T-

cell therapy has been included. Among immunotherapies, only

pembrolizumab (for PD-L1-positive or MSI-H/dMMR tumors)

and nivolumab (for PD-L1 positive tumors) are used as one of

the combination therapy drugs for systematic therapy, and the

following content will introduce the clinical research (32, 33).

3.2.1 TIL
3.2.1.1 Approval therapy

At present, TIL therapy is the only mature and approved clinical

therapy for HPV cervical cancer. For example, in 2019, FDA

approved autologous TIL immunotherapy LN-145 for the

treatment of recurrent, metastatic, or persistent cervical cancer.

Studies have shown that it can be used as a single therapy and

combined with anti PD-1 immunosuppressant (34).

There are already many studies underway regarding LN-145 for

the treatment of cervical cancer. The most success research to date

is according to a report by ASCO 2019 NCT03108495. LN-145,

another TIL product developed by Iovance, showed promising

preliminary therapeutic results in 27 patients with advanced

cervical cancer who had received at least one previous

chemotherapy. In this study, an objective response rate of 44%

was observed, including one full response and nine partial

responses. In contrast, the objective response rate of second-line

chemotherapy and immunotherapy approved by these patients was

in the range of 4-14% (35).

Ongoing research NCT03108495 uses the autologous TIL

manufacturing process originally developed by NCI to treat

patients with recurrent, metastatic, or persistent cervical cancer.

The cell transplantation treatment used in the study included

patients receiving NMA lymphocyte depletion preparation
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further explore the application of LN-145. Another study on LN-

145 in the treatment of head and neck squamous cell carcinoma is

also in progress. NCT03083873 LN-145 demonstrated significant

objective response rates (ORR) and disease control rates (DCRs) in

the treatment of cervical cancer (35).

3.2.1.2 Clinical trails

The research on cancer immunotherapy has a long history.

Before the 1990s, related studies revealed the particularity of tumor-

infiltrating lymphocytes (TILs), experiments have proved that they

are special lymphocytes, compared to other sources of immune

cells, TILs have a more prominent ability to inhibit the development

of tumors (36, 37).

Today, the study of TIL has gone further, and the latest data

from a series of studies including melanoma, cervical cancer, and

breast cancer have further confirmed the advantages of TILs. Data

shows that TILs contain more specific immune cells for cancer, and

their amplification in patients can obtain more effective ACT. At

present, the research and clinical application of TILs are steadily

advancing, and it can be expected that TILs-based therapies will be

recognized by more clinicians and accepted by patients and

society (38).

It is worth mentioning that since TILs come from patients

themselves, they contain more specific cell populations that

specifically identify tumors, which made it easier for TILs

returning to the tumor site to kill tumor cells. This personalized

feature, compared with traditional ACT, has more advantages and

is a major prospect of precision medicine (39–41).

In earlier studies, the use of TIL has focused on its impact on

cancer prognosis (42). In recent years, there are also other clinical

studies with certain results:

A study that ended in 2018 investigated the efficacy and possible

negative effects of TIL therapy on epithelial tissue tumors, including

cervical cancer. The results showed that of the 18 cervical cancer

patients tested, 2 developed a complete response to cervical cancer

atrophy, and 3 produced a partial response with 1 in stable

condition and 12 had progression on the cancer. The non-cervical

cancer group had a poor effect, with only 18.2% of patients having a

partial response. At the same time, none of the patients tested

experienced serious adverse reactions. NCT01585428

At present, more research on TIL therapy is being carried out

extensively, which shows that the academic community attaches

importance to this field: NCT05475847

A Phase I trial to evaluate the safety, tolerability, and initial

antitumor activity of C-TIL052A cells in the treatment of persistent,

recurrent, and/or metastatic cervical cancer. NCT04443296 A phase

I trial to evaluate the feasibility, toxicity and effectiveness of cisplatin

combined with chemotherapy and radiotherapy plus TIL in the

treatment of patients with FIGO IIIA to IVA cervical cancer. Thus it

is clear that the combination of TIL therapy and traditional therapy

is also a widely concerned research direction.

