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Introduction: The treatment response to neoadjuvant immunochemotherapy

varies among patients with potentially resectable non-small cell lung cancers

(NSCLC) and may have severe immune-related adverse effects. We are currently

unable to accurately predict therapeutic response. We aimed to develop a

radiomics-based nomogram to predict a major pathological response (MPR) of

potentially resectable NSCLC to neoadjuvant immunochemotherapy using

pretreatment computed tomography (CT) images and clinical characteristics.

Methods: A total of 89 eligible participants were included and randomly divided

into training (N=64) and validation (N=25) sets. Radiomic features were extracted

from tumor volumes of interest in pretreatment CT images. Following data

dimension reduction, feature selection, and radiomic signature building, a

radiomics-clinical combined nomogram was developed using logistic regression

analysis.

Results: The radiomics-clinical combined model achieved excellent discriminative

performance, with AUCs of 0.84 (95% CI, 0.74-0.93) and 0.81(95% CI, 0.63-0.98)

and accuracies of 80% and 80% in the training and validation sets, respectively.
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Decision curves analysis (DCA) indicated that the radiomics-clinical combined

nomogram was clinically valuable.

Discussion: The constructed nomogram was able to predict MPR to neoadjuvant

immunochemotherapy with a high degree of accuracy and robustness, suggesting

that it is a convenient tool for assisting with the individualized management of

patients with potentially resectable NSCLC.
KEYWORDS

radiomics, nomogram, major pathological response, NSCLC, neoadjuvant
immunochemotherapy
1 Introduction

Non-small cell lung cancer (NSCLC) accounts for 80-85% of all lung

cancers and is the leading cause of cancer death worldwide (1). About

20-25% of NSCLCs are resectable at the time of diagnosis, including

most stage I–IIIa and a small proportion of stage IIIb tumors (2, 3). The

5-year overall survival (OS) rates of resectable lung cancer patients are

unsatisfactory (4). Pathological response to neoadjuvant treatment is a

potential surrogate for an early clinical endpoint for long-term survival

(5–7). Only about 4% of NSCLC patients achieve a pathological

complete response (PCR) after neoadjuvant chemotherapy alone (5),

which is far from satisfactory. It is well known that no major advances

have been made in neoadjuvant treatments for NSCLC over the 25 years

prior to the emergence of immunotherapeutic drugs (5). Checkmate

816, the first stage 3 randomized neoadjuvant immunotherapy-based

combination study, confirmed that neoadjuvant immunotherapy in

combination with chemotherapy is significantly more efficacious than

neoadjuvant chemotherapy alone for resectable NSCLC (8). The

neoadjuvant immunochemotherapy group was superior to the

neoadjuvant chemotherapy group in both MPR (36.9% vs. 8.9%) and

median event-free survival (EFS) (31.6 months vs. 20.8 months) (9, 10).

Minimally invasive surgery was more common, there were minimal

delays in surgery and minimal differences in treatment-related adverse

events. Based on the promising results of this trial, combination

treatment with neoadjuvant chemotherapy and nivolumab was

formally approved by the FDA in March 2022 (10).

Though neoadjuvant immunochemotherapy has greatly succeeded

at treating NSCLC, the MPR% of immunochemotherapy is still

approximately 36%, which is relatively low (10). Some patients,

especially those with stage IIIA/B NSCLC, had a poor response that

required t imely changes to the i r t rea tment reg imen.

Immunochemotherapy can also lead to severe immune-related

adverse effects (irAEs, such as pneumonitis) in some patients. Given

this, finding a reliable approach for predicting MPR before

administering neoadjuvant immunochemotherapy is critical to

maximizing patient benefit, minimizing risks, and recommending

personalized perioperative treatment for patients with potentially

operable NSCLC. There is presently no reliable parameter or

biomarker that can predict the response to neoadjuvant

immunochemotherapy. Tumor PD-L1 expression could predict the

efficacy of immunotherapy to some extent, but its predictive value is
02
not as good with combination immunochemotherapy vs. mono-

immunotherapy (9). Previous studies have shown that patients who

achieve PCR have a distinctive peripheral blood immune status (11), and

pretreatment tissue TCR repertoire evenness is also associated with PCR

(12). Other reports have shown that baseline neutrophil-to-lymphocyte

ratio (NLR) can independently predict the pathological response to

neoadjuvant immunochemotherapy (13). However, these serological

biomarkers are either too expensive or susceptible to various factors such

as inflammation or infection and have not been prospectively validated.

