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Research, Clayton, VIC, Australia
Here we investigate the function of the innate immune molecule protein kinase R

(PKR) in intestinal inflammation. To model a colitogenic role of PKR, we determine

the physiological response to dextran sulfate sodium (DSS) of wild-type and two

transgenic mice strains mutated to express either a kinase-dead PKR or to ablate

expression of the kinase. These experiments recognize kinase-dependent and

-independent protection from DSS-induced weight loss and inflammation, against

a kinase-dependent increase in the susceptibility to DSS-induced injury. We

propose these effects arise through PKR-dependent alteration of gut physiology,

evidenced as altered goblet cell function and changes to the gut microbiota at

homeostasis that suppresses inflammasome activity by controlling autophagy.

These findings establish that PKR functions as both a protein kinase and a

signaling molecule in instituting immune homeostasis in the gut.
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Introduction

Inflammatory bowel disease (IBD) is a heterogeneous disorder that is commonly

characterized as either ileal or colonic Crohn’s disease, or ulcerative colitis. The precise

mechanisms of how disease manifests remain to be established, but IBD is considered to be a

consequence of the loss of immune tolerance against the gut microbiota. Current anti-

inflammatory and immunosuppressive treatments provide only temporary relief and are not

universally effective. Greater mechanistic insights into gut immunity is required in order to

develop strategies to control immune pathogenesis.

The protein kinase R (PKR) is a member of the small family of eukaryotic initiation factor

alpha (eIF2a) kinases that constitute a universal stress response in eukaryotes (1). Among

this kinase family PKR is most cogently linked with immunity, as its expression is induced by

the antiviral type I and III interferons. These cytokines, particularly the type III interferons,
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are important for epithelial function and mucosal immunity (2–5).

The function of PKR in colitis is currently confused, with discordant

effects reported (6, 7). This warrants further study.

Here we reassess the role of PKR in dextran sulfate sodium (DSS)-

induced colitis using mice that are ablated for PKR expression. We

replicate experiments conducted in previous studies but investigate an

alternative mode of activity from that previously proposed, identifying a

different mechanism of PKR activity in colitis. Rather than PKR

functioning through induction of the unfolded protein response

(UPR), which is more closely associated with the related PKR-like

endoplasmic reticulum kinase (PERK), we contend that PKR promotes

gut barrier function and suppresses inflammatory pathogenesis in colitis

by controlling autophagy in goblet cells. Additionally, we test the

response of a transgenic mouse with a point mutation that disables the

kinase activity of PKR, thereby testing functions that are independent of

the kinase’s canonical control of the initiation of translation. The findings

demonstrate that PKR functions in DSS-induced pathogenesis by

suppressing the activity of inflammasomes through modulation of the

gut physiology by kinase-dependent and -independent processes. This

accords with the reported activity of another eIF2a kinase, the general

control nonderepressible 2 (GCN2) in DSS-induced colitis (8), although

this response had not been segregated from its phosphorylation of eIF2a.
These findings reinforce the importance of autophagy to promote gut

barrier function in gastric disease, particularly by supporting the function

of goblet cells.
Materials and methods

Mice

Congenic C57BL/6J mice (8-10 weeks old) were exposed to 2.5%

DSS (36-50 kDa, MP Biomedicals) in their drinking water for up to 9

days, with or without intraperitoneal injection of 2 mg/kg of CP456773

(Sigma-Aldrich) prior to DSS treatment. Separately reared wild-type

(WT), PKR-ablated (Eif2ak2-/-) and kinase-dead PKR (K271R) mice

were treated with DSS at the Hudson Institute of Medical Research in

Australia. This experiment was extended with a second cohort of

littermate WT and Eif2ak2-/- mice reared at the Learner Research

Institute in the USA. Experiments were performed according to the

Guide for the Care and Use of Laboratory Animals of the National

Institutes of Health following a protocol that was approved by the

Institutional Animal Care and Use Committee of Cleveland Clinic, or

the Australian Code of Practice following a protocol approved by the

Monash Medical Centre Animal Ethics Committee. Eif2ak2-/- and

K271R mice were produced as previously reported (9, 10). A disease

activity index (DAI) was calculated as described previously (11).
Histology

Tissues from the stomach, small intestine and colon were cut

open, rinsed with PBS, then fixed in 10% formalin for 4 hours before

embedding in paraffin. Embedded tissue was sectioned (5 mm) then

stained with: biotinylated hyaluronan-binding protein (Calbiochem-

EMD Millipore) and streptavidin-488 (Life Technologies), anti-alpha

actin 2 and alexa fluor 568 then mounted with Vectashield containing
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DAPI as previously described (11); hematoxylin and eosin (H&E);

anti-proliferating cell nuclear antigen (PCNA), -villin and -H+/K–

ATPase primary antibodies and alexa fluor 546 or 488 donkey anti-

goat or -mouse secondary antibodies (Molecular Probes); or alcian

blue/periodic acid–Schiff (PAS). Stains were detected with TSA

Fluorescence System (Perkin Elmer), imaged by Axioskop 2 plus

fluorescence microscope (Carl Zeiss) and analyzed with AxioVIson

SE64 software (Carl Zeiss) or ScanScope XT digital scanner (Leica)

and ImageScope software (Leica) and quantified from four random

images per mouse using ImageJ software (NIH). Sections were scored

blindly. Colitis was scored as previously described (11).
In situ hybridization

In situ hybridization was performed with the Falma microprobe

system as stipulated by the manufacturer (Falma). Sections were

hybridized with digoxigenin (DIG)-labeled control sense and anti-

sense RNA probes encompassing nucleotides 173 to 1091 of the open-

reading frame of the PKR gene (Eif2ak2). Sections were

immunohistochemically stained to visualize the hybridized probe

using AP-conjugated mouse monoclonal anti-DIG antibody

(Roche) and either the Fast Red or NBT/BCIP substrates for

stomach or colon tissues, respectively (ThermoFisher Scientific).

