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Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial

inflammation, pannus formation, and bone and cartilage damage. It has a high

disability rate. The hypoxic microenvironment of RA joints can cause reactive

oxygen species (ROS) accumulation and mitochondrial damage, which not only

affect the metabolic processes of immune cells and pathological changes in

fibroblastic synovial cells but also upregulate the expression of several

inflammatory pathways, ultimately promoting inflammation. Additionally, ROS

and mitochondrial damage are involved in angiogenesis and bone destruction,

thereby accelerating RA progression. In this review, we highlighted the effects of

ROS accumulation and mitochondrial damage on inflammatory response,

angiogenesis, bone and cartilage damage in RA. Additionally, we summarized

therapies that target ROS or mitochondria to relieve RA symptoms and discuss the

gaps in research and existing controversies, hoping to provide new ideas for

research in this area and insights for targeted drug development in RA.

KEYWORDS
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1 Introduction

Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial

inflammation and pannus, bone, and cartilage damage. It has a global prevalence of

approximately 0.5–1% and occurs more commonly in women than in men (1). Genetics is

a key factor in the development of RA, and sex, smoking, and environmental factors influence

the development of RA (2). In RA, permanent T-cell and monocyte-mediated synovial

inflammation are the underlying cause of disease progression. Pannus is a characteristic

pathological product of RA, with tumor-like properties that drive synovial proliferation and
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bone erosion, which can eventually lead to disability and seriously

affect patients’ quality of life (3). The onset of RA involves not only

the joints but also cardiovascular disease and interstitial lung disease,

which are serious complications that result in a shorter life expectancy

in patients with RA (4, 5). Mitochondria are an important source of

reactive oxygen species (ROS) within most mammalian cells.

However, ROS accumulation may activate mitochondrial

permeability transition pore (mPTP) and inner membrane anion

channel (IMAC) opening. Longer mPTP openings may release a burst

of ROS, which contributes to mitochondrial damage (6). ROS and

mitochondrial damage are inextricably linked to several key

pathological processes in RA (7–10), and the regulation of

mitochondrial function, clearance of ROS, and alleviation of

oxidative stress are currently popular targets for RA treatment (11,

12). In this review, we describe the role of ROS and mitochondrial

damage in the major pathological changes that occur in RA,

summarize the drugs targeting ROS or mitochondria for RA

treatment, and suggest their relatively weakly studied but value-rich

directions in RA.
2 ROS and mitochondrial damage in RA

Mitochondria are organelles with a bilayer membrane structure

that supply the organism with adenosine triphosphate mainly

through the oxidative phosphorylation process. This process

comprises five mitochondrial respiratory chain enzyme complexes;

complexes I–IV constitute the electron transport chain, and complex

V is ATP synthase (13). The electron transport chain oxidizes

nicotinamide adenine dinucleotide and flavin adenine dinucleotide

produced by glycolysis and the tricarboxylic acid (TCA) cycle and

pumps protons out of the mitochondrial inner membrane to produce

a proton gradient. Thus, mitochondria can transfer electrons and

regulate the body’s oxidation/reduction (redox) reactions (14). ROS

mainly include free radicals, such as superoxide anions (O−
2 ) and

hydroxyl radicals (OH-), and non-radical oxidants, such as hydrogen

peroxide (H2O2) and singlet oxygen (1O2) (15). ROS are mainly

derived from the process of electron transfer from the mitochondrial

electron transport chain complex to O2, with complexes I and II

producing O−
2 in the mitochondrial matrix and complex III producing

O−
2 in the matrix and membrane interstitium, which is the precursor

of most ROS. O−
2 in the mitochondrial matrix is converted to H2O2 by

manganese superoxide dismutase, and copper- and zinc-containing

superoxide dismutase mainly converts O−
2 in the membrane

interstitium and cytoplasm, which is eventually catabolized to H2O.

Under normal conditions, ROS production and elimination are

balanced and play a role in promoting immunity and regulating the

cell cycle (16).

Redox homeostasis is determined by the balance between ROS

generation and ROS quenching capacity. When the equilibrium is

tilted toward ROS production, conditions are created for oxidative

stress. Mild ROS cumulation can cause oxidation of essential

mitochondrial components; in extreme cases, it can irreversibly

cause mitochondrial damage. Cardiolipin (CL) is a dimeric

phospholipid with a high content of unsaturated fatty acids mainly
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distributed in the inner mitochondrial membrane. CL is particularly

prone to ROS-induced oxidative attacks. Oxidized CL redistributes

from the inner mitochondrial membrane to the outer membrane (17,

18). The accumulation of oxidized CL on the OMM results in mPTP

formation. These mPTP changes result in more ROS formation,

known as “ROS-induced ROS release” (RIRR), and cause an

oxidative stress response (6). In fact, mitochondria-derived ROS

can self-destruct mitochondria. ROS in the matrix can cause

oxidative damage to mtDNA, leading to mutation of mtDNA,

inhibition of mitochondrial aerobic respiration, reduction of ATP

production, and disruption of the mitochondrial membrane potential

(DYm). These changes eventually lead to mitochondrial

depolarization. Recent studies have shown that persistent deletion

of mtDNA leads to irreversible mitochondrial damage (19). Studies

have shown that glutathione (GSH) peroxidase 4 inhibitor (RSL3)

induces high ROS expression in mouse embryonic fibroblasts,

enhanced mitochondrial fragmentation, mitochondrial membrane

potential loss, reduced mitochondrial respiration, and ROS

scavenger mitoquinone (MitoQ)-preserved mitochondrial integrity

and function (20) (Figure 1).

In patients with RA, tPO2 in the joint cavity is significantly lower

than that in normal tissues (21), and joint cavity hypoxia is the

underlying condition for ROS accumulation and mitochondrial

damage in synovial tissue (22). ROS have a strong correlation with

the level of disease activity in patients with RA. They are positively

correlated with C-reactive protein (CRP) and anti-cyclic peptide-

containing citrulline levels in patients’ blood and can be used as an

indirect assessment indicator of the degree of synovial inflammation

in patients with RA (23–26). Previous studies have reported that 18

mitochondria-related proteins were upregulated and four proteins

were downregulated in patients with RA, with significant mtDNA

damage and reduced mitochondrial membrane potential, superoxide,

and cellular ATP levels. These findings indicate that mitochondrial

damage plays an important role in RA (27–29). In fact, ROS can

modulate immune cell function and activation processes (30, 31).

Mitochondria affect their cell cycle and inflammation tendency by

adjusting metabolism or cell death and participate in RA

inflammation (32, 33). Fibroblast-like synoviocytes (FLS) are the

key effector cells in RA inflammation. ROS and mitochondrial

damage regulate FLS proliferation, invasion, and production of

inflammatory factors and can affect FLS survival by affecting

apoptosis, autophagy, and other processes mediated by FLS (34).

ROS can cause mtDNA accumulation in the cytoplasm and in turn

act as pathogen-associated molecular patterns (PAMPs) to activate

multiple inflammatory pathways and mediate inflammatory

responses (19). In synovial tissue, ROS promote pannus formation

by inducing angiogenesis and angiogenesis by upregulating HIF,

VEGF, and Notch expression (35–37). Changes in mitochondrial

membrane proteins and abnormal mitochondrial respiration affect

this process (38). Besides, due to the different responsiveness of

osteoclasts and osteoblasts to ROS, ROS induce the differentiation

and activation of osteoclasts and mitochondrial damage and

apoptosis of osteoblasts. This favors the balance toward the process

of bone resorption, causing bone destruction, while ROS affect the

release of MMPs and activity of chondrocytes, exacerbating cartilage
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damage (39–41). Therefore, both ROS and mitochondrial damage are

involved in the development of RA (42, 43). In a randomized

controlled trial, Yoga was shown to enhance mitochondrial quality,

reduce oxidative stress marker production, and improve the Disease

Activity Score-Erythrocyte Sedimentation Rate and Health

Assessment Questionnaire-Disability Index scores in patients with

RA, which may be a beneficial adjunct to training for RA (44).
3 Role of ROS and mitochondrial
damage in RA inflammation

Synovial inflammatory response is the central mechanism of RA

lesions and main factor leading to pannus (45, 46) and cartilage

destruction (47, 48). The subsynovial and lining layers are altered in

patients with RA, and T-cells, B cells, and dendritic cells are widely

distributed in the subsynovial region (49). They drive synovial

inflammation together (50, 51). The synovial lining in RA is

dominated by synovial macrophages and FLSs, which are highly

activated and produce a large number of pro-inflammatory factors,

chemokines, and growth factors (52). These factors can activate FLSs

and mediate proliferation, anti-apoptosis, erosion, migration, and

other pathological behaviors (53, 54). Mitochondrial damage and

oxidative stress can affect immune cell metabolic processes

and promote inflammatory behavior (55, 56). Additionally, ROS

and the products of mitochondrial damage are good activators of

inflammatory response.
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3.1 Regulation of immune cell function

3.1.1 T cell
In RA, immune cells function abnormally, producing a large

number of inflammatory factors, such as tumor necrosis factor

(TNF)-a, interleukin (IL)-6, and IL-17, which are distributed in

clusters in the diseased joints, causing an inflammatory storm (57–

59). Mitochondria-derived ROS assist in antigen presentation and are

important regulators of the T-cell cycle and function (30, 60). Studies

have shown that ROS promote Th17 differentiation and increase IL-

17 production (61). The use of ROS scavengers significantly inhibits

Th17 differentiation (62). The IEX-1 gene plays a key role in this

process, and IEX-1 overexpression significantly inhibits mtROS

production. Collagen-induced arthritis (CIA) mice with knocked-

out IEX-1 have higher amounts of Th17 and exhibit more severe joint

inflammation (63). Additionally, hypoxia not only induces ROS

accumulation but also induces high expression of HIF-1a (64).