They are not presently applied clinically. Alternative predictive

biomarkers are needed urgently, especially those that can be detected

using a non-invasive method.

Medical imaging, such as computed tomography (CT), plays a

vital role in the diagnosis, evaluation, and treatment monitoring of

NSCLC (14). Medical images possess a significant amount data that

cannot be observed intuitively (15). Data mining of medical images to

assist with clinical decision-making has emerged as a hot spot in

medical research. Radiomics, first proposed by Philippe (16), refers to

an emerging data-driven strategy that can extract either a set of

predefined engineered features that describe radiographic aspects of

shape, intensity, and texture, or alternatively high-level features (i.e.

valvelet). Radiomics have been widely studied to aid in disease

diagnosis, prognostication, and the prediction of treatment response

to facilitate personalized medicine (17). Several previous studies also

used radiomics to predict gene mutation status and the response to

chemoradiotherapy for various tumors, with promising results (18,

19). However, to the best of our knowledge, no previous studies have

evaluated the potential value of radiomics to predict MPR after

neoadjuvant immunochemotherapy in NSCLC.

The present study aimed to develop and validate a radiomics-

based model that can efficiently predict MPR for potentially resectable

NSCLC treated with neoadjuvant immunochemotherapy. We also

explored the integration of CT-based radiomics and clinical data into

a multidimensional nomogram to predict MPR.
2 Materials and methods

The patient selection and distribution flowchart is shown in

Figure 1A, and the model construction and assessment flowchart is

shown in Figure 1B.
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2.1 Patients

We collected data retrospectively from July 2019 to March 2022.

We included all NSCLC patients at our hospital who were: (1) age 18

years or older, (2) pathologically confirmed, (3) clinical stage IB–IIIC,

and (4) underwent neoadjuvant immunochemotherapy followed by

surgery. The exclusion criteria were as follows: (1) previous

immunotherapy, (2) no available pretreatment CT scans, (3) non-

measurable lesions per the Response Evaluation Criteria in Solid

Tumors (RECIST) 1.1, (4) poor image quality that was not suitable for

feature extraction, and (5) a biopsy was performed prior to the

available CT. Patient clinicopathological information, including age,

sex, stage, PD-L1 expression (Dako 22C3), and details about their

neoadjuvant treatment, including agents and course of treatment,

were collected from the electronic database. MPR was defined as 0-

10% of viable tumor cells remaining in the residual tumor.
2.2 Treatment groups

All patients underwent a standard preoperative staging workup

that included a pretreatment tumor biopsy, a contrast-enhanced CT

scan of the chest and abdomen, contrast-enhanced brain magnetic

resonance imaging, and a 99mTc-labeled methylene diphosphonate

(99mTc-MDP) whole-body bone scan. Tumors were staged according

to the 8th edition of the American Joint Committee on Cancer

criteria. The surgeon evaluated all patients to determine whether

they were appropriate for surgical intervention or should continue

neoadjuvant therapy after two to four cycles of neoadjuvant

immunochemotherapy. All pathologic information, including MPR

or non-MPR (N-MPR) status, was reconfirmed by a senior
Frontiers in Immunology 03
pathologist. Patients who achieved MPR or PCR were assigned to

the MPR group, and all others were assigned to the N-MPR group.
2.3 CT scan protocols

CT scans obtained within 30 days of the treatment start date were

analyzed. If there was more than one CT scan, the closest CT scan

before the biopsy was used. The included patients underwent CT

scans with the following four scanners: Somatom Definition Flash,

Siemens, Germany; uCT780, United Imaging, Shanghai, China;

Somatom Perspective 128, Siemens, Germany; and Somatom

Definition Force, Siemens, Germany. Scanning protocols were as

follows: 120 kVp, 100–200 mAs, and pitch 0.75–1.5. Plain CT

images with 5-mm thickness cuts were retrieved from the Picture

Archiving and Communication System (PACS) for further analysis.