Images were captured by fluorescence microscopy.
Flow cytometry

Spleens were mashed in RPMI 1640 (SIGMA) containing 1% fetal

bovine serum (FBS), strained through a nylon filter, then washed before

staining with FAM-FLICA according to the manufacturer’s

instructions (ImmunoChemistry Technologies LLC), washed with

PBS then stained with anti-F4/80 Pacific Blue antibody (MCA497PB

Bio-Rad) and anti-Ly6G APC-Cy7 antibody (BD Biosciences), washed

with PBS and fixed in 10% formalin then visualized by BD FACSCanto

II and analyzed by Cytobank software (Cytobank Inc.)
Colon explant

Tissue pieces (0.5 cm) were cut from the proximal colon and

rinsed with PBS, then cultured in DMEM containing 1% FBS and

penicillin/streptomycin at 37°C for 24 hours. The level of tumor

necrosis factor a (TNFa) was assayed by ELISA (555268 BD

Biosciences). The cell-free supernatant (500 ml) was precipitated by

adding methanol and chloroform as previously reported (12), then

probed with anti-interleukin (IL)1b (ab9722 Abcam) and -IL18

(D046-3 MBL International) antibodies by immunoblot.
Immune fluorescence

Caspase-1 (Casp1) activity was assessed by FAM-FLICA and

FLICA-660 (No. 97 and 9122, respectively, from ImmunoChemistry

Technologies LLC or, alternatively, ThermoFisher Scientific). The

fluorescent reporter was quantitated in immune cells isolated from
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the spleen by flow cytometry or, alternatively, in tissues by confocal

microscopy after cryopreservation, sectioning (5 mm), being fixed with

10% formalin and permeabilized by methanol. The mucus layer in the

colon and goblet cells was visualized with a fluorescein-linked lectin

Ulex europaeus agglutinin-1 (UEA1) (ThermoFisher Scientific). Mucus

thickness was measured in micrographs by confocal microscopy.

Autophagic puncta were detected in fixed and permeabilized colon

tissues with a fluorescent antibody to the microtubule-associated

protein 1A/1B light chain 3B and (LC3B) (ThermoFischer Scientific).

Autophagosomes in goblet cells were scored as LCB and UEA1 positive

cells. Cells and tissues were counterstained with Hoechst 33342

(Merck) to visualize cell nuclei. Images were captured by Nikon C1

confocal microscope and analyzed by Imaris software.
Immunoblot

Protein lysates from splenic cells were harvested by RIPA buffer as

previously described (10), heat denatured in sample buffer (125 mM

Tris-HCl, pH 6.8, 4% SDS, 20% glycerol, 5% b-mercaptoethanol, 0.01%

bromophenol blue) and resolved through 10-15% SDS-polyacrylamide

gel by electrophoresis, then transferred to Immobilon-FL membrane

(Millipore). Membranes were treated with blocking buffer (LI-COR)

then probed with primary and secondary antibodies conjugated with

fluorophore, and visualized and quantified using the Odyssey Imaging

System (LI-COR). Lysates were probed with anti-IL1b, -IL18, -CASP1-
p10 (sc-514 Santa Cruz Biotechnology Inc.), anti-apoptosis-associated

speck-like protein containing a CARD (ASC) and -NOD-, LRR- and

pyrin domain-containing protein 3 (NLRP3) antibodies (AL177 and

Cryo-2, respectively, Adipogen), -eukaryotic initiation factor 2 (Eif2)

and -phospho-Eif2 Ser51) (#9722 and 119A11, respectively, Cell

Signaling Technology) and protein loading was assessed with anti-b-
actin (ab8226 Abcam) or -a-tubulin (3873 Cell Signaling) antibodies.
Affinity chromatography

To enrich the kinase domain of PKR, protein lysates of murine

fibroblasts were captured on a Hi-Trap heparin column following the

manufacturer’s protocol (GE Life Sciences). Eluted peptides were separated

by PAGE and transferred to amembrane support before being probedwith

the anti-PKR antibody D-20 (Santa Cruz Biotechnology).
Bacterial content detection in feces

DNA was extracted by the QIAmp Fast DNA Stool Mini Kit,

following the manufacturer’s protocol (QIAGEN) and 1 pg was used

with previously described primers (13) to amplify the 16s rRNA gene

of Bacteroides, Lactobacillus and Prevotella by quantitative PCR using

Applied Biosystems 7900HT systems.
Statistical analysis

The Prism software (GraphPad) was used for all statistical

analyses. Statistical significance of the differences between two
Frontiers in Immunology 03
groups was analyzed by two-way or one-way ANOVA with either

with Šidàk post-test or Tukey’s range test or, alternatively, two-tailed

and unpaired Student’s t-test. The correlation analysis was done by

one-tailed Pearson correlation test.
Results

PKR affects DSS-induced weight loss

Cohorts of congenic WT and PKR mutant mice were treated with

DSS in their drinking water and their respective weights compared.