Hyperbaric oxygen therapy reduces the levels of IL-17a, CRP, and

rheumatoid factor in CIA mice by regulating the expression of HIF-

1a and promotes the differentiation of Tregs, alleviating oxidative

stress and inflammatory response (65). CD3+ T-cells and CD68

macrophages cultured in a hypoxic environment exhibit a stronger

inflammatory response (21), confirming the critical role of hypoxia in

immune inflammation in RA (27). The hypoxic environment in the

RA joint cavity leads to altered immune cell metabolism, impaired

oxidative phosphorylation processes, and significantly increased

aerobic glycolytic activity in organisms with RA (66–68). This
FIGURE 1

The mitochondrial respiratory chain complex is the main site for ROS production. ROS can be catalyzed as H2O2 by MnSOD or Cu/ZnSOD, and ROS
accumulation causes mtDNA damage and leakage into the cytoplasm through mPTP and VDAC channels. VDAC, voltage-dependent anion channel.
mPTP, mitochondrial permeability transition pore. ROS, reactive oxygen species. SOD, superoxide dismutase; IMM, inner mitochondrial membrane; IMS,
intermembrane space; OMM, mitochondrial outer membrane. By Figdraw.
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process causes lactate accumulation and promotes the inflammatory

behavior of immune cells (69, 70). T-cells in RA prefer the glycolytic

pathway to break down glucose into ATP; however, the underlying

mechanism remains unknown, and its relationship with ROS is not

yet clear (71, 72). Indeed, the role of ROS in T-cells remains

paradoxical, as ROS can activate the expression of nuclear factor of

activated T-cells (NFAT) and induce c-MYC transcription,

contributing to T-cell activation (73). The accumulation of ROS

leads to the upregulation of GSH expression due to the presence of

an oxidative coordination system. GSH can inhibit NFAT and MYC

activation, whereas GSH production protects the integrity of T-cell

metabolism (74).

In RA, reduced mitochondrial DNA biostability and mtDNA

leakage into the cytoplasm due to the lack of DNA repair nuclease

(MRE11A) increase the pro-inflammatory tendency of T-cells,

whereas upregulation of MRE11A expression reduces mitochondrial

damage and has an inhibitory effect on T-cell scorching and immune

inflammation (32, 75). The expression of malondialdehyde (MDA)

H2O2 was significantly increased in the paw tissue of CIA mice, and

intervention with curarelinone, the active ingredient of bitter ginseng,

significantly inhibited oxidative damage and decreased the

phosphorylation levels of signal transducer and activator of

transcription (STAT)1, STAT3, and ratio of Th1 and Th17 cells in

lymph nodes (62). Yun et al. (76) used rosmarinic acid intervention to

induce cytochrome C release from the mitochondria and induce

apoptosis in activated T-cell subsets in patients with RA by blocking

mitochondrial depolarization. Mesenchymal stem cells (MSCs) have

potential in RA treatment (77, 78). Th17 cells co-cultured with bone

marrow-derived MSCs (BM-MSCs) could reduce TNF-a and IL-17

production and restore T-cell oxidative phosphorylation activity in a

contact-dependent manner through a mechanism related to

mitochondrial transfer. Th17 cells could reduce IL-17 production

through the uptake of healthy mitochondria in BM-MSCs with

immunomodulatory effects. RA-synovium-derived MSCs have

impaired mitochondrial transfer to Th17 cells, which may be a key

reason for the persistent inflammatory response in RA synovial

tissues (79, 80). Furthermore, mitochondrial transfer treatment

corrects cellular metabolic defects, increases ATP production, and

decreases ROS levels. Therefore, mitochondrial transfer has

therapeutic potential in regulating immune cell function in RA

(81–83).

3.1.2 B cell
B cells play an important role in the immune response to RA. On

the one hand, B cells can produce autoantibodies, such as rheumatoid

factor (rheumatoid factor, RF) and anti-citrulline protein antibody

(ACPA), which can form immune complexes that are deposited in

joints, and promote the inflammatory process through complement

and cell activation. On the other hand, B cells, as potent antigen

presenting cells (APC), activate T cells through the expression of co-

stimulatory molecules (84). B cell depletion therapy highlights some

advantages in RA therapy. Rituximab (RTX) is a human-mouse

chimeric monoclonal antibody targeting the B cell-specific antigen,

CD20, that induces B cell death through antibody-dependent

cytotoxicity and phagocytosis mediated by Fc receptor g. In anti-

TNF inadequate responder patients with RA, RTX can reduce the

levels of ESR, CRP, and RF, and improve clinical symptoms (85).
Frontiers in Immunology 04
However, the therapeutic effect of RTX is seemingly limited by the

number of B cells in the synovial tissue.

BCR signaling is a critical step in controlling B cell maturation

and differentiation. Endogenous ROS can regulate the level of BCR

signaling through a reversible inhibition of protein tyrosine

phosphatase activity. This process is associated with a reduced

activation threshold of the spleen tyrosine kinase (SYK) (86),

removing ROS by a scavenger, N-acetylcysteine, and resulting in

impaired BCR-induced activation (87). ROS affects the proliferation

of B cells and participates in the CD47-mediated G1 phase arrest of B

cells, and clearing ROS can effectively eliminate this response (31).

Additionally, the fate of B cells is greatly correlated with

mitochondrial function. According to studies, mitochondrial mass

and membrane potential were significantly higher in B cells of class-

switch recombination (CSR) type, whereas B cells of plasma cell

differentiation (PCD) type showed a decrease in mitochondrial mass

and membrane potential (33). New studies have revealed that

mitochondrial fission factor can specifically bind to TRAF 3 to

regulate the progression of B cell apoptosis (88). These studies

confirmed the association between ROS and mitochondria and B

cells. In a mouse model of RA, ROS mediated the tolerance of B cells

to autoantigens, and the mutated NCF 1 gene caused ROS deficiency,

disrupting resistance to arthritis (89).

3.1.3 Neutrophil
Neutrophils represent about 60% of the total leukocytes. They are

the first cells to migrate to the site of inflammation and infection.

Neutrophils exhibit multifunctional heterogeneity in orchestrating

adaptive immune responses. Through exudation, neutrophils migrate

from the bloodstream to the involved tissues and release degrading

enzymes and ROS to play a cytotoxic role during infection (90).

Evidence suggests that neutrophil extracellular trap (NET),

peptidylarginine deiminase (PAD) activation, and citrullinated

peptide generation are the crux of RA pathogenesis. Activated

neutrophils release PAD enzymes that promote citrullination of

synovial tissue. Recognition of a citrullinated peptide by MHC II

promotes T cell activation and autoantibody production. Neutrophils

accumulate heavily in RA synovial fluid and synovial tissue, and RA-

FLS have the ability to internalize NET-associated citrullinated

peptides, acquire antigen-presenting cells (APC), and present them

to CD4+ T cells to induce an autoimmune response (91).

The level of neutrophil ROS in the synovial tissue of patients with

RA is significantly higher than that in patients with other forms of

arthritis. The ROS produced by neutrophil degranulation may affect

the degree of oxidative stress in RA (92). A clinical study observed an

increase in the intracellular and mitochondrial oxidative stress and

decreased antioxidant enzymes. The intracellular level of ROS in

polymorphonuclear neutrophils (PMNs) were positively correlated

with inflammatory response and disease severity (93). Furthermore,

RA synovial tissue highly expressed neutrophil chemokines and ROS.

They lost their migratory properties and remained resident in joints

to cause inflammation and bone destruction by recruiting and

activating immune cells (94). In RA, neutrophils form a vicious

cycle with oxidative stress and inflammation. The proinflammatory

microenvironment in RA synovial tissue combined with high

concentrations of ROS has been shown to jointly induce

neutrophils to neutrophil-dendritic (N-DC) differentiation and
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show more ROS generation and inflammation tendency (95).