CT images were acquired in the supine position at full inspiration for

all patients.
2.4 Segmentation and radiomic
feature extraction

All targeted tumors were manually delineated slice by slice by one

author with 5 years of experience with chest CT interpretation using

the medical image processing and navigation software 3D Slicer

(version 4.10.1, Brigham and Women’s Hospital). Patients with

multiple lesions on their CT scan had the lesion with the largest

diameter selected. Volumes of interests (VOIs) were then confirmed

by another radiologist with 10 years of experience with chest CT

interpretation. Images and VOIs were exported in the NII format for
A

B

FIGURE 1

(A) patient selection and distribution flowchart. (B) model construction and assessment flowchart.
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further analysis. Prior to radiomic feature extraction, the voxel size of

the VOI was resampled to 1*1*1 mm3 via cubic interpolation to

reduce feature value variability due to different voxel sizes. A total of

1746 radiomic features were extracted, including First order,

Shape3D, GLCM, GLSZM, GLRLM, NGTDM, GLDM, and high

order features.
2.5 Reproducibility analysis and
feature selection

Given concerns about the reproducibility of radiomic features, we

performed an intra-observer reproducibility analysis. One author

segmented 50 randomly chosen images at two-time points with an

interval time of one month, producing two VOIs of each selected

patient. Agreement between feature extractions was assessed using

intra-class correlation coefficients (ICCs). An ICC value greater than

0.8 indicated good agreement. To eliminate redundant radiomic

features, we performed a two-step feature selection strategy. MRMR

was initially used to select the 20 most valuable features. The LASSO

method, which is suitable for the regression of high-dimensional data

(18, 20), was then used to select the most useful predictive features. A

radiomics score (Rad-score) was calculated for each patient via the

linear combination of selected features weighted by their

respective coefficients.
2.6 Model construction and validation

We randomly divided the dataset into training and validation sets

with a ratio of 7:3. We then constructed the radiomics model, clinical

model, and radiomics-clinical combined model. Optimal radiomic

features were determined through dimension reduction by MRMR

and LASSO. Clinical variables were selected via univariate and

multivariable logistic regression analysis, which began with the

following clinical candidate predictors: age, gender, site, smoking,

differentiation, pathological type, cT-stage, cN-stage, immuno-

therapy regimen, neoadjuvant cycles, PD-L1 expression, Ki67, and

NLR. The retained optimal radiomic features and clinical variables

whose P-values were <0.05 were used to develop logistic regression

analysis model. AUC, accuracy, sensitivity, specificity, PPV, and NPV

were used to evaluate model performance. The DeLong test was used

to evaluate differences in the ROCs of various models. Calibration of

the training set and validation set of each model was measured using a

calibration curve. The Hosmer-Lemeshow test was performed to

assess the goodness-of-fit of these models. DCA was also performed

on the training set of the three models by calculating the net benefits

over a range of threshold probabilities.
2.7 Statistical analysis

Statistical analysis was performed using R software (version 3.4.3;

http://www.Rproject.org) and IBM SPSS Statistics (version 24; IBM,

New York, USA). Quantitative data was compared using Student’s t-

test or the Wilcoxon test. Categorical data was compared using the c2
test. Predictive performance was evaluated with the AUC of the
Frontiers in Immunology 04
receiver operator characteristic (ROC). The Lasso algorithm was

executed using the “glmnet” package, and multivariate binary

logistic regression, nomograms, and calibration plots were executed

with the “rms” package. Internal validation was performed using the

“rms” package. DCA was performed using the “rmda” package.