The Eif2ak2-/- mice show significantly greater weight loss compared

to the WT animals after the second day of DSS treatment until day 6

(Figure 1A). This increased weight loss in the first five days of

exposure to DSS was not apparent in the kinase-dead K271R mice

(Figure 1B). Accordingly, PKR expression, independent of substrate

phosphorylation, is protective against DSS-induced weight loss.

These experiments were conducted on mice reared in separate

cages at the Monash Animal Research Platform at Monash University,

Victoria, Australia. The response to DSS is strongly influenced by

environmental variables, particularly differences in the microbiota. This

has been proposed as a cause of discrepancies between separate studies

that use this model of colitis. To explore this contingency, we

performed a second comparison with a limited number of WT and

Eif2ak2-/- littermate mice raised at the Animal Core, Lerner Research

Institute, Ohio, USA. These data confirm the protective function of

PKR against this insult, although there were some changes (Figure 1C).

Most conspicuously, the WT mice from the Lerner maintained their

weight throughout the experiment. Additionally, the kinetics of weight

loss in the PKR-ablated mice was delayed compared to the cohort from

the Monash (Figures 1A, C).

These data identify that PKR protects against DSS-induced weight

loss and distinguish kinase-dependent and -independent effects of

PKR, as has been previously asserted from in vitro experiments (14).
PKR affects DSS-induced tissue injury

Only modest tissue pathogenesis was evident in tissue sections of

the colon from any of the three mouse genotypes reared at the

Monash Animal Research Platform. Accordingly, the entire length

of the colon was assessed for damage by quantifying disorganized and

incomplete crypts as a percentage of the longitudinal length of the

colon (as previously described (15)). Tissues were assessed on day five

of DSS treatment, when the differential in weight was greatest between

the separate cohorts (Figure 1A). The WT animals showed increased

tissue injury compared to both the PKR-ablated and kinase-dead

(K271R) mice, although the difference between kinase-dead and WT

mice was not assessed as being significantly different (Figures 2A, B).

A quantitation of serum creatinine levels (measured at the Monash

Health Pathology), which is used as a clinical variable of colonic

injury, appears to confirm a worsened response in the WT compared

to the kinase-dead mice (Figure 2C). These data identify a

discordance between DSS-induced weight change (Figure 1) and

tissue damage in the colon, which was mediated by PKR’s kinase

activity (Figures 2A, B).
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The equivalent analysis was not conducted on the cohort from the

Lerner Research Institute, although an analysis of disease index with a

histological analysis of tissues from the colon of the mice exposed to DSS

for 9 days is shown as supplementary data (Supplementary Figure 1).
PKR limits DSS-induced inflammation in
the gut

We assessed the immune response in the DSS-treated cohort that

was reared at the Monash Animal Research Platform. There was a

modest, statistically nonsignificant, increase in the immune cell

infiltrate into colon tissues from WT mice compared to the PKR-

ablated or kinase-dead (K271R) mice (Figure 3A). However, there

were significantly lower levels of the inflammatory IL1b and IL18

cytokines in the WT compared to the PKR-ablated mice (Figure 3B).
Frontiers in Immunology 04
The PKR-K271R mice had a lower, but not statistical different, level of

these cytokines from that in the WT mice (Figure 3B). As the

modestly heightened tissue damage in the WT mice is not

accompanied by a commensurate increase in inflammatory

markers, this damage would appear to be a consequence of primary

injury by DSS, rather than being immune mediated. The data also

identify that inflammasome activity is suppressed, partly but not

entirely, by substrate phosphorylation by PKR. Notably, the

expression of the inflammasome constituents; caspase-1 (Casp1),

apoptosis-associated speck-like protein containing a CARD (Asc),

and the NOD-, LRR- and pyrin domain-containing protein 3 (Nlrp3)

was equivalent between the different mice (Supplementary Figure 2).

There was also no difference in expression of the unprocessed pro-

IL1b cytokine or the induction of the independent (of

inflammasomes) inflammatory cytokine TNFa (Figures 3C, D).

Assessment of the levels of cleaved cytokines in untreated mice
A B C

FIGURE 2

PKR kinase activity modulates DSS-induced tissue damage. The severity of colon damage of the mice reared separately at the Monash Animal Research
Platform, expressed as the percentage of the entire length of the colon in either (A) WT compared to PKR-ablated (Eif2ak2-/-) mice or (B) WT compared
to the kinase-dead PKR mice (n=6). Data collected from two independent experiments are expressed as mean ± S.E.M. and analyzed by two-way
ANOVA with Šidàk post-test on the mean between genotypes on each day. (C) Measures of the levels of creatinine in the serum of the indicated mice
(n=3). Data are expressed as mean ± S.D. and analyzed by unpaired t-test from a single experiment.p=0.023; p=0.053; p=0.0078.
A B C

FIGURE 1

PKR reduces DSS-induced weight loss. (A–C) Body weight of mice treated with 2.5% DSS in their drinking water, expressed as the percentage change
from the starting weight of: (A) Separately reared WT and PKR-ablated (Eif2ak2-/-) mice (n=19 and 13, respectively); (B) WT compared to PKR kinase-dead
(K271R) mice (n=19 and 7, respectively), and; (C) Cohoused WT and Eif2ak2-/- littermates (n=5 and 3, respectively). Data were collected from three
independent experiments and are expressed as the mean ± S.E.M. and analyzed by two-way ANOVA with Šidàk post-test on the means between
genotypes on each day.
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indicated an increase in inflammasome activity in the PKR-ablated

mice at homeostasis (Figure 3E). Correspondingly, a fluorescent

substrate reporter indicated that there was heightened Casp1

activity in the colon tissue from PKR-ablated mice compared to the

WT animals prior to treatment with DSS (Figure 3F).