Methotrexate reduces the expression of ROS, CD177, and CD11b in

circulating neutrophils of patients with RA, which may be one of the

mechanisms underlying its treatment of RA (96). mitochondrial

formyl peptides (mtNFPs) is one of the key molecular patterns

associated with mitochondrial damage, with increased circulating

mtNFPs in RA patients, associated with disease activity.mtNFPs

Neutrophil activation can be induced via formyl peptide receptor 1

(FPR 1) (97).Plastoquinonyl-Decyl-triphenylphosphonium bromide

(SkQ1), an antioxidant targeting mitochondria, continuously removes

ROS from mitochondria and protects cardiolipin on the inner

mitochondrial membrane from oxidisal damage. SkQ1 intervention

improved arthritis index and pathological injury severity in RA rats

and promoted apoptosis of neutrophils in vitro. This mechanism may

be one of the mechanisms by which SkQ1 exerts its pharmacological

activity (98).
3.2 Modulation of synovial
pathological behavior

RA-FLSs have a distinctly aggressive nature; its cause is related

to synovial inflammatory stimulation and epigenetic modifications

(99, 100). The hypoxic environment of synovial tissue and

mitochondrial damage are responsible for synovial inflammation

and oxidative DNA damage, which increase the aggressiveness of

FLSs (101). Microsatellite instability was reportedly significantly

higher in RA synovial tissues than in osteoarthritis (OA) synovial

tissues, indicating a decreased DNA mismatch repair (MMR)

capacity and severe DNA damage. Oxidative stress can

downregulate the DNA MMR system in RA-FLSs by inhibiting

hMSH6. The oxidative stress environment can interfere with the

repair process of single-base mutations and DNA damage by

inhibiting hMSH6 (102, 103), and mutations in genes, such as

P53 and LBH, can lead to pathological behaviors, such as invasion

and proliferation of RA-FLSs (104, 105). ROS accumulation leads

to metabolic abnormalities in RA-FLSs, with decreased

mitochondrial oxidative phosphorylation and ATP reserve

capacity but increased glycolytic activity in RA-FLSs, promoting

RA synovial inflammation (106). High expression of HIF-2a in RA

joints induces the secretion of multiple chemokines, promotes FLS

migration and invasion, induces pannus formation, and aggravates

bone destruction (107, 108). Additionally, ROS and HIF-2a can

enhance the migration of RA-FLSs by regulating CD70 expression,

whereas reduced oxidative damage can inhibit its migration (109).

The level of mtROS in Treg cells of patients with RA increases with

disease activity, and peripheral blood mononuclear cells (PBMCs)

cultured with ROS inhibitors significantly reduce RA-FLS

inflammation (110). This appears to be a possible reason for the

ozone treatment of RA (111).

ROS accumulation leads to the corresponding activation of the

Keap1/Nrf2 pathway, and Nrf2 transcribes various antioxidant

enzymes, including superoxide dismutase (SOD), heme oxygenase-1

(HO-1), and GSH. It is a key pathway in the fight against oxidative

damage (112). Knockdown of Nrf2 leads to RA-FLS activation and

promotes its proliferation (113). The intervention of RA-FLSs with

resveratrol significantly increases the expression of Nrf2 and HO-1,
Frontiers in Immunology 05
reduces the production of ROS and MDA and activation of nuclear

factor kappa-B (NF-kB) p65, inhibits the proliferation and migration

of RA-FLSs, and promotes its apoptosis (114, 115). Similarly,

mitochondrial damage plays a key role in the pathological behavior

of FLSs, and studies have shown that healthy mitochondrial transfer

inhibits LPS-induced FLS proliferation and migration and promotes

apoptosis, which can reduce the inflammatory response (80). In

contrast, inducing mitochondrial damage in normal FLSs can

promote NF-kB pathway activation and ROS production and

increase the secretion of inflammatory factors (116). Adenosine 5’-

monophosphate (AMP)-activated protein kinase (AMPK) is a key

regulatory protein of mitochondrial mass (117), and its activation

significantly inhibits the activation and proliferation of RA-FLSs

(118). In fact, the high expression of glycogen synthase-1 in RA-

FLSs can lead to the excessive accumulation of glycogen and inhibit

AMPK expression, leading to the high expression of matrix

metallopeptidase (MMP)-1, MMP-9, IL-6, and CCL-2, along with

increased proliferation and migration of FLSs. Intervention with the

AMPK-specific agonist, AICAR, blocked RA-FLS activity and

improved symptoms in CIA rats (119). AMPK can remove

damaged mitochondria by inducing mitochondrial autophagy and

regulating mitochondrial quality, which reduces ROS production

while removing damaged mitochondria. However, the effect of

mitochondrial autophagy has two sides (120, 121). On the one

hand, promoting mitophagy can inhibit multiple pathological

behaviors of FLSs and reduce the inflammatory response induced

by mtDNA and ROS (122–124). On the other hand, mitochondrial

autophagy, as a means for cells to deal with stress, may contribute to

cell survival. Inhibition of mitochondrial autophagy has been

proposed to have the ability to contribute to FLS apoptosis, and the

effects mediated by the different periods of mitochondrial autophagy

vary (125–127). Therefore, the role and mechanisms underlying

mitochondrial autophagy in RA-FLSs and RA need to be

explored further.

Lipid peroxidation caused by ROS is involved in apoptosis,

autophagy, and ferroptosis (128). However, it remains controversial

in regulating RA-FLS cell death. H2O2 reduced mitochondrial

membrane potential and increased ROS production in treated RA-

FLS and activation of caspase-3, caspase-9, and Bax to induce FLS

apoptosis, a process associated with oxidative stress-mediated

activation of macrophage stimulating 1 (Mst1) and inhibition of the

AMPK-Sirt1 signaling pathway (129). Exposure to Mitomycin C

(MMC) has been shown to increase ROS production in RA-FLS

and disrupt DY m, increasing the release of mitochondrial

cytochrome c and the ratio of Bax/Bcl-2 and inducing apoptosis in

RA-FLS (130). Therefore, ROS play a promoting role in the apoptotic

process of RA-FLS. Conversely, induction of ROS production in FLS

increases the level of cellular autophagy, thereby protecting FLS from

apoptosis (131). Interestingly, knockdown of Atg 5 promoted the

expression of RA-FLS inflammatory factors and transcriptional

activity of NF-kB, which inhibited its secretion by activation of RA-

FLS-specific autophagy (132). Ferroptosis is a type of cell death

caused by iron-dependent lipid peroxidation (133). The

mitochondrial TCA cycle and electron transport chain also

promote ferroptosis progression by acting as a major source of

cellular lipid peroxide production (134). Evidence has shown that

ferroptosis is strongly linked to the pathological process of RA, and
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that induction of FLS ferroptosis helps to delay arthritis progression

in CIA mice (135).

RA-FLSs have tumor cell-like anti-apoptotic characteristics, and

inhibition of their proliferation and migration has been the focus of

attention in RA therapy. ROS and mitochondrial damage play an

important role in the proliferation and migration of FLSs, and they

have emerged as important targets in RA therapy. Fang et al. (136)

developed an ROS-responsive berberine polymer micelle based on the

abnormal elevation of ROS in RA-FLSs, which could increase the

uptake of berberine by RA-FLSs, inhibit synovial tissue proliferation,

and attenuate the inflammatory response by recognizing ROS and

mitochondrial superoxide. The highly effective and targeted mode of

action of berberine undoubtedly provides a new direction for

RA treatment.
3.3 Activation of inflammatory pathways

ROS can disrupt mitochondrial lipid membrane integrity and lead

to mPTP abnormalities, resulting in oxidative damage and leakage of

mtDNA (137, 138). ROS and mtDNA are PAMPs that are good
Frontiers in Immunology 06
activators of several inflammatory pathways and an important bridge

between oxidative stress and inflammatory responses (139,

140) (Figure 2).

3.3.1 NLRP3 inflammasome pathway
NOD-like receptor protein (NLRP)3 is a multiprotein complex

that functions to activate IL-1b (141). It is associated with RA activity

and inflammatory responses (142, 143). Studies have shown that

tofacitinib regulates Treg/Th17 cell homeostasis by inhibiting NLRP3

inflammatory vesicle activity during RA treatment (144). ROS can

promote Th17 differentiation by activating NLRP3 (145). ROS and

mtDNA play a key role in the assembly of NLRP3 (146), and LPS-

induced inflammatory response in macrophages involves the

activation of NLRP3, a process that requires the involvement of

mtROS. The removal of mtROS using molecular hydrogen (H2)

significantly reduces NLRP3 activation and inflammatory factor

production (147). The accumulation of mtROS leads to oxidative

damage of mtDNA and formation of oxidized mitochondrial genes

(ox-mtDNA). ox-mtDNA fragments escape into the cytoplasm via

the mPTP and voltage-dependent anion channel (VDAC), which, in

turn, initiates the assembly of NLRP3. Interestingly, mtROS do not
FIGURE 2

The oxidative damage environment and ROS cause mitochondrial damage, prompting mtDNA leakage and a further increase in ROS. mtDNA is oxidized
by ROS to form ox-mtDNA, co-activating NLRP3 and prompted casape-1 maturation, activated IL-1b and IL-18. The cytoplasmic mtDNA can be
recognized by AIM2, mediating the activation of AIM2 and promoting the cleavage of casape-1, mediating the inflammatory response. By recognizing the
free mtDNA, cGAS activates the STING/NF-kB pathway in the cytoplasm.NLRP3, NOD-like receptor protein 3. IL-1b, interleukin-1b. IL-18, interleukin-18.
AIM2, Absent in melanoma-2; cGAS, cyclic GMP-AMP synthase; STING, stimulator of interferon genes; TLR9, Toll-like receptors 9; MyD88, myeloid
differentiation factor 88; TRAF6, TNF receptor associated factor 6; NF-kB, nuclear factor kappa-B. By Figdraw.
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induce VDAC oligomerization. Additionally, the escaped ox-mtDNA

are recognized by cyclic GMP-AMP synthase (cGAS)/stimulator of

interferon genes (STING) signaling and mediate the inflammatory

response in RA. A crosstalk may occur between the cGAS/STING

pathway and NLRP3 (148). In the mitochondria, the DNA

glycosylase, OGG1 (mt-OGG1), can deoxidize ox-mtDNA, thereby

maintaining mtDNA quality. mt-OGG1 overexpression significantly

reduces ox-mtDNA content in the cytoplasm and mitochondria and

inhibits NLRP3 activation (149), indicating the lack of DNA repair

capacity in PBMCs of patients with RA (150). In the future, repairing

specific DNA damage using clustered regularly interspaced short

palindromic repeats (CRISPR) technology may produce a cure for

patients with RA (151).