Other trials include: NCT04674488 which studying advanced,

spread cervical cancer; NCT05366478 To study the efficacy of

advanced cervical cancer.
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A phase II study (NCT01585428) of autologous tumor-

infiltrating lymphocytes and aldesleukin for human papillomavirus-

associated cancer, which ended observation in 2016, will diagnose

patients with metastatic cervical cancer and who have previously

received platinum-based chemotherapy or chemoradiotherapy for a

single infusion of tumor-invasive T cells, these T Cells are selected for

human papillomavirus (HPV) E6 and E7 reactivity (HPV-TILs)

where possible. Cell infusion is preceded by lymphocyte-depleting

chemotherapy, followed by aldesleukin administration. Three of the

nine patients experienced objective tumor responses (two complete

and one partial). The two complete responses continued 22 and 15

months after treatment, respectively. One partial response lasted 3

months. HPV reactivity of T cells in infusion products (as measured

by interferon g production, enzyme-linked immunospots, and CD137

upregulation assay) was positively correlated with clinical response (P

= 0.0238 for all three assays). In addition, the frequency of HPV-

reactive T cells in peripheral blood 1 month after treatment was

positively correlated with clinical response (P = .0238).

Overall, the research on TIL in the treatment of cervical cancer

is mainly based on phase I clinical trials, but it has shown quite a

good prospect, and researchers are actively exploring. At the same

time, (NCT03108495) as a recognized breakthrough therapy can be

expected to be a bridge to higher practicality of TIL in the treatment

of cervical cancer.
3.2.1.3 Important studies in pre-clinical study

The principle of TIL treatment is to enhance and restore the

anti-tumor immunity of TME by transferring cells from the

immunosuppressive environment to the promoting environment,

expanding in vitro, and reaching enough for infusion to patients.

Therefore, an important goal of TIL research is to determine the

composition of subtypes in the initial TIL population and prioritize

the expansion (43).

The expression receptor of lymphocytes, as well as their changes

and growth pattern, appears to be the focus of preclinical research

on TIL therapy.

An early animal and clinical study indicated that the degree of

tumor regression was significantly related to the extent of the

presence of ACT cell clones in the body’s peripheral blood. This

points out that the insufficient retention capacity of T cells may be

one of the most crucial factors restricting the efficacy of TIL. The

results showed that the telomere length of metastatic lymphocytes

was related to the persistence of T cells in vivo after adoptive

transfer (43–45).

Based on this research, young TIL therapy was developed in

2010, which is to gather lymphocytes from multiple tumor sites to

obtain the number of cells required for rapid expansion. In this way,

young TIL therapy shortened the culturing time, so that TILs with

high CD27 and CD28 expression and long telomeres were

enriched (46).

This rapid amplification method also brings significant benefits

to clinical practice. Most importantly, it allows more patients to

receive TIL treatment instead of missing the best treatment timing
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or does not meet the treatment condition due to the decreasing

quality in TIL culturing process.

Conventional TIL therapy is generally stimulated by IL-2 in

vitro, however, promoting the proliferation of TIL through other

molecules is also a domain worth concerning. One study enhanced

TIL production by targeting 4-1BB. 4-1BB is a costimulatory

molecule on activated T cells, participating in T cell proliferation

and antigen-specific cytolytic activity (47).

Other signal molecules include IL-15 and IL-21. Unlike IL-2, which

promotes effector T cell differentiation and Treg proliferation and

supports T cell activation-induced cell death (AICD), IL-15 and IL-21

induce younger, less differentiated central memory phenotypes and do

not promote AICD. IL-2 promotes the differentiation of effector T cells

and support the cell death induced by T cell activation (48, 49).

The antigen that can be recognized by T cells is not only derived

from cell cancer. It is not the only source of tumor immunogenicity.

Viral antigens are also an important source of tumor immunogenicity,

so virus-infected cancers, such as those associated with the human

tumor virus (HPV) or Epstein-Barr virus (EBV), can be triggered by T

cell-mediated immunity (50).

In cervical cancer, most current studies focus on evaluating the

prognostic values of TIL types and numbers in situ or ex vivo.

Indeed, the number and composition of TILs reflect the process of

the host immune system interacting with tumor cells and the TME,

thus indicating cancer progress and treatment outcome. These TILs

mainly consist of CD8+ and CD4+ T cells, NK cells, Tregs, and

Th17 and gd T cells. Some studies also included B cells

and macrophages.