These data identify that PKR represses inflammasome activity at

homeostasis and limits cytokine processing in the colon in response to

DSS treatment. The retention of much of this activity in the kinase-dead

mouse identifies partial independence from eIF2a phosphorylation.
Frontiers in Immunology 05
PKR limits DSS-induced inflammation
in neutrophils

To measure the immune response outside of the gut, we assessed

innate immune cells from the spleens of WT, PKR-ablated and the

kinase-dead mice treated with DSS for 5 days. Equivalent levels of the

leukocyte antigen lymphocyte antigen 6 complex locus G6D (Ly6G)

was apparent in the spleens of WT and Eif2ak2-/- mice at rest and this

was uniformly elevated after treatment with DSS (Figure 4A).
D

A B

E

F

C

FIGURE 3

PKR limits DSS-induced inflammasome activity in the colon. (A-F) Analysis of inflammasome activity in WT, PKR-ablated (Eif2ak2-/-) and kinase-dead
(K271R) mice. (A) Inflammatory cell infiltrates into the colons of mice treated with DSS for 5 days assessed from H&E-stained tissue sections (n=7). Data
were collected from two independent experiments. (B) Quantitation of the relative levels of cleaved IL1b and IL18 produced from colon explants of DSS-
treated mice as detected by immunoblot (n=7). Data were collected from two independent experiments. (C) Induction of pro-IL1b in colon explants
measured by immunoblot and expressed relative to WT mice (n=4). Data were collected from four independent experiments and analyzed by one-way
ANOVA with Tukey’s range test. (D) Levels of TNFa expressed from colon explant detected by ELISA (n=4). Data were collected from four independent
experiments and analyzed by one-way ANOVA with Tukey’s range test. (E) Quantitation of the relative levels of cleaved IL1b and IL18 produced from
colon explants of untreated mice as detected by immunoblot (n=7). Data were collected from two independent experiments. (F) Micrographs of colon
tissue from untreated mice stained for Casp1 activity (FLICA-660) (red) and counter stained with Hoechst to mark cell nuclei (blue). Casp1 activity is
quantitated by fluorescent confocal microscopy in the graph on the right (n=3). Data is expressed as mean ± S.E.M. and analyzed by unpaired t-test.
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Comparison of the cleavage of a Casp1 substrate reporter (YVAD) in

Ly6G-positive and adhesion G protein-coupled receptor E1 (F4/80)-

positive cells from the spleens of mice showed that DSS treatment

induced Casp1 activity in neutrophils disproportionately more in the

PKR-ablated relative to the WT mice (Figures 4B, C). This PKR-

dependent suppression of Casp1 activity was independent of eIF2a
phosphorylation, as splenic neutrophils from the WT and kinase-

dead mice demonstrated equivalent reporter activity (Figures 4D, E).

Accordingly, the heightened inflammatory response caused by

ablating PKR expression extends beyond the gastrointestinal tract.
Multiple inflammasomes are active in DSS-
induced inflammation

As PKR is controlling the activity of the inflammasomes and because

NLRP3 has been shown to be important in colitis, we treated mice with

the inhibitor CP456773 to assess the involvement of this sensor in the

response to DSS (16). WT and PKR-ablated mice were injected with

CP456773 or, as a control, the carrier solvent at days 1, 2 and 4 during the

course of 5 days of DSS treatment. This treatment diminished the weight
Frontiers in Immunology 06
loss of the PKR-ablated mice, thereby confirming a function for NLRP3

in this phenotype (Figures 5A, B). Intriguingly, treatment with CP456773

worsened the low level of DSS-induced tissue damage in the WT animal

but not in the PKR-ablated mouse (Figures 5C, D). This appears

consistent with PKR kinase activity promoting tissue damage via

suppression of the NLRP3 inflammasomes (Figures 2, 3).