Additionally, NLRP3 is an important protein in mediating cell

pyroptosis. Caspase-1 is a key effector protein of NLRP3. Activated

caspase-1 enables the N-terminal sequence of cleaved gasdermin D

(GSDMD) to bind to the cell membrane to produce membrane pores,

leading to cell pyroptosis and release of a large number of

inflammatory factors (152). Effectively, the GSDMD-mediated

pyroptosis process promotes the release of mtDNA. Gasdermin

targeted at the plasma membrane promotes mitochondrial collapse

and leads to the initial accumulation of mtDNA in the cytosol (153).

In a study, ROS promoted the progression of pyroptosis mediated by

NLRP 3. Oxidative stress resulted in the oxidation of four amino acid

residues of GSDMD in macrophages and significantly improved the

cutting efficiency of caspase-1 on GSDMD (154). In RA-FLS, ROS can

increase the level of caspase-1 by activating G protein-coupled

receptor kinase 2 (GRK 2)/HIF-1a/NLRP 3, increase the cleavage

of GSDMD, and promote the pyroptosis of FLS. Using monomeric

derivatives of paeoniflorin (MDP) or removing ROS can reduce the

phosphorylation of GRK 2 and inhibit FLS pyroptosis (155).

NLRP3 has now become a focus in RA research, NLRP3

inhibitors highlight the therapeutic potential. MCC950 is a small-

molecule inhibitor targeting NLRP3. MCC950 intervention in CIA

mice inhibited NLRP3 activation in the synovium, reduced the

production of IL-1b, and alleviated joint inflammation and bone

destruction (143). The JAK pathway inhibitor, tofacitinib, regulated

the Treg/Th17 cell ratio in CIA mice and suppressed NLRP3

activation, whereas administration of NLRP3 abrogated this effect

of tofacitinib, suggesting that NLRP3 played a pivotal role in the

process of tofacitinib-mediated Th17 cell activation (144). The

NLRP3 inhibitor, OLT1177, has been clinically studied in gouty

arthritis and knee osteoarthritis. It has a significant effect in

improving the pain of joint inflammation. However, its application

is still lacking in RA (156).

3.3.2 cGAS/STING pathway
The cGAS/STING pathway is mainly found in the cytoplasm. It is

a key pathway mediating autoimmunity, sterile inflammation, and

cellular senescence by recognizing free DNA in the cytoplasm and

activating inflammatory responses (157, 158). The cGAS/STING

pathway has become a hot topic in cancer research (159). TNF is a

core factor mediating inflammation in RA and reduces mitophagy by

inhibiting PTEN-induced putative kinase 1 (PINK1), leading to

mitochondrial damage. This, in turn, increases the level of mtDNA

in the cytoplasm and directly activates the cGAS/STING pathway,

promoting the production of inflammatory factors. Knockdown of
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cGAS can significantly reduce the expression of multiple chemokines

and attenuate toe joint swelling in CIA mice (160). The activation of

the cGAS/STING pathway causes ROS accumulation and

mitochondrial damage and promotes the migration and invasion of

RA-FLSs, a process associated with the activation of the Hippo

pathway. The knockdown of FOXO1 and MST1, key genes of the

Hippo pathway, significantly inhibits the migration and invasion of

RA-FLSs (161). The cGAS/STING pathway plays a key role in the

chronic inflammatory network by activating NF-kB and NLRP3 to

promote the production of multiple inflammatory factors (162).

Additionally, inhibition of pathway activation can play a

therapeutic role in RA (163). However, its role in RA needs to be

explored further.
3.3.3 TLR9/NF-kB pathway
Toll-like receptor (TLR) is an early discovered class of pattern

recognition receptors that play an important role in the inflammatory

response to RA (164, 165). TLR9 is highly expressed in the PBMCs of

patients with RA and positively correlates with the levels of

inflammatory factors, such as IL-6 and TNF-a. TLR9 plays a key

role in the interaction between FLSs and neutrophils (166, 167).

Neutrophil extracellular traps (NETs) are a major source of

guanylated autoantibodies. NET-containing guanylated peptides can

be internalized by FLSs through the TLR9 pathway, elevating the

inflammatory phenotype of FLSs and upregulating the expression of

major histocompatibility complex class II molecules, which

subsequently produce autoantibodies by presentation to Ag-specific

T-cells (168). Hydroxychloroquine is a classical therapeutic agent for

RA, and its therapeutic mechanism is related to the inhibition of

dendritic cell (DC) activation by blocking TLR9 activation (169). The

hypomethylated CpG sequence in mtDNA binds specifically to the N-

terminal part of the C-shaped leucine-rich repeat region of TLR9,

mediating TLR9 activation (170, 171). TLR9 activation can mediate

NF-kB phosphorylation through myeloid differentiation factor 88

(MyD88) and then translate various factors, including IL-1, IL-6, and

TNF-a, to mediate the inflammatory cascade (172). Additionally,

studies have shown that ROS play a key role as a “secondary

messenger” in regulating B-cell maturation and lgG and lgM

production, which require the involvement of TLR9 (173).

However, this aspect of the study has not yet been reported in RA.
3.3.4 AIM2 inflammasome pathway
Absent in melanoma-2 (AIM2) inflammasome is a member of the

innate immune sensor, which can detect double-stranded DNA

(dsDNA), including mtDNA, in the cytoplasm independent of

sequence. dsDNA can form PYD domain helical filament with AIM

2, nucleate ASC, mediate the activation of caspase-1, and induce the

pyroptosis process or release active IL-1b and IL-18, which have great

inflammatory potential (174). AIM2, ASC, and caspase-1 were more

expressed in the knee synovium of patients with RA than those with

OA. They were positively correlated with ESR and CRP levels, which

may be associated with high mtDNA expression in the synovial fluid

of patients with RA. Inhibition of AIM2 expression or transfection of

AIM2 siRNA can significantly inhibit the proliferation and

inflammatory behavior of FLS (175). ROS is a key factor leading to

mtDNA leakage, and inhibition of oxidative stress contributes to
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reduction of mitochondrial damage, release of dsDNA, and activation

of AIM2 (176). Additionally, ROS assisted in the process of AIM2

activation during bacterial infection (177).
4 Role of ROS and mitochondrial
damage in RA angiogenesis

Pannus is a characteristic pathological product of RA and consists

of neovascularization, inflammatory cells, proliferating synovial cells,

and mechanized fibrin (178). Synovitis is the pathological basis for

pannus. Persistent chronic synovitis leads to synovial congestion and

edema and gradual accumulation of neutrophils and various immune

cells in synovial tissue, whereas the proliferation of FLSs and active

immune cells in synovial tissue increases the demand for oxygen and

nutrient supply, forcing microangiogenesis in synovial tissue and

eventually leading to a dysregulated neovascular network and the

formation of villi-like proliferating granulation tissue (179–181).

Therefore, the key step in the formation of pannus is angiogenesis,

which provides a resupply for proliferating and migrating synovial

cells and aggravates cartilage destruction and erosion (182).

Mitochondrial damage in synovial tissue and oxidative stress

environment are key factors in the induction of angiogenesis (38,

183). Repairing mitochondrial damage or scavenging ROS can inhibit

angiogenesis (10, 184).

HIFs are major regulators that respond to ROS and mediate

angiogenesis. HIFs consist of two subunits, a and b. Under normal

conditions, HIFs are hydroxylated by the hydroxylase family in an

oxygen-dependent manner, which leads to a substantial reduction in

the transcriptional activity of HIFs, whereas under hypoxic

conditions, the hydroxylate activity is inhibited, and HIFs

accumulate in the cytoplasm. Activated HIFs translocate to the

nucleus and rapidly transcribe various metabolic enzymes and

vascular-related reactive substances to adapt to the hypoxic

environment (185, 186). ROS accumulation in the RA joints

prompts the high expression of HIFs, including HIF-1a and HIF-

2a (35), and increase the expression of MMP-1, MMP-13, and IL-1b
in FLSs. Silencing HIF-1a with siRNA significantly reduces the

expression of these factors (187). HIF-1a perpetuates the

interaction between synoviocytes and T and B cells, which in turn

induces persistent production of inflammatory factors and

autoantibodies (188). Moreover, HIF-1a can crosstalk with the TLR

pathway to drive RA inflammatory response (64). Although HIF-2a
shares many similarities with HIF-1a, HIF-2a and HIF-1a have been

shown to differ in their sensitivities to hypoxic signaling and

inflammation and can play a catabolic role in RA (189). However,

both HIFs can accelerate cartilage destruction in RA (190). In

addition to increasing the activity of MMPs, HIFs increase the

production of chondrocyte glycolysis and the mitochondrial activity

of chondrocytes under hypoxia, but ultimately leads to chondrocyte

death (191). Mitochondrial ROS production in neutrophils increases

the stability of HIF-1a and plays an important role in chronic

inflammatory diseases (192). Nicotinamide adenine dinucleotide

phosphate oxidase 4 (NOX4) increases ROS production, and

stimulation of FLSs with NOX4 elevates the expression of vascular

cell adhesion molecule 1 (VCAM1) and VEGF, contributing to
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vascular neogenesis and proliferation and migration of FLSs (193).