Univariate and multivariate logistic regression analyses were used

to select clinical variables with p<0.05 for model construction. A two-

sided P value <0.05 was considered statistically significant.
3 Results

3.1 Clinical characteristics

Eighty-nine eligible patients were included in this retrospective

study. The entire cohort was randomly divided into a training set (n =

64) and a validation set (n = 25) at a ratio of 7:3. The demographics

and clinicopathological characteristics of the patients in the training

and validation cohorts are shown in Table 1. The majority of the

participants were male smokers aged ≤60 who had squamous cell

carcinoma and a PD-L1 expression >1%. Eighty-one patients were

male (91.01%) and 8 were female (8.99%). Fifty-four (60.67%) had a

smoking history. The majority of the tumor histologies included

squamous cell carcinoma (SCC) and adenocarcinoma (ADC). Of

these, 41 (64.1%) cases were SCC and 20 (31.2%) were ADC in the

training cohort, while 18 (72%) were SCC and 6 (24%) were ADC in

the validation cohort. There were no significant differences between

the training and the validation sets in terms of clinical characteristics,

proving that they could be used as training and validation sets

(Table 1). MPR was achieved by 62.5% (40/89) of the training

cohort and 64% (16/25) of the validation cohort (Table 1). No

statistical differences in baseline characteristics were identified

between patients with and without MPR except for ki-67 (p=0.046)

and NLR (p=0.022) in the validation cohort.
3.2 Predictive model development
and testing

3.2.1 Radiomics feature selection and
rad-score construction

A total of 1746 radiomics features were extracted, of which 1251

(71.65%) had an intra-class correlation coefficient of 0.8 or more in

the reproducibility analysis. These were chosen for subsequent

analysis. After dimension reduction with MRMR, the 20 best

features were selected. The Lasso algorithm was used for further

dimension reduction (Figures 2A, B). Seven optimal radiomics

features were chosen to construct the models (Supplement). There

was a significant difference in Rad-score between MPR and N-MPR

patients in the training (P<0.001) and validation cohorts (P =

0.037) (Figure 2C).

3.2.2 Model building
After univariate and multivariate logistic regression analysis, only

pathologic type was identified as an independent predictive value and

used to build further models (Table 2). Three models were built based

on selected radiomics features (Rad-score), pathological-type, or their
frontiersin.org
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TABLE 1 Clinicopathological characteristics of the dataset.

Training cohort(N=64) Validation cohort(N=25) All Patients(%)

MPR N-
MPR

Total(%) p-value MPR N-MPR Total(%) p-value (n=89)

(n=40) (n=24) (N=64) (n=16) (n=9) (N=25)

Sex

Male 36 22 58(90.6) 16 7 23(92.0) 81(91.0)

Female 4 2 6(9.4) 0.82 0 2 2(8.0) 0.12 8(9.0)

Age(yr)

≤60 23 18 41(64.1) 6 7 13(52.0) 54(60.7)

>60 17 6 23(35.9) 0.16 10 2 12(48.0) 0.09 35(39.3)

Smoking History

Smoker or ex-smoker 26 11 37(57.8) 12 5 17(68.0) 54(60.7)

Never smoker 14 13 27(42.2) 0.14 4 4 8(32.0) 0.39 35(39.3)

Lung_Lobe

Left lung 13 9 22(34.4) 6 4 10(40.0) 32(36.0)

Right lung 27 15 42(65.6) 0.68 10 5 15(60.0) 1 57(64.0)

Differentiation

High 3 1 4(6.2) 2 3 5(20.0) 9(10.1)

Moderate 8 6 14(21.9) 7 2 9(36.0) 23(25.8)

Poor 23 14 37(57.8) 4 4 8(32.0) 45(50.6)

Other 6 3 9(14.1) 0.92 3 0 3(12.0) 0.26 12(13.5)

Pathological_type

Squamous carcinoma 32 9 41(64.1) 13 5 18(72.0) 59(66.3)

Adenocarcinoma 7 13 20(31.2) 2 4 6(24.0) 26(29.2)