A study aims to gain insight into cervical tissue T cell populations,

determine if there are any differences in the localization and quantity

distribution of T lymphocytes, and to evaluate their role in disease

regression or progression in the cervical neoplastic milieu. It analyzed

the location and quantity of CD8+ and CD4+ TILs in the cervical

neoplastic milieu of 72 samples using immunohistochemistry (IHC).

The patients included four cohorts: 23 HPV non-infected (HPV−)

normal cervix, 20 HPV-infected (HPV+) normal cervix, 17 HPV+ low-

grade cervical intraepithelial neoplasia (CIN), and 12HPV+ high-grade

CIN. The results showed that a low level of TILs in normal cervix and

an elevated level of TILs in CIN were present with a trend of TIL levels

increasing with increases of the grade of CIN (p < 0.0001) (51). It is

further supported by a similar study from 96 tissue section samples

(including 26 CIN1, 21 CIN2, 25 CIN3, and 24 squamous cell

carcinoma [SCC] samples) (52). Because HPV mainly infects

epithelial cells, these data suggest that CD8+ TILs are at the

frontline, fighting virus-infected cells as well as cancer cells.

A study compared lymphocytes in cervical tissues from 19 patients

with pathologically confirmed CIN and from 20 patients with normal

cervices undergoing hysterectomy for benign indications. The

percentage of CD4+ T cells was significantly depressed (p = 0.04) in

dysplastic tissue as compared to normal cervical tissue. In contrast, the

proportion of CD8+ T cells was significantly increased in the dysplastic

tissue (p = 0.0001) (53). Above data clearly indicate that the higher

number and density of CD3+ and CD8+ TILs are positively associated

with the progress of cervical cancer.
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Although CD3+ TILs include a CD4+ subset, the direct evidence

of CD4+ T cell association with cancer progress is not strong. Instead,

a few studies reported that the decreased cell number of CD4+ T cells

was associated with worse long-term survival rates of cervical cancer

patients. For example, a study retrospectively analyzed 40 biopsy

samples from Chinese cervical cancer patients and found, when

considering the deaths and surviving cases as separate groups, that

the number of CD4+ T cells was significantly lower in patients who

died compared with those who survived (26.33 ± 11.80 versus 47.79 ±

38.18, p = 0.023) (1).

Clinical studies have shown that patients with HPV-positive

head and neck squamous cell carcinoma who develop HPV-positive

show increased responses against PD-1 and anti-PD-L1 inhibitors,

pemulizumab, and dewarumab, respectively, compared with HPV-

negative patients. In addition, increased efficacy of ICB was noted in

patients with EBV and HIV-positive metastatic gastric cancer (15).

3.2.1.4 Combination with immunocheckpoint

Immune checkpoints are molecules expressed on immune cells

(such as T or B cells and APCs) that are used to negatively modulate

the immune response (54). The existence and high expression of

these molecules are important indicators of immune function

inhibition. For cervical cancer, the expression of PD-1/PD-L1 is

most related to HPV-related cancers, especially HPV16+and

HPV18+cases. The reason is that the HPV E5/E6/E7 oncogene

activates multiple signal pathways and finally regulates the PD-1/

PD-L1 axis to promote HPV-induced cervical cancer. Both create

opportunities for HPV infection and subsequent canceration by

inhibiting immune function.

As a result, although tumor-infiltrating lymphocytes exist in

tumors and can specifically identify tumors, they cannot inhibit the

deterioration of cancer in the human body, because they are in an

immunosuppressive environment. Although TIL therapy has

expanded lymphocytes in vitro, these immune cells are still affected

by the immunosuppression brought by the immune checkpoint,

resulting in a great negative impact on the efficacy of TIL. If the

checkpoint is suppressed before inputting TILs again, it will help TILs

functions. At present, some researchers have used PD-1 inhibitors to

assist TIL therapy to enhance the cytotoxicity of TILs. In addition,

there are also attempts to silence the immune checkpoints by genetic

engineering (55).

Immune checkpoint inhibitors (ICB) have long been an

effective drug in solid tumor treatment and are most effective in

melanoma treatment. According to an article in 2016, the response

rate for combination therapy with anti-PD-1 and anti-CTLA4 for

melanoma can reach 60% (56).

Immune checkpoint inhibitors (ICBs) have been used in cancer

treatment for more than 10 years and are currently more practical

than TIL ACT due to their widespread availability and availability.