Calreticulin (CRT) has been shown to be related to the pathogenesis

of RA. CRT stimulation increases synovial NO production and

phosphorylation levels of nitric oxide synthase in human umbilical

vein endothelial cells (HUVECs) and promotes the proliferation,

migration, and angiogenesis of HUVECs (194).

Additionally, the Notch signaling pathway responds to the

regulation of ROS and has a close association with RA angiogenesis

(37). In a study, Notch 1 and Notch 3 were highly expressed in RA

synovial tissue. Notch 3 signaling from the vascular endothelium

drove FLS activation, and mice with genetic deletion of Notch3 were

resistant to serum-induced joint inflammatory responses. The Notch

pathway inhibitor, LY411575, attenuated joint destruction and

pannus severity in CIA rats (195, 196). Another study showed that

cyclic, uniaxial stretch of human VSMCs increased Nox derived-ROS

formation and Notch3 activation. Using Catalase to clear H2O2

prevented the stretch-induced translocation of Notch3 to the

nucleus and decreased the Notch3 extracellular domain (197).

Notch1 mediates VEGF/Ang2-induced angiogenesis and EC

invasion in RA synovial tissue (198). Clearing of ROS from

HUVECs inhibits Notch-induced HUVEC proliferation, migration,

and adhesion (199). Besides, the Notch pathway is regulated by HIF.

Notch1, Notch3 intracellular domain (N1ICD, N3ICD), and HIF-1 a
were highly expressed in RASFC. Hypoxia-induced N1ICD and

N3ICD expression in RASFC was blocked by siHIF-1a .
Concurrently, siNotch1 and siNotch3 inhibited hypoxia-induced

RASFC invasion and angiogenesis in vitro, whereas N1ICD and

N3ICD overexpression promoted these processes (200).

ROS can transcribe VEGF through the activation of the NF-kB
pathway and participate in processes, such as microvascular

neogenesis and proliferation (36). In an oxidative stress

environment, VEGF increases plasminogen activator (PA) and PA

inhibitor-l (PAI-1) mRNA expression, increases plasminogen

activator activity, hydrolyzes extracellular proteins, and thus

promotes neocapillary formation (201, 202). By binding to its

receptor, VEGF induces VEGF receptor phosphorylation and

activates mitogen-activated protein kinase (MAPK), which induces

vascular endothelial cell proliferation (203, 204). Studies have shown

that VEGF gene polymorphisms are associated with RA susceptibility

and activity and can be used for the clinical diagnosis and treatment

of RA. High expression of VEGF can increase small vessel density in

synovial inflammatory areas and elevate the levels of inflammatory

factors, such as TNF-a and IL-1b (205–207).

Additionally, mitochondria play a regulatory role in angiogenesis

(38). Mitochondrial thioredoxin reductase 2 (TrxR2), uncoupling

protein 2 (UCP2), and panthenol-cytochrome c reductase-binding

protein (UQCRB) can regulate VEGF activity and vascular

endothelial activity (208). Among them, UQCRB is one of the

subunits of the mitochondrial respiratory chain complex III, and

mutations in UQCRB increase mtROS production and activate HIF-1

transactivation, promoting vascular neovascularization, a process that

can be regulated by UQCRB inhibitors (209). FUN14 domain-

containing protein 1 (FUNDC1), a protein localized on the outer

mitochondrial membrane, is associated with mitophagy and mediates

the formation of mitochondria-associated endoplasmic reticulum

membranes, which can lead to increased cytoplasmic levels of Ca2+.

This promotes serum response factor (SRF) phosphorylation and
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enhances SRF binding to the VEGFR2 promoter and leads to

increased VEGFR2 transcription, leading to angiogenesis. In

contrast, silencing of FUNDC1 can reverse the above process (210).

Glucose-6-phosphate isomerase (GPI) is closely related to RA activity

(211) and a key enzyme involved in the “Warburg effect” of RA. The

accumulation of GPI is associated with abnormal mitochondrial

respiratory processes (212). Hypoxic conditions can upregulate GPI

activity, and in RA synovial tissue cells, upregulated GPI can induce

RA angiogenesis by increasing the expression of HIF-1a and VEGF

(213, 214).
5 Role of ROS and mitochondrial
damage in RA bone destruction and
cartilage damage

Articular damage is a serious complication of RA that can lead to

irreversible joint deformity, severely limiting joint mobility and

affecting the quality of life of patients (1). The main cause of joint

damage in patients with RA is the imbalance between osteoblasts and

osteoclasts, which is characterized by increased bone resorption by

osteoclasts and decreased bone formation by osteoblasts,

accompanied by apoptosis of chondrocytes (215, 216). Previous

studies have shown that an active immune response in synovial

tissue is a key factor affecting RA joint damage. Recent studies have

shown that ROS and mitochondrial damage similarly modulate RA

joint damage and play an important role.
5.1 Bone destruction

Bone destruction in RA joints presents as localized bone loss,

initially involving cortical bone, disrupting the natural barrier

between the external bony tissue and trabecular space of the

marrow cavity. When the pannus invades the cortical bone,

subchondral bone, and adjacent bone marrow cavity, eventually the

trabecular bone disappears (217, 218). The tilt of RA bone metabolic

balance towards bone resorption is a main factor causing bone

destruction and leads to decreased bone mineral density and

increased bone fragility. Therefore, patients with RA have a higher

risk of fracture (219). Osteoclasts are the main players in RA bone

destruction and cartilage damage. Osteoclasts are huge

multinucleated cells derived from monocyte/macrophage cell lines,

filling between inflammatory synovial tissue and the surface of bone

joints. Through various proteases, such as cathepsin K, MMPs, and

tartarate hydrochloric acid phosphatase (TRAP), they produce a local

acidic environment, initiate calcium lysis, and degrade bone matrix.

Receptor activator of NF-kB ligand (RANKL) is a peptide type II

transmembrane protein of the TNF superfamily that is associated

with osteoclast differentiation and development, increases osteoclast

bone resorption, and regulates its fate (220). Two receptors are

available for RANKL; one is RANK, which is present on the cell

membrane surface of osteoclast precursor cells. The binding of

RANKL to RANK can promote the differentiation and maturation

of osteoclasts, increase bone resorption, and delay osteoclast

apoptosis. The other is osteoprotegerin (OPG), a member of the
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tumor necrosis factor receptor (TNFR) superfamily, with a stronger

affinity to RANKL than RANK, which can competitively prevent

RANKL from binding to RANK, thus inhibiting osteoclast

differentiation and bone resorption activity and inducing its

apoptosis. Denosumab is a monoclonal anti-RANKL antibody,

which inhibits osteoclastic formation by binding to RANKL on

osteoblasts. In patients with RA undergoing long-term denosumab

treatment, denosumab effectively inhibited the progression of joint

destruction and was generally well tolerated (221).

One study showed that radiation therapy in patients with

malignant tumors easily leads to damage to the skeletal system. In

vitro experiments showed that radiation can induce the ratio of ROS

levels and RANKL to OPG in osteoclast precursor cells (RAW 264.7),

prompting the differentiation of RAW 264.7 into osteoclasts.

Intervention with the therapeutic drug, amifostine (AMI), can

reduce DNA damage and ROS levels in cells and the ratio of

RANKL to OPG, inhibit the maturation and differentiation of

osteoclasts, and has a bone protective effect (222).Osteoclasts cause

ROS accumulation during bone resorption or increased RANKL

expression (223). ROS are key factors in the regulation of osteoclast

differentiation (Figure 3). On the one hand, ROS, as a second

messenger, can activate MAPK or NF-kB pathway and mediate

granulocyte macrophage colony-stimulating factor (GM-CSF)

production (224), which can interact with RNAKL and M-CSF to

promote osteoclast differentiation (225). On the other hand, ROS

induce the binding of Src homology 2 domain-containing

phosphatase 1 (SHP1) to c-Src and the oxidation of c-Src and SHP-

1, which lead to SHP-1 inactivation and activation of c-Src via

phosphorylation of Tyr416, contributing to osteoclast survival and

increasing bone loss (226). Additionally, ROS can upregulate HIF-1a
expression, leading to activation of the Janus kinase (JAK) 2/STAT3

pathway, which promotes high RANKL expression and induces

osteoclast differentiation (227). Additionally, ROS upregulation of

HIF-1a can increase angiopoietin-like 4 expression in osteoclasts and

enhance osteoclast activity (228, 229). Ni et al. (230) demonstrated

that HIF-1a inhibits osteoclast ferritin phagocytosis and

autophagocytosis in a hypoxic environment, reducing osteoclast

ferroptosis. They further showed that the use of specific inhibitors

of HIF-1a is effective in preventing bone loss.

Additionally, mtROS affect osteoclast differentiation. Targeted

removal of mtROS using MitoQ reverses hypoxia-induced

calcineurin activity and NF-kB activity and inhibits the

differentiation of RAW 264.7 macrophages into osteoclasts (231).