Other 1 2 3(4.7) 0.003 1 0 1(4.0) 0.14 4(4.5)

cT Stage

cT1 6 2 8(12.5) 0 1 1(4.0) 9(10.1)

cT2 20 10 30(46.9) 7 4 11(44.0) 41(46.1)

cT3 3 8 11(17.2) 3 3 6(24.0) 17(19.1)

cT4 11 4 15(23.4) 0.05 6 1 7(28.0) 0.39 22(24.7)

cN_Stage

cN0 3 3 6(9.4) 1 0 1(4.0) 7(7.9)

cN1 5 5 10(15.6) 2 3 5(20.0) 15(16.9)

cN2 28 15 43(67.2) 11 5 16(64.0) 59(66.3)

cN3 4 1 5(7.8) 0.45 2 1 3(12.0) 0.88 8(9.0)

Clinical Stage

IIA 1 2 3(4.7) 0 1 1(4.0) 4(4.5)

IIB 2 2 4(6.2) 2 1 3(12.0) 7(7.9)

IIIA 23 14 37(57.8) 5 4 9(36.0) 46(51.6)

IIIB 12 3 15(23.4) 5 2 7(28.0) 22(24.7)

IIIC 2 3 5(7.8) 0.35 4 1 5(20.0) 10(11.2)

(Continued)
F
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combination (radiomics-only, clinical-only, and radiomics-clinical

combined model). The ROC curves of the three models were

compared in the training set (Figure 3A) and the validation set

(Figure 3B) for predicting MPR. The AUCs in the training set were

0.82 (95% CI, 0.72-0.93) and 0.68 (95% CI, 0.57-0.80) for the

radiomics-only and clinical-only models, respectively. After

development in the training cohort, both radiomics-only and

clinical-only models accurately predicted MPR in the validation

cohort, with AUCs of 0.76 (95% CI, 0.55-0.97) and 0.66(95% CI,

0.47-0.85), respectively. The radiomics-clinical combined model had

the best performance, with an AUC of 0.84 (95% CI, 0.74-0.93) and
Frontiers in Immunology 06
0.81 (95% CI, 0.63-0.98) in the training and validation

sets, respectively.

The accuracy, sensitivity, specificity, PPV, and NPV of the

radiomics-only, clinical-only, and radiomics-clinical combined

models in the training and validation cohorts were compared and

illustrated in Table 3. These quantitative evaluation metrics were

balanced between their respective training and validation set in all

three models. They were superior in the radiomics-only model

compared with the clinical-only model but performed best in the

radiomics-clinical combined model. ACC was 79%, 72%, and 80%,

sensitivity 85%, 83%, and 80%, specificity 71%, 54%, and 79%, PPV
TABLE 1 Continued

Training cohort(N=64) Validation cohort(N=25) All Patients(%)

MPR N-
MPR

Total(%) p-value MPR N-MPR Total(%) p-value (n=89)

Neoadjuvant_Cycle

1 1 2 3(4.7) 0 0 0(0.0) 3(3.4)

2 15 9 24(37.5) 8 3 11(44.0) 35(39.3)

3 14 5 19(29.7) 5 4 9(36.0) 28(31.5)

4 9 6 15(23.4) 3 2 5(20.0) 20(22.4)

5 1 2 3(4.7) 0.52 0 0 0(0.0) 0.86 3(3.4)

Immunotherapy_Regimen

Pembrolizumab 16 8 24(37.5) 7 4 11(44.0) 35(39.3)

Tisleizumab 9 4 13(20.3) 3 1 4(16.0) 17(19.1)

Sintilimab 10 6 16(25) 3 2 5(20.0) 21(23.6)

Nivolumab 3 1 4(6.2) 3 1 4(16.0) 8(9.0)

Toripalimab 1 1 2(3.2) 0 0 0(0.0) 2(2.2)

Camrelizumab 1 4 5(7.8) 0.45 0 1 1(4.0) 0.77 6(6.8)

PD-L1

≤1% 5 5 10(15.6) 1 2 3(12.0) 13(14.6)

>1% 29 12 41(64.1) 12 6 18(72.0) 59(66.3)

Unknown 6 7 13(20.3) 0.19 3 1 4(16.0) 0.65 17(19.1)

PD-L1

≤50% 23 11 34(53.1) 9 7 16(64.0) 50(56.2)

>50% 10 6 16((25) 4 1 5(20.0) 21(23.6)