TIL ACT is a second-line treatment for patients who do not respond

well to ICB therapy or who develop drug resistance. This approach

has been shown to have objective and long-lasting effects, according

to the literature, achieved in 20%-30% of patients (57–59).

For cervical cancer, a review article systemically analyzed

126 published papers and concluded that the expression of PD-1/
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PD-L1 was associated with HPV-related cancers, especially with

HPV16+ and HPV18+ cases. The reason was that HPV E5/E6/E7

oncogenes activated multiple signaling pathways, including

phosphatidylinositol 3-kinase (PI3K)/AKT, mitogen-activated

protein kinase (MAPK), HIF1a, STAT3/nuclear factor kB (NF-

kB), and microRNAs, which regulated the PD-1/PD-L1 axis to

promote HPV-induced cervical carcinogenesis. The PD-1/PD-L1

axis then played a crucial role in immune escape of cervical cancer

through inhibition of host immune response creating an “immune-

privileged” site for initial viral infection and subsequent adaptive

immune resistance (8). This analysis provides a rationale for

therapeutic blockade of the PD-1/PD-L1 axis for HPV+ cancers.

A study investigated if immunotherapy against human

papilloma virus (HPV) using a viral gene delivery platform to

immunize against HPV 16 genes E6 and E7 (Ad5 [E1-, E2b-]-E6/

E7) combined with programmed death-ligand 1 (PD-1) blockade

could increase therapeutic effect as compared to the vaccine alone.

Ad5 [E1-, E2b-]-E6/E7 as a single agent induced HPV-E6/E7 cell-

mediated immunity. Immunotherapy using Ad5 [E1-, E2b-]-E6/E7

resulted in clearance of small tumors and an overall survival benefit

in mice with larger established tumors. When immunotherapy was

combined with immune checkpoint blockade, an increased level of

anti-tumor activity against large tumors was observed. Analysis of

the tumor microenvironment in Ad5 [E1-, E2b-]-E6/E7 treated

mice revealed elevated CD8(+) tumor infiltrating lymphocytes

(TILs); however, we observed induction of suppressive

mechanisms such as programmed death-ligand 1 (PD-L1)

expression on tumor cells and an increase in PD-1(+) TILs.

When Ad5 [E1-, E2b-]-E6/E7 immunotherapy was combined

with anti-PD-1 antibody, we observed CD8(+) TILs at the same

level but a reduction in tumor PD-L1 expression on tumor cells and

reduced PD-1(+) TILs providing a mechanism by which

combination therapy favors a tumor clearance state and a

rationale for pairing antigen-specific vaccines with checkpoint

inhibitors in future clinical trials (60).

These support that inhibition of immune checkpoints such as

PD-1 and its ligand PD-L1 may benefit immunotherapy of cervical

cancer and the combination of TILs with ICB is a very promising

research field.

3.2.2 TCR-T
At present, TCR-T therapy has demonstrated clinical activity in

melanoma and synovial cell sarcoma (61).

Consequently, the potential of TCR-T dramatically outweighs

CAR-T in treating solid tumors. However, the utility of TCR-T in

treating solid tumors is progressing slowly. Currently, there is no

market approval for any TCR-T products. Several clinical trials are

still ongoing (62).

One of the main factors limiting the use of TCR-T in cervical

cancer is that because TCR-T acquires the ability to specifically

recognize cancer cells through gene editing, researchers need to first

look for effective targets that the corresponding cancer cells have. In

turn, TCR-T cells can have the corresponding ability (63).

Therefore, the current research focuses on finding effective

targets and testing their effectiveness in preclinical experiments.
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There are some promising results: in a study in 2018, researchers

found HPV-16 E7 specific HLA-A * 02:01-restrictive TCR from

cervical biopsy of a woman with cervical intraepithelial neoplasia.

This TCR shows high functional affinity and has CD8 co receptor

independent tumor targeting. TCR transduced human T cells

specifically recognize and kill HPV-16+cervical cancer and

oropharyngeal cancer cell lines and mediate the regression of

established HPV-16+human cervical cancer tumors in a mouse

model. These findings support the therapeutic potential of this

approach (32).

3.2.2.1 Clinical trails

So far, TCR based methods have shown clinical activity in the

largest range of solid tumors. Compared with CAR, TCR’s antigen

recognition system has the advantage that it can target peptides

produced by intracellular or extracellular proteins (64).