Glucose metabolism by mitochondrial oxidative phosphorylation is

the main bioenergetic pathway that supports osteoclast

differentiation, but increased glycolytic activity promotes osteoclast

differentiation (232). The hypoxic environment of the RA joint cavity

and abnormal mitochondrial respiration of FLSs lead to an increase in

glycolytic activity and “Warburg effect” (70). This leads to the

accumulation of lactic acid.
5.2 Cartilage damage

Cartilage is mainly composed of chondrocytes, outer matrix

proteoglycans, and type II collagen (233). The extracellular matrix

of cartilage can be degraded by MMPs. MMP-1 and MMP-13 are
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mainly degradable-type collagens, and non-collagen matrix protein

components, such as MMP-3, are degradable proteoglycans (234).

Synovial inflammation is a key driver of cartilage damage in RA, and

inflammatory stimuli contribute to the high expression of multiple

MMPs and RANKL in the synovial tissues of patients with RA (48).

The pannus attached to the cartilage surface exacerbates

inflammation and hypoxia, thereby promoting bone erosion (235).

Previous studies have confirmed the above view that in the post-

arthroplasty tissues of patients with RA, RNAKL is mainly expressed

at the endothelial-bone interface and subchondral bone erosion sites,

the site of contact between the pannus and cartilage (236). TNF-a and

IL-6 promote the conversion of RANKL-induced PBMCs into

osteoclasts, and PBMCs of patients with RA show a higher

differentiation potential (237). Therefore, regulating the

differentiation of monocytes into osteoclasts in patients with RA is

an attractive target.

Cartilage destruction in RA is closely linked to the oxidative stress

environment, and the hypoxic environment increases monocyte

differentiation toward osteoclasts and elevates osteoclast activity

(39) (Figure 3). ROS affect the progression of cartilage damage by

regulating chondrocyte life cycle and metabolism of cartilage matrix.
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As a signaling intermediate, elevated ROS levels can affect growth

factor bioavailability by preventing extracellular matrix (ECM)

synthesis, affecting bioavailability, participating in degradation of

ECM components, promoting MMP production, and inducing

chondrocyte death (40). On the one hand, excessive ROS

generation is involved in the process of chondrocyte growth

inhibition and apoptosis promotion through signaling pathways,

such as PI3K/AKT and p38 pathways (238, 239). On the other

hand, ROS increases the sensitivity of chondrocytes to ROS-

mediated chondrocyte death through dysregulation of GSH

antioxidant system, and ROS clearance reduces chondrocyte death

and enhances chondrocyte viability (41, 240).

The increased expression of advanced oxidation production

products (AOPPs) in patients with RA is associated with the

process of bone destruction. AOPPs can induce apoptosis in

chondrocytes by triggering mitochondrial dysfunction and

endoplasmic reticulum stress, leading to caspase activation, which

can be blocked by the use of antioxidants (241). Furthermore, high

levels of 3-nitrotyrosine in the cartilage of patients with RA induce

cellular mitochondrial dysfunction and chondrocyte apoptosis

through a calcium-dependent process (242). Additionally,
FIGURE 3

ROS upregulates MAPK and NF-kB pathway activities and transcribes GM-CSF, which acts in conjunction with M-CSF to induce osteoclast differentiation.
ROS can upregulate the expression of HIF-1a, activate the JAK/STAT pathway, induce RANKL production, and promote osteoclast differentiation. ROS
activate c-Src for osteoclast survival by inactivating SHP1. ROS drive the production of AOPPs, causing ER stress and mitochondrial damage; produce
caspase-1; and drive chondrocyte apoptosis. These processes play an important role in bone destruction and cartilage destruction in RA. MAPK,
mitogen-activated protein kinase. GM-CSF, granulocyte macrophage colony-stimulating factor. HIF-1a, hypoxia-inducible factor. JAK, Janus kinase;
STAT, signal transducer and activator of transcription; RANKL, receptor activator of NF-kB ligand; SHP1, Src homology 2 domain-containing phosphatase
1; AOPPs, advanced oxidation production products. By Figdraw.
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chondrocyte death is difficult to repair, and a degree of mitochondrial

autophagy is necessary for chondrocyte protection when stress occurs

(243). Intervention of experimental arthritic mice with the autophagic

agonist, rapamycin, reduces the severity of arthritis (244). Mitophagy

is a way to repair mitochondrial damage and maintain mitochondrial

homeostasis. AMPK and sirtuin (SIRT)3 are key proteins that

regulate mitochondrial homeostasis. They have been shown to exert

a potential protective effect on chondrocytes by maintaining

mitochondrial homeostasis (245, 246). However, excessive

mitochondrial autophagy may induce apoptosis in chondrocytes

(247). Uncontrolled mitophagy may lead to an imbalance in cellular

homeostasis and requires further investigation in RA.
6 Targeting ROS or mitochondria in
RA therapy drugs

6.1 Inhibition of inflammation

Inhibition of inflammatory response is critical in the course of RA

treatment, and biological agents, such as TNF-a monoclonal

antibodies, IL-6 monoclonal antibodies, and JAK pathway inhibitors,

have been developed for inflammatory factors and have achieved

significant clinical efficacy. However, their prolonged application

increases the risk of viral infection and immune suppression (248).

Adalimumab is a recombinant, fully human, IgG1 monoclonal

antibody. It binds specifically to TNF-a and blocks their interaction

with p55 and p75 cell surface TNF receptors. It is the major drug in RA

therapy (249). Some studies have explored the effects of adalimumab

treatment on the global gene expression profile in PBMCs of responder

patients with RA. The results showed that immune response and

regulation of mitochondrial redox are the key therapeutic

mechanisms of adalimumab (250). Tocilizumab is a humanized anti-

IL-6 receptor monoclonal antibody. Tocilizumab with methotrexate is

effective for improving the symptoms of RA in patients with inadequate

response to TNFi (251). In a study on systemic juvenile idiopathic

arthritis (sJIA), tocilizumab significantly altered genes regulating

mitochondrial dysfunction and oxidative stress in patient neutrophils

(252). Anakinra is an IL-1 receptor antagonist used for treating

moderate-to-severe RA that has been unresponsive to initial disease-

modifying anti-rheumatic drug (DMARD) therapy. The study showed

that anakinra promotes the binding of SOD2 to the deubiquitinase,

ubiquitin specific peptidase 36 (USP36), and constitutive

photomorphogenesis 9 (COP9) signalosome, thus increasing SOD2

protein longevity. This effect could mediate the clearance of ROS and

inhibit NLRP3 activation (253). Furthermore, in cystic fibrosis,

anakinra improved the proteostatic network by coupling the

mitochondrial redox balance to autophagy (254).

Therefore, exploring new therapeutic targets remains a challenge.

Several studies have shown that ROS and mitochondria can be used as

targets to inhibit inflammation in RA. Many active ingredients of

herbal medicines have been shown to improve inflammation in RA by

scavenging ROS or regulating mitochondrial function, which can

provide a basis for the development of natural botanicals.

The active ingredient of leigongteng, a herbal medicine

commonly used in RA treatment, has been developed as a
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leigongteng polyglucoside, which can be used in the clinical

treatment of RA (255). Celastrol (Cel) is a quinone-methylated

triterpenoid extracted from Tripterygium wilfordii that has been

shown to alleviate inflammatory response in RA by inhibiting the

ROS/NF-kB/NLRP3 axis (256). ROS-sensitive polymer micelles have

been developed for Cel delivery, which can overcome the

disadvantages of poor water solubility and short half-life of Cel.

These micelles can alleviate RA synovial inflammation by inhibiting

macrophage M1 polarization (257). Salicin from Alangium chinense

has anti-inflammatory effects, reduces ROS production by activating

Nrf2/HO-1, and inhibits inflammatory factor secretion by FLSs in

vivo and in vitro (258).

Several natural drugs inhibit inflammatory responses associated

with the regulation of mitochondrial homeostasis in RA. Quercetin

(Que) is a major active flavonoid component isolated from Herba

taxilli. It activates the SIRT1/peroxisome proliferator-activated

receptor-gamma coactivator 1 a (PGC-1a) pathway to promote

mitochondrial biogenesis, regulate mitochondrial homeostasis, and

inhibit the high mobility group protein (HMGB)1/TLR4/p38/

extracellular regulated protein kinases (ERK)1/2 pathway to reduce

inflammatory responses in CIA mice (259). The combination of

Cornus officinalis and Paeonia lactiflora was effective in

ameliorating oxidative stress and inflammation in CIA rats, a

process associated with the regulation of AMPK-mediated

mitochondrial homeostasis. Apoptosis of synovial cells may be

involved in the treatment (260). Mitochondria are closely related to

the cell cycle and play key roles in apoptosis (261, 262). Many natural

drugs can regulate the cell cycle and promote apoptosis in FLSs

through the mitochondrial pathway (263, 264). However, unlike

previous findings, shikonin, icariin, and other drugs induce

mitochondrial dysfunction by increasing ROS levels, decreasing

mitochondrial membrane potential, and elevating the release of

cytochrome C and pro-apoptotic proteins, such as caspase-3 and

caspase-9, to induce apoptosis in FLSs to suppress inflammatory

response (265, 266). However, this seems to be a manifestation of

drug cytotoxicity. Therefore, toxic effects should be considered when

studying plant drugs.
6.2 Inhibition of angiogenesis

Synovial inflammatory response in RA is dependent on

angiogenesis, which is mutually reinforcing and central to the

progressive development of pannus. Current studies have shown

that several DMARDs, such as methotrexate, can inhibit

angiogenesis. Methotrexate inhibits angiogenesis in a three-

dimensional co-culture model (containing synovial fibroblasts and

vascular endothelial cells) and inhibits the formation of pannus (267).