Unknown 7 7 14(21.9) 0.52 3 1 4(16.0) 0.60 18(20.2)

Ki-67

≤40% 9 10 19(29.7) 3 6 9(36.0) 28(31.5)

>40% 24 7 31(48.4) 10 2 12(48.0) 43(48.3)

Unknown 7 7 14(21.9) 0.06 3 1 4(16.0) 0.05 18(20.2)

NLR

≤2.75 17 10 27((42.2) 2 6 8(32.0) 35(39.3)

>2.75 22 14 36(56.2) 13 3 16(64.0) 52(58.4)

Unknown 1 0 1(1.6) 0.73 1 0 1(4.0) 0.02 2(2.2)
Data are n/N (%), unless otherwise stated. MPR, Major pathological response.
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83%, 75%, and 86%, and NPV 74%, 65%, and 70% for the radiomics-

only, clinical-only and combined models in the training set,

respectively (Table 3). ACC was 80%, 72%, and 80%, sensitivity

81%, 87%, and 75%, specificity 78%, 44%, and 89%, PPV 87%, 74%,

and 92%, and NPV 70%, 67%, and 67% for the radiomics-only,

clinical-only, and combined models, respectively.
3.2.3 Radiomics-based nomogram construction
The radiomics-clinical combined model, which incorporated Rad-

score and pathologic type, was developed and presented as a nomogram

to predict MPR to neoadjuvant immunochemotherapy (Figure 4A).
Frontiers in Immunology 07
3.2.4 Performance and clinical utility of the
constructed nomogram

The calibration curve of the nomogram for the probability of

MPR demonstrated good agreement between prediction and

observation in the training and validation cohorts of the combined

model (Figure 4B). The Hosmer-Lemeshow test with a calibration

curve had P-values of more than 0.05 (P=0.433, P=0.683 respectively)

in the training and test cohorts, suggesting that the nomogram model

fit well with the data.

The decision curve analysis (DCA) for the nomogram is

presented in Figure 4C. The decision curve showed that if the

threshold probability of the patient is between 0.3 and 0.95, using
A B

C

FIGURE 2

Radiomic feature selection using a least absolute shrinkage and selection operator (LASSO) binary logistic regression model (A, B), with a comparison of
the Rad-scores of the MPR and N-MPR groups (C): Red represents the N-MPR group and blue represents the MPR group. There was a significant
difference in Rad-score between MPR and N-MPR patients in the training (P<0.001) and validation cohorts (P = 0.037). (A) Selection of the tuning
parameter (l) for the LASSO model via 10-fold cross-validation based on minimum criteria. The y-axis indicates binomial deviance. The lower x-axis
indicates the log (l). Numbers along the upper x-axis represent the average number of predictors. The optimal l value of 0.035 with log (l)= - 3.353 was
selected. (B) LASSO coefficient profiles (y-axis) of the 20 texture features. The upper and lower x-axis has the same meaning as in Fig. 2A. A black vertical
line was drawn at the value selected using 10-fold cross-validation in Fig. 2A. The 7 resulting features with non-zero coefficients are shown in the plot.
(C) Comparison of Rad-scores between the MPR and N-MPR groups. Red represents the N-MPR group and blue represents the MPR group. There was a
significant difference in the Rad-scores of MPR and N-MPR patients in both the training (P<0.001) and validation cohorts (P = 0.037).
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both the radiomics model and combined model in the current study

to predict MPR added more benefit than a treat-all-patients or treat-

none scheme. However, the net benefit of the clinical model was

worse than that of the radiomics and combined models.
4 Discussion

Accurate treatment response prediction is critical to stratifying

and selecting patients who can benefit most from neoadjuvant

immunochemotherapy and avoiding ir-sAEs. The present study

developed and validated an accurate radiomics-clinical combined

model to predict a major pathologic response to neoadjuvant
Frontiers in Immunology 08
immunochemotherapy in patients with potentially resectable

NSCLC, with a favorable AUC (0.84) and a high sensitivity (80%)

and specificity (79%), outperforming radiomics-only and clinical-

only models.