The following are target antigens for engineered T cell therapy

in solid cancers.

In a study that ended in 2017, the researchers conducted

experiments on different administration methods for a total of 12

patients in groups, and only two of six patients in one group had

partial reactions (partial reactions refer to the reduction of the sum

of the longest diameter (LD) of target lesions by at least

30%). (NCT02280811)

Another study conducted a first-in-human, phase 1 clinical trial of

T cells engineered with a T cell receptor targeting HPV-16 E7 for the

treatment of metastatic human papilloma virus-associated epithelial

cancers.The primary endpoint was maximum tolerated dose. Cell dose

was not limited by toxicity with a maximum dose of 1×1011 engineered

T cells administered. Tumor responses following treatment were

evaluated using RECIST (Response Evaluation Criteria in Solid

Tumors) guidelines. Robust tumor regression was observed with

objective clinical responses in 6 of 12 patients, including 4 of 8

patients with anti-PD-1 refractory disease. Responses included

extensive regression of bulky tumors and complete regression of

most tumors in some patients. (NCT02858310)

More relevant research will be listed in the following table.
3.2.2.2 Important studies in pre-clinical study

As mentioned earlier, E6 and E7 oncoproteins of HPV

associated epithelial carcinoma are in principle ideal targets for

immunotherapy. However, the evidence that T cells targeting these

antigens can recognize and kill HPV (+) tumor cells is limited.

Similarly, TCR-T therapy also faces similar immunosuppression

problems as TIL, so it also needs to be combined with corresponding

immune checkpoint blockers in treatment.

A Phase I trial of HPV-16 E7-oncoprotein-targeted T cell

receptor therapy, alone or in combination with the PD-1

inhibitor bloomivizumab, is currently recruiting HPV-associated

cancer patients. (NCT02858310) Research on TCR-T therapy is also

using emerging technologies. A study has established a

mathematical model to study the efficacy of engineered T cell

receptor (TCR) T cells targeting E7 antigen in treating cervical

cancer cell lines (65). Another article reported the pre-clinical

evaluation of a KK-LC-1 reactive T cell receptor (KK-LC-1 TCR),
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including in vitro tumor cell targeting, in vivo regression of

xenograft tumors, cross-reactivity studies, and evaluation of the

expression of healthy tissues and tumor antigens. This receptor

derived from tumor-infiltrating lymphocytes of cervical cancer

patients who have complete tumor response to TIL therapy (66).

In short, although the application of TCR-T therapy in cervical

cancer is still far from clinical application, the prospects are

still considerable.

Unlike TIL therapy, TCR-T therapy does not use immune

checkpoint suppressors to enhance efficacy. In clinical trials for

the treatment of melanoma, none of the TCR-T therapies used ICB.

Such as (NCT00509288) (NCT00923195). More examples are in

the Table 1.
TABLE 1 TCR-T therapy.

Type antigen Stage and
Result

Host NCT

TCR-
T

HPV-E6 Phase I/II
(completed with
results)

National
Institutes of
Health Clinical
Center, USA

NCT02280811

One patient had
SD for 6m, one
had SD for 4m

aPD1-
TCR
T

HPV-E6 Phase I
(recruiting)

Qingzhu Jia,
Chongqing,
China

NCT03578406

Enhanced SD in
combination with
anti-PD-1
therapy

TCR-
T

HPV-E7 Phase I/II
(recruiting)

National
Institutes of
Health Clinical
Center, USA

NCT02858310

TCR-
T

HPV-E7 Early Phase I
(suspended)

National
Institutes of
Health Clinical
Center, USA

NCT04476251

TCR-
T

HPV-E7 Phase I
(withdrawn)

National
Institutes of
Health Clinical
Center, USA

NCT04411134

TCR-
CD4+
T

MAGE-
A3

Phase I/II (active,
not recruiting)

National
Institutes of
Health Clinical
Center, USA

NCT02111850

One patient had
CR for > 29m

TCR-
T

MAGE-
A3

Phase I/II
(terminated)

National
Institutes of
Health Clinical
Cente, USA

NCT02153905

One patient had
PR after 6w and
12w
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3.2.3 CAR-T
3.2.3.1 Approval therapy

Adoptive T cells, including chimeric antigen receptor T cell

therapy, have been a cutting-edge approach to tumor treatment in

recent years and are considered effective and promising. At present,

CAR-T therapy is the most effective for hematological malignancies

(67, 68). For example, there are many clinical trials using CAR-T

cells targeting CD19 and BCMA, which have obtained encouraging

clinical data in the treatment of B-ALL and multiple myeloma

(69, 70).