Leflunomide has been shown to inhibit angiogenesis-related

endothelial function, and novel biologics, such as the JAK pathway

inhibitors, peficitinib and tofacitinib, have been shown to treat RA by

inhibiting VEGF expression and angiogenesis (268–270). The VEGF

monoclonal antibody, ranibizumab, significantly improved synovial

inflammation in CIA rats and was superior to the IL-6 monoclonal

antibody, tocilizumab, in terms of anti-bone destruction (271).

Currently, DMARDs, in combination with angiogenesis inhibitors,

are considered a potential strategy for RA treatment (272). However,
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only a few clinical studies have reported on this treatment strategy

for RA.

Abatacept (ABT) is a co-stimulation inhibitor that can bind to

CD80 and CD86, preventing CD28-mediated T cell activation by

blocking costimulatory signaling. In patients with RA, ABT produced

significant clinical and functional benefits. Moreover, VEGF was

significantly decreased in the serum of patients with RA receiving

ABT (273), while transcriptomics showed that the mechanism of

action of ABT is associated with improved antioxidative damage and

regulation of the ETC pathway (274, 275).

Accumulation of ROS and upregulation of HIF-1a contribute to

M1 cell polarization and cause inflammatory responses, whereas

knockdown of HIF-1a facilitates M2 polarization (276). Kim et al.

(277) developed a biocompatible therapeutic agent for ROS

accumulation using manganese ferrite and ceria nanoparticle-

anchored mesoporous silica nanoparticles (MFC-MSNs) joint cavity

injection, which can actively clear ROS and produce O2. MFC-MSNs

can be used as drug delivery vehicles to enhance therapeutic effects

through sustained release of methotrexate (MTX). Li et al. (278)

prepared ROS-responsive artesunate (ART) and dexamethasone

(DEX) as a prodrug micellar nanosystem (DEX/HTA), which can

effectively accumulate ART and DEX in AIA rats with arthritis. It can

be specifically internalized by M1 cells, release ART and DEX,

scavenge ROS, inhibit the HIF-1a/NF-kB pathway, and mediate

repolarization of macrophages.

Resveratrol has been intensively investigated in several aspects of

RA treatment, and it can delay the progression of RA by scavenging

ROS and reducing angiogenesis by blocking the MAPK pathway

(279). Liquiritin, a natural extract of Glycyrrhiza uralensis, has been

found to inhibit RA angiogenesis. Liquiritin can promote apoptosis by

regulating changes in mitochondrial membrane potential and inhibit

the expression of p38 and VEGF (280). AMPK is a key protein that

senses oxidative stress and regulates the body’s antioxidant activity.

AMPK can improve oxidative stress by regulating SOD (SOD2)

expression and mitochondrial superoxide levels and is involved in

VEGF expression and angiogenesis (281). In conclusion,

mitochondria are considered to be a key target for angiogenesis

inhibition. However, more studies on RA are needed.
6.3 Inhibition of bone destruction and
cartilage damage

Clinical trials have shown that the use of tocilizumab in

combination with methotrexate in patients with moderate-to-severe

RA can significantly decrease the level of the bone remodeling

markers, C-terminal cross-linked telopeptide of type I collagen and

MMP-degraded type II collagen, and inhibit the bone remodeling

process (282). Therefore, early and regular drug administration is the

key to reduce the disability rate of RA. A double-blind randomized

controlled trial showed that treatment with the anti-RANKL

antibody, denosumab, significantly inhibited the progression of

joint destruction and was well tolerated, which is expected to

become the clinical treatment for RA (283). Curculigoside is a

glycoside in polyphenols obtained from roots and exhibit

antioxidant effects. It regulates cartilage destruction, enhances
Frontiers in Immunology 12
osteoblast differentiation, reduces osteoclast differentiation, and

inhibits osteolytic progression (284). Therefore, curculigoside has

been studied extensively in bone destruction-related diseases, such

as osteoporosis and RA. Network pharmacology analysis has shown

that the phosphoinositide 3 kinase/protein kinase B (PI3K/AKT)

pathway and proteins, such as epidermal growth factor receptor,

recombinant MAPK kinase 1 (MAP2K1), and MMP-2, are key targets

for curculigoside therapy (285). In vitro studies have shown that

curculigoside inhibits tartrate-resistant acid phosphatase activity in

osteoblasts induced by RANKL or H2O2 and reduces the expression

of cathepsin K (Ctsk) and MMP-9. Its mechanism of action is closely

related to the regulation of the Nrf2/NF-kB pathway and reduction of

ROS levels (286). Sanguis draconis is a traditional Chinese herb, and

its active ingredient, loureirin B (LrB), is widely used in the treatment

of inflammatory and immune diseases. LrB can reduce RANKL-

induced osteoclastogenesis by inhibiting recombinant NFAT

(NFATC1) and ROS activity. It is a potential drug for the treatment

of osteoporosis (287). LrB inhibits Ca2+ influx and IL-2 secretion in

Jurkat T-cells by inhibiting the KV1.3 and stromal interaction

molecule 1 (STIM1)/Orai1 pathways, which can induce

immunosuppressive effects (288). It is a potential drug for the

treatment of autoimmune diseases. However, it has not yet been

studied in RA.

Several DMARDs have been shown to slow the progression of

cartilage damage in patients with RA. Both in vivo and in vitro studies

have shown that methotrexate inhibits FLS invasion and reduces

cartilage degradation (289). Additionally, leflunomide treatment

decreased the levels of MMP-1, MMP-9, and cartilage oligomeric

matrix protein (COMP) in the serum of patients with RA (290).

Meanwhile, studies have designed loaded PEI-SS-IND-MTX-MMP-9

siRNA nanoparticles for RA cartilage damage for the delivery of

indindexin (IND), MTX, and MMP-9 siRNA, which significantly

downregulated the expression of MMP-9 and various inflammatory

factors in Raw-264.7 cells and showed anti-inflammatory activity and

reversal of bone destruction in RA mice (291). Postprandial selenium

supplementation can inhibit ROS and RANKL levels and reduce

cartilage destruction in CIA mice. However, the optimal dose of

selenium supplementation has not yet been determined, and relevant

clinical studies are underway (292).

As mentioned above, multiple factors, such as ROS accumulation

and mitochondria, can promote articular cartilage destruction and

accelerate joint deformation in RA. Many drugs have been shown to

slow the process of bone destruction by targeting ROS or mitochondrial

damage. Diosmin is an unsaturated glycoside with antioxidant and

anti-inflammatory properties. Intervention with diosmin and trolox (a

water-soluble vitamin E that can be used to scavenge ROS) in rats

administered complete freund’s adjuvant (CFA) reduced the levels of

various peroxidation products and production of various MMPs and

elevated the Nrf2 activity, inflammatory response, and cartilage

destruction in CFA-administered rats (293). Mitochondria are

equally attractive targets for stopping the process of bone destruction

in RA. Estrogen levels are associated with several bone damage-phase

diseases and can affect chondrocyte metabolism and cell cycle (294).

Some studies have shown that 17b-estradiol (17b-E2) promotes

mitophagy and enhances chondrocyte viability by elevating AMPK/

mammalian target of rapamycin (mTOR) pathway activity (295).
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However, a cohort study showed that the role of estrogen in RA

remains controversial (296). Urolithin A (UA), a natural metabolite

produced by intestinal bacteria and mainly found in fruits, such as

pomegranate, can improve mitochondrial function. UA reduces disease

progression, cartilage degeneration, synovial inflammation, and pain

symptoms in OAmouse models and may play a therapeutic role in RA,

suggesting dietary advice for patients with RA (297). The Chinese

herbs, turmeric, yujin, and curcumin, are commonly used in RA

treatment. Their common active ingredient, curcumin, can mediate

mitophagy in OA chondrocytes by promoting AMPK/PINK1/Parkin,

scavenging ROS, elevating mitochondrial membrane potential, and

exerting an inhibitory effect on cartilage destruction (298). Although

many similarities exist between OA and RA, many differences exist

because mitochondrial damage and oxidative stress are more

pronounced in RA than in OA (299). However, studies on targeting

mitochondria for RA treatment remain inadequate.
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In recent years, studies have provided new insights into the

development of RA. Oxidative stress and mitochondrial damage are

inextricably linked to RA development, and our focus was on the

mitochondrial regulation of metabolism affecting the disease process

of RA. However, mitochondria, as a signaling center, affect RA in

multiple ways. Here, we summarized the role of the vicious cycle of

mitochondrial damage and ROS accumulation in RA and introduced

potential drugs that target mitochondria or scavenge ROS for RA

treatment, with the aim of providing some help for the clinical

treatment of RA (Table 1).

Although progress has been made in the study of mitochondria in

RA, many questions remain unanswered. Mitochondrial damage

induces mitochondrial division, which in turn promotes

mitochondrial autophagic behavior to remove damaged
TABLE 1 Drugs used in RA treatment that act by regulating ROS or the mitochondria.