Pre-treatment CT images show intratumor spatial variation.

Previous studies have shown that pre-treatment CT radiomics could

reflect tumor CD8 cell infiltration and objective response to immune

checkpoint blockade (ICB) monotherapy (21). The combination of

immunotherapy and chemotherapy could have a synergistic effect.

Several studies have reported on the promising predictive performance

of radiomics models in patients with advanced NSCLC receiving

immunotherapy or immunochemotherapy. However, this is the first

study to the best of our knowledge to predict MPR after neoadjuvant
TABLE 2 Univariate and multivariate analysis of clinical data.

Univariate analysis Multivariate analysis

Variable OR (95%CI) P-value OR (95%CI) P-value

Gender 0.82(0.14-4.84) 0.82 –

Age 1.04(0.97-1.11) 0.25 -

Smoking 2.19(0.78-6.17) 0.14 –

Drinking 1.00(0.31-3.22) 1.00 -

Lung Lobe 1.25(0.43-3.59) 0.68 –

Differentiation 1.09(0.53-2.26) 0.82 -

Pathological type 0.18(0.06-0.56) 0.00 0.18 (0.06; 0.56) 0.0033

Tumor location 0.67(0.22-2.02) 0.47 -

cT stage 0.89(0.54-1.49) 0.67 –

cN stage 1.56(0.78-3.13) 0.21 -

Immunotherapy regimen 0.76(0.54-1.07) 0.12 –

Neoadjuvant cycle 0.97(0.58-1.63) 0.92 -

PD-L1 1.35(0.27-6.79) 0.72 –

Ki-67 4.60(0.39-53.74) 0.22 -

NLR 0.79(0.53-1.16) 0.23 –
A B

FIGURE 3

Receiver operating characteristic curve analysis of three models in the training set (A) and the validation set (B) for predicting Major Pathological
Response.
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immune-chemotherapy in potentially resectable NSCLC using a

radiomics-clinical combined method.

Due to the multiple mechanisms of immunotherapy, atypical

patterns of response produced by immunotherapy (e.g., pseudo-

progression, delayed responses, and hyper-progression) cannot be

correctly assessed using traditional response criteria, making it

difficult to judge the benefits of immunotherapy. The pathological

test remains the gold standard. MPR is an early surrogate of long-term

survival. The nomogram constructed in the present study only contains

Rad-score and pathological type, which can be obtained with a routine

CT scan and biopsy. The present model can also apply to advanced

NSCLC patients to some extent, patients with higher score according to

the nomogram are likely to respond better to immunochemotherapy.

Pathological type was the only chosen clinical variable to build the

nomogram through univariate and multivariate logistic regression
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analyses in the present work. Some phase 3 randomized trials, such as

Keynote 024 (22), CheckMate 026 (23), CheckMate 227 (24), and

CheckMate 017 (25), have already illustrated that squamous NSCLC

benefits more from immune checkpoint inhibitors (ICIs) than

adenocarcinoma NSCLC. There are two reasons for this: first, both

PD-L1 expression and TMB, the two major biomarkers for

immunotherapy, are significantly higher in lung squamous

carcinoma than lung adenocarcinoma; second, previous studies

reported the majority of genomic alterations are distinct between

squamous and adenocarcinoma NSCLC since they have different

origins (26, 27). The difference in tumor infiltrating lymphocytes

(TILs) between the two subtypes may also contribute to ICI clinical

outcomes (28). In our study, 66.3% of the patients had squamous

carcinoma, which is higher than in CheckMate 816 (50.8%). Our total

MPR% (62.9%) thus far exceeded that of CheckMate 816 (36.9%). In
TABLE 3 Model predictive performance.