However, CAR-T is still in the exploration stage in solid tumors.

There is no CAR-T type therapy approved for clinical use (71). The

limitation of the research is because of a lack of appropriate targets.

On the other hand, it may also be that in solid tumors, compared

with non-solid tumors, the tumor microenvironment will affect

them (72, 73).

3.2.3.2 Clinical research

An ideal antigen called CD19 exists in hematological tumors,

however, there is no known antigen with similar characteristics in

gynecologic cancers. At present, mesothelin, CA125, and folate

receptors are the most widely studied antigens in these tumor CAR-

T cell therapy trials. At present, the relevant clinical trials for the

application of CAR-T in cervical cancer are limited (NCT01583686)

(NCT04556669) (NCT03356795) and are among the few

studies. Another prospective study involving cervical cancer is

ongoing (NCT04556669). More examples are in the Table 2.

3.2.3.3 Important studies in pre-clinical study

After some studies have confirmed that many genomic changes

can be found in the cancer of CC patients, such as KRAS, PIK3CA,

TP53, and PTEN. These mutations may be targeted as

immunotherapy (74):

The application of CAR in cervical cancer and other solid

tumors focuses on finding effective specific tumor antigens. A

study published in 2022 tested placental alkaline phosphatase

(PLAP). PLAP is a shared placental and tumor-associated antigen

(TAA) that is expressed in ovarian, cervical, colorectal, and prostate

cancers but rarely expressed in normal cells. The results show that

PLAP CAR-T cells not only proliferate during co-culture with

cancer cells but also remove them outside the body. The

researchers also observed increased secretion of IL-2, granzyme

A, and IFN-g after PLAP CAR-T cells were exposed to target cells.

Therefore, it was concluded that PLAP CAR-T cells are potential

candidates for further study of cervical cancer and other solid

tumors (75).
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In another study, to improve antigenicity and reduce

transformation activity, modified HPV16 E7 (HPV16ME7) was

loaded with SOCS1 silenced dendritic cells (DC) to improve its

efficiency and targeting against cervical cancer. The CAR-T-PD1

cells activated by the generated DC were injected into the CaSki cell

tumor mouse model expressing PDL1 and HPV16 E6/E7 for in

vitro/in vivo anti-tumor activity determination. The results showed

that the gene engineering T cells activated by dendritic cells could

improve the anti-tumor efficiency and targeting (76). In another

study, the researchers designed an NKG2D CAR-T for NKG2DL.

The results proved that NKG2D CAR-T has a highly effective anti-

tumor ability against NKG2DL-positive cervical cancer cell lines in

vitro (67).

The current research aims to find specific antigens suitable for

CAR and to test various methods to improve the efficacy of CAR-T

in solid tumors.

In terms of immune checkpoints, cervical cancer is known to

frequently detect high levels of CTLA4 and PD1/PD-L1, which are

often expressed in dendritic cells of cervical intraepithelial neoplasia

(CIN) samples (77, 78). This may be the reason for the poor efficacy

of CAR-T in cervical cancer, however, there is currently no evidence

that immune checkpoint inhibitors are beneficial for CAR-

T therapy.

The development of CAR technology in gynecological cancer is

still in its early stages. A series of studies show that the current

situation is far from satisfactory.
4 The challenges with engineered
T cells in cervical cancer

Toxicity is a top priority for any new treatment, and it is as

important as efficacy in early clinical studies and preclinical studies.

One of the most striking features of adoptive T-cell therapy is its

predictable low toxicity, while traditional radiotherapy and

chemotherapy inevitably bring damage to the human body while

treating cancer.

According to early clinical safety data, TIL therapy in ACT has a

good safety profile, and in various experiments, side effects come

from the regimen of combination administration with TIL therapy,

such as IL-2 Simultaneous chemotherapy regimen (79). These

toxicities will be observed eventually. Toxicity can be observed

immediately or with delayed onset. Almost all patients receiving

chemotherapy with nonmyeloablative lymphocytosis will experience

hemocytopenia, including neutropenia, lymphocytopenia, and long-

term inhibition of CD4 T cells (80–82). Significant toxicities
TABLE 2 CAR-T therapy.