Treatments Mechanisms Effects Reference

Adalimumab Regulation of the mitochondrial redox balance Reduces ACPA, RF levels and
decreases DAS28 scores

(250)

Abatacept Regulation of the mitochondrial metabolism pro-apoptotic and anti-angiogenesis (274)

Regulation of the mitochondrial electron transport chain Improved joint swelling and pain, CRP
levels, VAS and DAS28 scores

(275)

Tocilizumab Improves mitochondrial dysfunction and oxidative stress Reduced ESR, CRP levels in sJIA
patients

(252)

Kurarinone Reduces oxidative damage, inhibits Th1 and Th7 differentiation, and activates the Nrf2/
HO-1 pathway

Inhibits immune inflammation (62)

Rosmarinic acid Induces apoptosis in activated T-cell subsets via the mitochondrial pathway Inhibits immune inflammation (76)

Resveratrol Activates the Nrf2/HO-1 pathway, reduces ROS production, and inhibits the NF-kB
pathway

Inhibits the proliferation and
migration of FLSs, prompted apoptosis
of FLSs

(115)

Reduces ROS, inhibits HIF-1a and MAPK pathways, and induces FLSs G0/G1 cycle
arrest

Promotes the apoptosis of synoviocytes
and inhibits angiogenesis

(279)

Regulates Nrf2/ARE activity and reduces ROS via the SIRT1/NF-kB/miR-29a-3p/Keap1
and SIRT1/NF-kB/miR-23a-3p/cul3 axis

Inhibits the proliferation of FLSs and
reduces oxidative damage

(114)

Inhibits autophagy in FLSs, decreases mitochondrial membrane potential, and increases
mtROS level

Promotes apoptosis of FLSs (131)

Celastrol Inhibits the ROS/NF-kB/NLRP3 axis system Inhibits the inflammatory response (256)

Regulates the NF-kB and Notch1 pathways and suppresses M1 polarization in response to
ROS

Reduces synovial inflammation (257)

Salicin Inhibits the Nrf2/HO-1/ROS pathway Inhibits the viability of FLSs and
reduces oxidative damage

(258)

Quercetin Promotes mitochondrial biogenesis by regulating the SIRT1/PGC-1a/NRF1/TFAM
pathway, alleviating the inflammatory response, suppressing HMGB1/TLR4/p38/ERK1/2/
NF-kB p65

Restrains synovial inflammation and
cartilage destruction

(259)

Cornus officinalis and
Paeonia lactiflora
Pall.

Regulate mitochondrial dynamics via AMPK and inhibit ROS production Reduce inflammatory cytokines and
promote apoptosis in synovial tissues

(260)

Icariin Depresses the mitochondrial membrane potential, increases ROS production, and induces
a G2/M phase arrest in FLSs

Inhibits the proliferation and
migration of FLSs and promotes
apoptosis of FLSs

(265)

(Continued)
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mitochondria and induce mitochondrial regeneration. However,

different studies have reported different results, with some showing

that inhibition of dynamin 1-like protein expression and

mitochondrial division can inhibit mitophagy and alleviate

inflammatory response in RA (301). However, some studies have

reported contrasting results (260). This may be related to the diversity

of mitochondrial division forms and great variations in the outcomes

caused by different division forms (302). Additionally, the roles of

ROS and mitophagy in RA are complex and diverse, with ROS

inducing mitochondrial autophagic behavior and enhancing

mitochondrial autophagic activity, possibly contributing to the

survival of FLSs and increasing the inflammatory response, and

inhibition of autophagy inducing apoptosis of FLSs (303). Elevation

of ROS levels to promote apoptosis has been widely studied in cancer

research (304). Therefore, the two-fold nature of mitophagy and its

role in RA need to be studied further (305).

We have summarized many potential therapeutic agents for

mitochondrial damage and ROS accumulation. Although ROS or

mitochondria is a reliable target for RA treatment, many therapeutic

agents that are being used in the clinics can play a role in repairing

mitochondrial damage or scavenging ROS. However, the advantages

and differences in these potential therapeutic agents, compared with

existing drugs, require further research and exploration. Much work

is needed before potential drugs can be used in clinical treatment.
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TABLE 1 Continued

Treatments Mechanisms Effects Reference

Shikonin Activates ROS, mediates mitochondrial damage, and activates the PI3K/AKT/mTOR
pathway

Induces autophagy and apoptosis in
FLSs

(266)

MFC-MSNs Eliminate ROS, produce O2, regulate the HIF-1a pathway, and induce M1 to M2
polarization

Inhibit synovial inflammation (277)

DEX/HTA Eliminates ROS, induces M1 to M2 repolarization, and inhibits the HIF-1a/NF-kB
pathway

Reduces synovial inflammatory
infiltration and repairs articular
cartilage injury

(278)

Liquiritin Regulates DYm and inhibits JAK, p38, and VEGF expression Inhibits FLS proliferation and
promotes apoptosis and angiogenesis

(280)

Diosmin and trolox Reduce the serum levels of iNOS, NF-kB, and MMPs and activate the Nrf2 pathway Anti-inflammatory and anti-oxidative
stress activities and relieve bone
erosion

(293)

Curculigoside Inhibits the ROS, NOX1, NOX4, and NF-kB pathway activity and increases the Nrf2
activity

Reduces oxidative stress and inhibits
osteoclast formation

(286)

Loureirin B Inhibits ROS and MAPK/NFAT pathway activity and decreases Ctsk and Atp6v0d2
expression

Inhibits osteoclast formation and
reduces bone resorption

(287)

Metformin Induces mitophagy by enhancing the membrane potential of the SIRT3/PINK1/Parkin
pathway

Regulates the ECM balance of
chondrocytes and reduces cartilage
destruction

(300)

Curcumin Induces mitophagy via activation of the AMPK/PINK1/Parkin pathway and eliminates
ROS

Promotes chondrocyte survival and
reduces cartilage destruction

(298)
f
rontiersin.org

https://doi.org/10.3389/fimmu.2023.1107670
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jing et al. 10.3389/fimmu.2023.1107670
References
1. Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet (2016) 388:2023–
38. doi: 10.1016/S0140-6736(16)30173-8

2. Scherer HU, Häupl T, Burmester GR. The etiology of rheumatoid arthritis.
J Autoimmun (2020) 110:102400. doi: 10.1016/j.jaut.2019.102400

3. Lin Y-J, Anzaghe M, Schülke S. Update on the pathomechanism, diagnosis, and
treatment options for rheumatoid arthritis. Cells (2020) 9:E880. doi: 10.3390/cells9040880

4. Liao KP. Cardiovascular disease in patients with rheumatoid arthritis. Trends
Cardiovasc Med (2017) 27:136–40. doi: 10.1016/j.tcm.2016.07.006

5. Kadura S, Raghu G. Rheumatoid arthritis-interstitial lung disease: manifestations
and current concepts in pathogenesis and management. Eur Respir Rev (2021) 30:210011.
doi: 10.1183/16000617.0011-2021

6. Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ. Reactive oxygen species
(ROS)-induced ROS release: a new phenomenon accompanying induction of the
mitochondrial permeability transition in cardiac myocytes. J Exp Med (2000)
192:1001–14. doi: 10.1084/jem.192.7.1001

7. Bolduc JA, Collins JA, Loeser RF. Reactive oxygen species, aging and articular
cartilage homeostasis. Free Radic Biol Med (2019) 132:73–82. doi: 10.1016/
j.freeradbiomed.2018.08.038

8. Kan S, Duan M, Liu Y, Wang C, Xie J. Role of mitochondria in physiology of
chondrocytes and diseases of osteoarthritis and rheumatoid arthritis. Cartilage (2021)
13:1102S–21S. doi: 10.1177/19476035211063858

9. Fearon U, Canavan M, Biniecka M, Veale DJ. Hypoxia, mitochondrial dysfunction
and synovial invasiveness in rheumatoid arthritis. Nat Rev Rheumatol (2016) 12:385–97.
doi: 10.1038/nrrheum.2016.69

10. Konisti S, Kiriakidis S, Paleolog EM. Hypoxia–a key regulator of angiogenesis and
inflammation in rheumatoid arthritis. Nat Rev Rheumatol (2012) 8:153–62. doi: 10.1038/
nrrheum.2011.205

11. Clayton SA, MacDonald L, Kurowska-Stolarska M, Clark AR. Mitochondria as key
players in the pathogenesis and treatment of rheumatoid arthritis. Front Immunol (2021)
12:673916. doi: 10.3389/fimmu.2021.673916

12. Phull A-R, Nasir B, Haq IU, Kim SJ. Oxidative stress, consequences and ROS
mediated cellular signaling in rheumatoid arthritis. Chem Biol Interact (2018) 281:121–36.
doi: 10.1016/j.cbi.2017.12.024

13. Guo R, Gu J, Zong S, Wu M, Yang M. Structure and mechanism of mitochondrial
electron transport chain. BioMed J (2018) 41:9–20. doi: 10.1016/j.bj.2017.12.001

14. Zhao R-Z, Jiang S, Zhang L, Yu Z-B. Mitochondrial electron transport chain, ROS
generation and uncoupling (Review). Int J Mol Med (2019) 44:3–15. doi: 10.3892/
ijmm.2019.4188

15. Li R, Jia Z, Trush MA. Defining ROS in biology and medicine. React Oxyg Species
(Apex) (2016) 1:9–21. doi: 10.20455/ros.2016.803
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116. Valcárcel-Ares MN, Riveiro-Naveira RR, Vaamonde-Garcıá C, Loureiro J,
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