The NLRP3 inhibitor further reduced the low levels of IL18 and

IL1b in colon explants from the WT animals but had no significant

effect on the relatively higher levels of these cytokines in the PKR-

ablated mice (Figures 5E, F). Accordingly, the processing of these

cytokines in the colon from Eif2ak2-/- mice is mediated by an

inflammasome constituted by a sensor protein other than NLRP3

(Figures 5E with 3B). This finding with the data showing CP456773

stabilized the weight of mice treated with DSS (Figures 5A, B) also

suggest that this alternative inflammasome is not causal of the

observed weight loss (Figures 5A, B with Figure 1). Opposing this

pattern in the colon, CP456773 reduced measures of Casp1 activity in

splenic neutrophils from PKR-ablated mice, while there was no

change in the WT mice (Figure 5G, H). Therefore, NLRP3

contributes to the inflammasome that is active in splenic

neutrophils from Eif2ak2-/- mice.
D

A B

E

C

FIGURE 4

PKR limits inflammasome activity in splenic neutrophils. (A) Detection of Ly6G+ inflammatory cells in the spleens of WT compared to PKR-ablated
(Eif2ak2-/-) mice either untreated or treated with DSS for five days. (B–E) Measures of Casp1 activity (YVAD+), quantified by flow cytometry in splenic
neutrophils (Ly6G++YVAD+) and macrophages (Mf, F4/80++YVAD+) from (B, C) the WT compared to PKR-ablated mice after 5 days of DSS treatment
(H2O, n=4 and DSS, n=5) and (D, E) WT compared to PKR-K271R kinase-dead mice assessed after the indicated day of DSS treatment (n=6). Data are
expressed as mean ± S.E.M. and analyzed by two-way ANOVA with Šidàk post-test.
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These data identi fy PKR-dependent suppress ion of

inflammasome activity and show that different sensor proteins

constitute inflammasomes in separate tissues of the DSS-treated

mice. Better maintenance of weight in CP456773-treated mice

suggests that NLRP3 participates in this phenotype, despite no

evidence of suppression of cytokines processed by inflammasome

activity in the colon. In addition, the modest increase in tissue damage

observed in the colon of CP456773-treated mice suggests that NLRP3
Frontiers in Immunology 07
is protective against DSS-induced damage. A possible cause for this

apparent altered susceptibility was investigated.
PKR affects gastrointestinal physiology

We examined the gut physiology of WT, PKR-ablated and point

mutant kinase-dead mice. Although at odds with the original
D

A B

E F

G H

C

FIGURE 5

Inhibiting NLRP3 restores control in the absence of PKR expression. (A, B) Body weights of mice treated with DSS and injected with either the NLRP3
inhibitor CP456773 or the control vehicle solute, expressed as the percentage change from the starting weight of (A) PKR-ablated (Eif2ak2-/-) or (B) WT
mice (n=6) and analyzed by two-way ANOVA with Šidàk post-test. (C, D) Measures of the effect of CP456773 on DSS-induced tissue damage, expressed
as the percentage of the entire length of the colon in either (C) PKR-ablated or (D) WT mice (n = 6) and analyzed by unpaired t-test. (E, F) Measures of
the effect of CP456773 on the relative change in the levels of mature IL1b and IL18 produced from colon explants from either (E) PKR-ablated or (F) WT
mice treated with the inhibitor (WT+Vehicle and WT+CP456773 n=3; Eif2ak2-/-+Vehicle n=4; Eif2ak2-/-+CP456773 n=5). Cytokines were assayed by
immune blot and expressed as fold induction compared to Vehicle-treated mice and analyzed by unpaired t-test. (G, H) Casp1 activity (YVAD+) in splenic
neutrophils (FLICA+Ly6G+) or macrophages (Mf, FLICA+F4/80+) from either (G) PKR-ablated or (H) WT mice treated with the NLRP3 inhibitor (n=7 and
n=8, respectively). Fluorescent probes for Casp1 activity were detected and quantitated by flow cytometry. Data are expressed as mean ± S.E.M. and
analyzed by unpaired t-test.
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description and subsequent measures (7, 9), it was reported that the

mutated Eif2ak2 locus retained expression of a truncated kinase

domain (17). Accordingly, we sought to verify the ablation of PKR

in the Eif2ak2-/- mouse. Whole cell lysates from embryonic fibroblasts

from the WT and Eif2ak2-/- mice were passed through a heparin

column to capture the putative peptide via its reported binding of

heparin (18). The removal of PKR from the Eif2ak2-/- mouse was

confirmed by probing the heparin-bound eluents with an anti-PKR

antibody specific for the kinase domain (Supplementary Figure 3).

We then confirmed expression of the Eif2ak2 transcript in the

tissues from the stomach and colon by in situ hybridization

(Figures 6A, E). Histological examination of tissue from throughout

the gastrointestinal tract of the mice suggested a difference in goblet

cells between the WT and PKR-ablated mice (Figures 6B–F). This

appeared most evident in the small intestine (Figure 6C).

Periodic acid-Schiff (PAS) staining of muco-substances supports a

slight, non-statistically significant, increase in the number of goblet

cells in the colon of PKR-ablated mice and a significant increase in the

kinase-dead mouse compared to the WT animals (Figures 7A–C).

PAS staining of colon tissue after 5 days of DSS treatment showed a

significant increase in the size of goblet cells in the Eif2ak2-/- but not

the kinase-dead or WT mice (Figures 7A-C). The goblet cell

hyperplasia detected in the kinase-dead mouse resolved after DSS

treatment (Figure 7C). Given our recognition that PKR controls

inflammasome activity with previous reports linking goblet cell

development with inflammasomes (19), we tested if there was a

correlation between the size of goblet cells and the levels of the

relevant cytokines. Figure 7D shows that the levels of IL18 (but not

IL1b) correlated with goblet cell hypertrophy.

To further assess a consequence of changes to goblet cells, we

assessed the mucus layer in the colon. Ulex europaeus agglutinin I

fluorescein (UEA1) was used to visualize gastrointestinal fucosylated

oligosaccharides. This stain detected that the mucus layer was reduced

in the WT compared to the PKR-ablated and, to a lesser extent, the

kinase-dead mice before exposure to DSS (Figure 7E). However, a

substantive induction of mucin production in response to DSS

treatment required PKR’s kinase activity (Figure 7E). Accordingly,

the kinase activity of PKR appears to alter goblet cell physiology to

promote stress-induced mucin production. This initial limitation but

subsequent promotion in gut barrier function appears to correlate

with the initial sensitivity but overall protection from DSS that was

associated with PKR’s kinase activity.