Accuracy (95%CI) Sensitivity Specificity PPV NPV

R_train 0.80(0.68-0.89) 0.85 0.71 0.83 0.74

R_test 0.80(0.59-0.93) 0.81 0.78 0.87 0.70

C_train 0.72(0.59-0.82) 0.83 0.54 0.75 0.65

C_test 0.72(0.51-0.88) 0.88 0.44 0.74 0.67

Combine_train 0.80(0.68-0.89) 0.80 0.79 0.86 0.70

Combine_test 0.80(0.59-0.93) 0.75 0.89 0.92 0.67
Performance comparisons of the radiomics (train cohort + validation cohort), clinical (train cohort+validation cohort) and combined models (train cohort + validation cohort) in terms of ACC,
sensitivity, specificity, PPV, and NPV.R_train: training cohort of Radiomics signature, R_test: validation cohort of Radiomics signature, C_train: training cohort of clinical signature, C_test: testing
cohort of clinical signature, combine train: training cohort of radiomics-clinical combined signature, combine test: validation cohort of radiomics-clinical combined signature.
ACC, Accuracy; NPV, negative predictive value; PPV, positive predictive value.
A

B C

FIGURE 4

Nomogram, Calibration curve and Decision curve analysis. (A) Nomogram and (B) Calibration curve for Major Pathological Response in the training and
validation groups. (C) Decision curve analysis for each model (clinical (Clinics) model, radiomics (Radiomics) model, and integrated (combined) model).
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addition, the MPR% of both the training and validation sets in the

lung squamous carcinoma subgroup was more than 2-fold higher

than the lung adenocarcinoma subgroup (Table 1).

PD-L1 failed to predict MPR in our study and was not chosen for

model construction. Several neoadjuvant immunochemotherapy

clinical trials, such as NADIM, LCMC3, and NEOSTAR, have

already confirmed that PD-L1 is not an ideal biomarker for

predicting MPR (7, 10, 29). In these studies, although a high

expression of tumor PD-L1 was associated with MPR, it was not

sensitive enough since a substantial fraction of patients with low PD-

L1 expression also achieved MPR/PCR. Neither univariate nor

multivariate logistic regression analyses in our study showed that

PD-L1 is a potential predictor, which is consistent with these findings.

NLR also failed to predict MPR in NSCLC patients receiving

neoadjuvant immunochemotherapy in the present work, which is

inconsistent with a previous study on the topic (13). In that study, a

high baseline NLR level correlated with a poor pathological response.

The reasons for this may be as follows: first, the sample sizes in that

study (79 patients) and ours (89 patients) were small; second, both

studies were retrospective, making bias inevitable; Last but not least,

NLR is an inflammatory indicator and is susceptible to various

factors, such as bacterial infection, that are common in lung cancer

patients. Extensive cohort studies are needed to confirm the value

of NLR.

Our nomogram, which was constructed based on Rad-score and

pathological type, performed exceptionally well on calibration curve

and decision curve analysis, which means that the nomogram fitted

well with our data and was useful clinically.

Despite its promising results, our study has several limitations.

First, this is a retrospective study, making bias inevitable. A prospective

study is needed to further verify our proposed model. Second, our

sample size was small and imbalanced. As neoadjuvant

immunochemotherapy was recently approved by the FDA in March

2022, the study period was short. Moreover, most participants were

male smokers, had squamous carcinoma, and had PD-L1 levels >1%.

Third, only pretreatment CT images were able to predict neoadjuvant

immunochemotherapy response. Dynamic changes in radiomics (delta

radiomics) and other potentially useful clinic-pathological factors, such

as tumor infiltrating lymphocyte, gene-mutation profile, PET images,

or serum densities of specific subgroups of immune cells has not yet

been investigated. Fourth, only the targeted thoracic tumors were

delineated manually and analyzed. Accurate automatic segmentation

methods should be explored and developed in the future. The

radiomics of lymph nodes may also provide valuable information for

predicting the response to neoadjuvant immunochemotherapy.

Although our current results proved that this model was useful,

further confirmation in a larger cohort is mandatory before it can be

applied to routine clinical practice.
5 Conclusion

A constructed easy-to-use nomogram that incorporates radiomics

and clinical feature was able to predict a major pathological response
Frontiers in Immunology 10
to neoadjuvant immunochemotherapy with high levels of accuracy

and robustness. Such a nomogram makes it a convenient tool for

assisting with the individualized management of potentially

resectable NSCLC.
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