Type antigen Stage and Result Host NCT

CAR-T Mesothelin Phase I (terminated) National Institutes of Health Clinical Center, USA NCT01583686

Only one patient had SD for > 3.5m

aPD1-CAR-T CD22 Phase I (recruiting) Fourth Hospital of Hebei Medical University, China NCT04556669

CAR-T GD2, PSMA, MUC1, Msln Phase I/II (recruiting) Shenzhen Geno-immune Medical Institute, China NCT03356795
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associated with TIL therapy itself are rare, and these reactions are

almost indistinguishable from those associated with residual IL-2

(83, 84).

In summary, TIL therapy has a variety of toxicities, most of

which are low-grade and can be managed with standard supportive

care (79).

The biggest problem with TIL therapy and even all ACT

therapies is that it is a personalized medical plan. The cell

injections that need to be imported into patients must be

produced according to individual conditions, which leads to high

costs, and more importantly, the production cycle is too long. As a

result, when cancer progresses rapidly, ACT therapy cannot control

cancer immediately. This limits the application scenarios of

TIL therapy.

Today, there is also a lack of good methods and manufacturing

practices for TIL production and automation. This makes this

therapy more expensive and time-consuming.

For TCR-T therapy, the challenge is to find a suitable target.

Some of the targets currently selected are TAAs, and although they

do have elevated expression in cancer tissue, they are expressed at

low levels in normal human tissue, so further research is needed to

determine whether this condition leads to autoimmune toxicity or

tolerance to engineered T cells.

Like the dilemma encountered by TIL therapy, because of the

mutation of neoantigen formation is different for each patient,

TCR-T treatment is customized for each patient, which makes it

difficult to develop widely applicable immunotherapy products,

resulting in a considerable cost related to TCR-T The longer

manufacturing cycle and the more complex preparation method

of TCR-T make this problem more serious than TIL.

In addition, while looking for new antigens that are widely

shared in tumor cells, such as KRAS and TP53, are already being

sought. However, in general, all aspects of research are still in a

preliminary state (85, 86). At present, the prospect of CAR-T is

quite worrying in all aspects. CAR technology lacks achievements in

the field of solid tumors, and the reasons are not clear (87).

At the same time, CAR-T also showed more toxic reactions than

other therapies, including anaphylaxis, graft versus host disease,

nervous system toxicity (including confusion, delirium, aphasia,

myoclonus, and seizures) and toxicity caused by missing target

(88, 89).
5 The future of engineered T cells in
the field of cervical cancer
At present, ACT in the treatment of cervical cancer, TILs

technology is the most promising technology, which not only has

LN-145 such as approved more mature technology, but also the

corresponding clinical and preclinical research is also the most

abundant. However, further specification of the production process

is still required to improve production efficiency and safety.

For ACT therapy, in general, future research should focus

more on:
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(1) Advancing clinical and preclinical trials for already more

mature therapies;

(2) Especially for TCR and CAR, it is necessary to find more

suitable antigen-binding sites to strengthen their

practicability;

(3) For existing therapies, the production speed should be

accelerated, the supply should be increased, and safety

should be held in terms of process and flow;

(4) Improve the activity of engineered T cells in the

tumor microenvironment. Synergistic therapy with

immunocheckpoint inhibitors or other substances can be

the direction of exploration.

(5) Explore the synergistic possibilities of ACT in other cancer

therapies available.
6 Summary

ACT therapy has brought new hope for the treatment of

reproductive system cancer, including cervical cancer, especially

TIL therapy, which has become a breakthrough therapy. TCR-T

therapy also shows a promising future. Although CAR-T therapy

seems to have less potential, its excellent performance in blood

tumors still makes it have a promising future in the field of solid

tumors, including cervical cancer.

However, ACT therapy also faces many challenges. The high cost

caused by safety, preparation efficiency, individualization, etc. still

restricts its wide application. The difficulties in selecting the

appropriate antigen, immunosuppression, and short pharmacological

duration also continue to perplex related research. At present, a series

of clinical and preclinical studies based on different models are

gradually exploring relevant issues, strengthening efficacy, reducing

adverse reactions, and exploring the prospect of combined application

with other therapies. ACT therapy has a promising future for the

treatment of cervical cancer.
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