As autophagy has been established to be essential for goblet cell

function and because this response is regulated by eIF2a
phosphorylation (20–22), we assessed this catabolic process in the

different mice. Autophagy in goblet cells was assessed by probing the

autophagic marker microtubule-associated protein 1B-light chain 3

(LC3B) in UEA1-positive cells. This measure detected more

autophagic puncta in goblet cells from the PKR-ablated compared

with either the WT or kinase-dead animals at homeostasis

(Figure 7F). DSS treatment markedly induced the accumulation of

autophagosomes in all the colon tissues while maintaining the

differential between the separate genotypes (Figure 7F). It is

important to recognize that this measure of autophagosome

formation without a parallel assessment of lysozyme activity doesn’t

capture autophagic flux, and so doesn’t detect an increase or decrease

in the rate, but merely captures a change in autophagy (23).
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Together these data identify that PKR alters the function of goblet

cells in the gut, in part, by controlling autophagy. This activity is

largely but not entirely dependent on substrate phosphorylation.
PKR affects the gut flora

As the intestinal mucus layer strongly influences the microbiome,

we quantified specific microbes in the feces from WT, PKR-ablated

and kinase-dead mice. Stool DNA was purified after 5 days of DSS

treatment and used to amplify bacterial 16S rRNA sequences from the

putatively colitogenic, gram-negative species Bacteroides and

Prevotella, and the gram-positive species Lactobacillus by Q-PCR.

Although the amounts of Prevotella and Lactobacillus species were

equivalent among the three murine genotypes, Bacteroides species

were significantly reduced in PKR mutant mice compared to the WT

mice (Figure 8A). Examination of the stool from untreated mice

shows that this is a pre-existing difference (Figure 8B). Accordingly,

the levels of Bacteroides, which bind and metabolize mucins produced

by goblet cells (24), correlate with PKR-dependent effects on

mucin production.
Discussion

We identify that PKR alters gut physiology to modify the response

to DSS. Previous studies by Cao et al. and Rath et al. had showed that

ablating PKR affects DSS-induced colitis but with discordant

outcomes (6, 7). Our findings generally support those of Cao et al,

which showed that PKR is protective against the weight loss from DSS

treatment. However, in partial agreement with the findings of Rath et

al, we detected an initial increase in DSS-induced tissue damage in

mice with active PKR compared to mice that were ablated for the

kinase. Consistent with the increased susceptibility, the mucin layer in

the colon of mice expressing PKR was reduced at homeostasis.

Nonetheless, a substantive induction of mucin in response to DSS

required kinase activity and we identify that PKR altered autophagy in

goblet cells in a kinase-dependent manner. Accordingly, PKR

appeared to suppress barrier function at homeostasis but then

promoted mucin production in response to challenge. These

findings partly reconcile the previous discrepant findings and

endorses a different mechanism of action for PKR in colitis than

was asserted in the earlier studies by Cao et al. and Rath et al. Rather

than PKR functioning by the UPR, we propose PKR functions by

supporting gut barrier function via control of autophagy.
A common function for different
eIF2a kinases

Analogous to the PKR response shown here, investigations by

Ravindran et al. showed that ablating another eIF2a kinase, GCN2,

worsened weight loss in mice treated with DSS (8). This encourages

the view that there may be a conserved response between different

members of this kinase family. The response in GCN2-ablated mice

was attributed to the control of inflammasome activity, with the DSS-

induced weight loss able to be averted by also ablating inflammasome
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components or by antagonizing the related cytokine signaling. A

similar activity is identified here for PKR and treating Eif2ak2-/- mice

with an inhibitor of the NLRP3 inflammasome averted DSS-induced

weight loss. This accords with a previous report identifying NLRP3

functions in DSS-induced colitis (25, 26). Neudecker et al. showed

that, despite the benefit of the NLRP3 inhibitor, it did not reduce the

level of IL18 in the colon of DSS-treated mice. This was replicated

here, raising the question of how this inhibitor modifies the response.

Our experiments implicated inflammasome activity in neutrophils in

the response to DSS and numerous other studies support a
Frontiers in Immunology 09
contribution of neutrophils to colitis (4). However, the bone

marrow chimera experiment conducted by Cao et al. identify that

PKR function in epithelial cells is sufficient for the phenotype.

Possibly in keeping with this we identify that PKR functions in

goblet cells, which have been associated with NLRP3-dependent

pathogenesis (27).

Inflammasome activity in GCN2-ablated mice was shown to stem

from impaired autophagy in goblet cells (8). Autophagy is induced by

eIF2a phosphorylation and Ravindran et al, with others, confirmed

that mutation of the phosphoresidue of eIF2a exacerbated DSS-
D

A B

E F

C

FIGURE 6

The effect of PKR on gastrointestinal physiology. (A–F) Micrographs of histologic specimens of the stomach, small intestine and colon from the indicated
mice. (A) Tissue from the stomach probed with sense (S) and anti-sense (AS) oligonucleotides against the Eif2ak2 transcript, and (B) stained for
proliferating cell nuclear antigen (PCNA, green) and H+/K–ATPase (red) to assess cell proliferation and the parietal cells in the stomach mucosa,
respectively, and counterstained with Hoechst (blue) to detect cell nuclei. (C) Tissue from the small intestine stained with H&E or (D) fluorescent probes
against villin (red), to visualize microvilli at the brush boarder of the epithelial lining of the gut, PCNA (green) and Hoechst (blue). (E) Tissue from the
colon probed with sense and anti-sense oligonucleotides against the Eif2ak2 transcript and (F) stained with H&E to visualize the tissue structure.
Representative images are shown from three independent experiments.
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induced pathogenesis (20, 28). An earlier study had demonstrated

that conditional expression of eIF2a with a mutated phosphoresidue

in villus and crypt epithelial cells of the small and large intestine

altered the susceptibility to DSS-induced colitis (29). This furthers the

notion that the conserved activity of eIF2a kinases protect against
Frontiers in Immunology 10
DSS-induced colitis. However, our experiments with transgenic mice

that express a kinase-dead PKR identify that the response to DSS is

not entirely dependent on substrate phosphorylation. There may be

some support for this in other studies, as the effect of mutating the

phosphoresidue of eIF2a was less impactful than ablating GCN2 in
D
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FIGURE 7

PKR alters gut physiology. (A) Micrographs of histologic specimens of the colon from WT, PKR-ablated (Eif2ak2-/-) and kinase-dead (K271R) mice stained
with PAS. Representative images are shown from two independent experiments. (B, C) Quantitation of the size and number of goblet cells visualized by
PAS staining of colon from (B) WT and PKR-ablated (Eif2ak2-/-) mice (H2O n=4 and DSS n=7) or (C) WT and kinase-dead (K271R) mice, either untreated
or treated with DSS for 5 days or as indicated (H2O n=4 and DSS n=7). Data were analyzed by two-way ANOVA with Šidàk post-test. (D) Correlation
analysis between the fold induction of IL18 or IL1b and the average goblet cell size from WT and PKR-ablated (Eif2ak2-/-) mice (n=6). (E) Measures of the
relative thickness of the mucus lining as visualized with UEA1 probing of colon tissues from the indicated mice, either untreated or treated with DSS in
their drinking water for 5 days (H2O n=4 and DSS n=7). Each data point represents quantification of one field, with four to five fields assessed per
confocal image per mouse. The data were analyzed by two-way ANOVA with Šidàk post-test. (F) Measures of autophagy were made by quantitation of
LC3B puncta, identified as circular objects with a diameter of 10-70 pixels, in UEA1-positive cells from the indicated mice, either untreated or treated
with DSS in their drinking water for 5 days (H2O n=4 and DSS n=7). 2000-4000 UEA1 positive cells were scored per microscopic field using CellProfiler
software. Data are expressed as mean ± S.E.M. and analyzed by two-way ANOVA with Šidàk post-test.
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the study by Ravindran et al. (8). Also, the protective effect of type III

interferons in DSS-induced colitis was shown to be independent from

the control of translation that is expected by eIF2a phosphorylation

upon the induction of PKR expression (4). Significantly, ablating a

third eIF2a kinase, PERK, did not affect the response to DSS

treatment (8). As there is considerable evidence for the induction of

the UPR in colitis, this appears to recognize that parallel responses,

controlled by the activating transcription factor 6 or inositol-

requiring enzyme 1a (IRE1a), can compensate for the loss of

PERK independent of eIF2a phosphorylation (30, 31).
An alternative mechanism of activity for PKR

The primacy of PERK in the eIF2a-mediated UPR, with the

apparent ineffectiveness of ablating this kinase, somewhat weakens

the proposal by Cao et al. and Rath et al. that PKR impacts DSS-

induced colitis by control of the UPR. We propose an alternative

mechanism of activity by control of autophagy. Our investigations

detected an effect of PKR on goblet cell morphology and the production

of mucin, as well as the levels of microbes that metabolize mucins. This

equates with the mechanism of activity of GCN2 in DSS-induced colitis

and is consistent with a previously identified function of eIF2a kinases

in Paneth cells in the small intestine (29). Both cells are important for

establishing barrier function, modulating the microbiota and the

ensuing innate and acquired immunity (21, 24, 32). Notably,

Eif2ak2-/- murine fibroblasts have defective autophagy and the
Frontiers in Immunology 11
expression of PKR rescued the starvation-induced autophagy in

GCN2-disrupted yeast (33, 34). Accordingly, there is an established

overlap in the responses controlled by these related kinases. However,

our experiments suggest this can be separated to some extent from

eIF2a phosphorylation.

Substrate phosphorylation-independent activities of PKR have

been shown to be mediated through an association with the TNF

receptor-associated factors (TRAFs) or the heat-shock protein (HSP)

70 and HSP90 (35–38). TRAFs shape signaling complexes and

regulate the stability of the protein components by acting as

adaptor molecules and ubiquitin ligases. Ablating TRAF proteins

that interact with PKR affects autophagy and induces spontaneous

colitis in mice (39–42). The HSP70 and HSP90 molecular chaperones

also control autophagy and inflammasome activity, modulate DSS-

induced colitis in mice, and have been shown to be protective in IBD

(43–48). Possibly related to our speculation that other UPR proteins

can offset the loss of PERK, IRE1a induces autophagy via TRAF2 and

is also controlled by the HSP70 and HSP90 chaperones (49–51).
Genetic difference as a cause of
discrepant findings

The alternative mechanism that we propose may account for the

discord between previous studies as the different murine strains used

by Cao et al. (7) and Rath et al. (6) vary in their autophagic responses.

The mice used by Cao et al. and ourselves were on an isogenic
A

B

FIGURE 8

PKR affects the gut flora. (A, B) The amounts of Bacteroides, Prevotella and Lactobacillus species in fecal samples from WT, PKR-ablated (Eif2ak2-/-) and
kinase-dead (K271R) mice either (A) treated with DSS or (B) untreated (n=4). The quantities of bacteria were assessed by Q-PCR amplification of species-
specific 16S rRNA and are expressed as fold induction of bacterial content compared to WT mice. The data are expressed as mean ± S.E.M. and analyzed
by one-way ANOVA with Tukey’s range test.
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C57BL6/J background, while those used in the study by Rath et al.

were on a mixed 129/terSv/BALB/C background. Autophagy is

impaired in the BALB/C relative to the C57BL6/J strain (52–55).

Among the consequences of this impairment is that DSS-induced

damage to mitochondria would be predicted to accumulate through

reduced mitophagy. This activates innate immune sensors, including

PKR, that could cause the opposing activity that was reported (6, 55,

56). In addition to this defect in the BALB/C strain, the 129/terSv

background is deleted for caspase-11 expression (57). Caspase-11 is

protective in the context of DSS-induced colitis (58, 59), partly as a

result of an autophagy-based secretory pathway for IL1b and IL18

(60–62). As the expression of caspase-11 is induced by PKR, through

both eIF2a phosphorylation and kinase-independent signaling (14,

63–65), PKR expression would compound caspase-11-dependent

differences in the responses of C57BL6/J and 129/terSv mice.
Relevance for IBD

Autophagy is important in gastric function, particularly by

supporting the function of secretory cells (66). Accordingly, PKR

activity might be elicited to fortify gut barrier function and dampen

immune pathogenesis in IBD. Type I and III interferons, which induce

PKR expression and autophagy as well as suppressing inflammasome

activity, are protective of DSS-induced colitis in mice (4, 5, 67, 68) and

so might be trialled as a treatment for IBD. Notably, the more limited

expression of the receptors for type III interferons mean that these

cytokines are less prone to the contraindications of type I interferons

(69, 70). The identification of kinase-substrate-independent activity in

this study suggests therapeutic targets that would not induce the

proteostasis that is induced by EIF2a phosphorylation. However,

additional experiments are required to identify these targets.

Inflammasome inhibitors have been suggested as potential therapies

for immune pathogenesis. However, this is complicated by the positive

functions of inflammasomes in gut immunity and wound healing that

narrows the treatment window. Limiting inflammasome activity via

autophagy may provide greater latitude with the broader benefits of

cellular quality control. Towards this, autophagic inducers such as

rapamycin and resveratrol have been shown to be beneficial in

experimentally induced colitis. Other molecules that promote

chaperone-mediated autophagy have shown promise in different

diseases that share the pathogenic axis of deficient autophagy with

elevated inflammasome activity that we propose as an etiology in IBD.
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SUPPLEMENTARY FIGURE 1

PKR-dependent pathogenesis in response to DSS. (A, B) Micrographs of
histological specimens of colon tissue from WT and PKR-ablated (Eif2ak2-/-)

littermate mice from the Lerner Research Institute after 9 days of DSS
treatment. Tissues are stained with a actin 2 (red), hyaluronic acid binding

protein (green) and counterstained with DAPI (blue) in the upper panels and
H&E in the lower panels. The PKR-ablated mice appear to display submucosae

swelling compared to their WT littermates before treatment, suggesting a low

level of basal inflammation (indicated by arrows). (C)Colitis scoring as a collated
measure of submucosal swelling and angiogenesis below the expanded

muscularis mucosae (visualized in red) and elevated hyaluronan deposition
(visualized in green) in the upper panels and corruption of the rectal fold
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1106737/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1106737/full#supplementary-material
https://doi.org/10.3389/fimmu.2023.1106737
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yim et al. 10.3389/fimmu.2023.1106737
structure and loss of epithelial cells and crypts (visualized by H&E staining).
(D) Calculation of the disease activity index (DAI) in mice treated with DSS.

SUPPLEMENTARY FIGURE 2

A comparison of proteins between the different PKR genotypes. Immunoblots

comparing the relative expression of the indicated proteins between spleen
cells from mice either untreated of treated with DSS (n=3) (Eif2ak2-/- and PKR-

K271R symbolized as -/- and KR, respectively). Representative images from

three independent experiments are shown.
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SUPPLEMENTARY FIGURE 3

Confirmation of PKRs ablation in Eif2ak2-/- cells. An immunoblot with an anti-
PKR antibody detecting PKR in whole-cell lysates and peptides captured with a

heparin column from embryonic fibroblasts isolated from WT or the Eif2ak2-/-

mice reported by Yang et al. (9) (on left) and the Coomassie-stained resolving

gel after electrophoretic transfer to demonstrate the relative peptide levels (on

right). The full-length PKR has been cleaved during this process so that the
truncated kinase domain is the principal peptide detected in the WT lysates,

while no PKR peptide is detected in the Eif2ak2-/- lysates.
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