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Background: Growing evidence shows a significant association between

intestinal flora and allergic diseases, specifically atopic dermatitis (AD), allergic

rhinitis (AR), and allergic asthma (AA). However, the causality has not yet

been clarified.

Objective: We conducted a bidirectional two-sample Mendelian randomization

(TSMR) analysis to study the causal relationships between intestinal flora

classification and AD, AR, or AA.

Materials and methods: We obtained summary data of intestinal flora, AD, AR,

and AA from a genome-wide association research. The inverse-variance

weighted method is the primary method for analyzing causality in the TSMR

analysis. Several sensitivity analyses were conducted to examine the stability of

TSMR results. Reverse TSMR analysis was also performed to assess whether there

was a reverse causality.

Results: A total of 7 bacterial taxa associated with AD, AR, and AA were identified

by the current TSMR analysis. Specifically, the genus Dialister(P=0.034)and genus

Prevotella(P=0.047)were associated with a higher risk of AD, whereas class

Coriobacteriia (P=0.034) and its child taxon, order Coriobacteriales (P=0.034)

and family Coriobacteriaceae (P=0.034), all had a protective effect on AR. In

addition, the family Victivallaceae (P=0.019) was identified as a risk factor for AR.

We also noticed a positive association between the genus Holdemanella

(P=0.046) and AA. The reverse TSMR analysis didn’t suggest any evidence of

reverse causality from allergic diseases to the intestinal flora.

Conclusion: We confirmed the causal relationship between intestinal flora and

allergic diseases and provided an innovative perspective for research on allergic

diseases: targeted regulation of dysregulation of specific bacterial taxa to prevent

and treat AD, AR, and AA.

KEYWORDS

Mendelian randomization, intestinal flora, atopic dermatitis, allergic rhinitis, allergic
asthma, causality
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1 Introduction

The incidence of atopic dermatitis (AD), allergic rhinitis (AR),

and allergic asthma (AA) have dramatically increased over the past

three decades, resulting in a considerable burden to society (1). AD

is a common inflammatory skin disease characterized by recurrent

eczematous lesions. AR is a non-infectious inflammatory disease of

the nasal mucosa, with typical symptoms of paroxysmal sneezing,

watery nasal discharge, nasal itching and congestion. AA is an

airway inflammatory disease that results in recurring wheezing,

chest tightness, shortness of breath, and mucus production.

Currently, there is no effective radical treatment for AD, AR, or

AA. Glucocorticoids and antihistamines are commonly used for

treating these three allergic diseases; but symptoms tend to rebound

after drug withdrawal (2). AD, AR and AA are associated with

genetic, dietary, and environmental factors (such as air pollution

and exposure to allergens); however, the underlying causes remain

unclear (3). Therefore, there is an urgent need to identify potential

causal risk factors for AD, AR and AA.

The intestinal flora is a dynamic ecosystem known as the

‘second genome’ (4). Intestinal dysbiosis can cause metabolic

disorders of intestinal microorganisms and further lead to

immune dysfunction (5). With an in-depth study of the gut-skin

and gut-lung axes, more attention has been paid to the effect of

intestinal flora on the skin and respiratory tract (6–8). Several

observational studies have reported that the abundance of certain

intestinal flora changes significantly in patients with AD, AR, and

AA compared to healthy individuals, indicating a potential

correlation between intestinal flora and these three allergic

diseases (9–11). Intestinal flora can regulate adaptive immunity

by maintaining the balance between effector T cells (Th1, Th2, and

Th17) and regulatory T cells, which may explain the effect of

intestinal flora on AD, AR and AA (12, 13).

However, owing to the lack of evidence from randomized

controlled trials, it is unclear whether there is a definite causality

between intestinal flora and these three allergic diseases. As the gold

standard for causal inference in epidemiological studies,

randomized controlled trials are sometimes difficult to conduct

because of ethical limitations and high costs. Two sample

Mendelian randomization (TSMR) is an effective alternative (14).

Genome-wide association studies (GWAS) have made great

contributions to the identification of genetic variants related to

diseases, mainly single nucleotide polymorphism (SNP), which can

increase our understanding of the genetic basis of many complex

traits in human diseases (15). TSMR uses genetic variation related

to exposure as an alternative indicator of exposure to study the

causality between exposure and outcome (16). The selected SNPs

are also called instrumental variances (IVs). TSMR simulates

randomization based on the random distribution of genetic
Abbreviations: AD, atopic dermatitis; AR, allergic rhinitis; AA, allergic asthma;

TSMR, two sample mendelian randomization; GWAS, genome-wide association

study; IVW, inverse-variance weighted; SNP, single nucleotide polymorphism;

IVs, instrumental variances; WM, weighted median estimator; MR-PRESSO,

mendelian randomization pleiotropy Residual Sum and Outlier; OR, odd ratio;

CI, confidence interval.
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variants during gametogenesis, conceptually similar to

randomized controlled trials (17). Since these genetic variants

precede diseases progression and are independent of lifestyle and

environmental factors after birth, TSMR can minimize the influence

of confounding factors and reverse causality (16).

In this study, we used the latest available GWAS database

published in 2021 (18) for TSMR analysis to investigate the

possible causality between intestinal flora and AD, AR, and AA,

to provide an innovative perspective for the research of allergic

diseases: targeted regulation of specific bacterial taxa to prevent and

treat AD, AR, and AA.
2 Materials and methods

2.1 Study design

TSMR was used to analyze the causal relationship between

intestinal bacterial taxa and allergic diseases (AD, AR, and AA). The

overall design of this study is shown in Figure 1. To obtain reliable

results, three hypotheses need to be satisfied when performing

TSMR analysis (1): there is a strong correlation between genetic

variants and exposure factors (2); there is no correlation between

genetic variants and confounders; and (3) genetic variants can only

affect the outcome through exposure factors, but not through other

methods, that is, horizontal pleiotropy is not allowed (Figure 1).

Genetic variants that satisfy these three hypotheses can be included

in TSMR analysis as instrumental variables (16).
2.2 Data sources and selection of
instrumental variables

Summary statistics of the intestinal flora were obtained from a

large-scale GWAS study by the MiBioGen consortium (https://

mibiogen.gcc.rug.nl), involving 18340 European ethnic participants

from 11 countries with 122,110 loci of variation (18). We screened

the IVs of intestinal bacterial taxa at five levels (phylum, class, order,

family, and genus) from this GWAS. Fifteen bacterial taxa without

specific species names were eliminated. The GWAS statistics for

AD, AR, and AA were obtained from the data released by FinnGen

Research (https://r7.finngen.fi/) in July 2022. The diagnostic criteria

of AD were based on ICD-8, ICD-9 and ICD-10 standards and the

GWAS statistics contain 16,383,295 loci of variations from 10,277

cases and 278,795 controls. The diagnostic criteria of AR were based

on ICD-9, and ICD-10 standards, and the GWAS statistics of AR

contain 16383313 loci of variation from 8430 cases and 298829

controls. The diagnostic criteria of AA were based on ICD-10

standards and the GWAS statistics of AR contain 16383313 loci

of variation from 8430 cases and 298829 controls.

To obtain more complete results, we used a genome-wide

significance threshold (5 × 10-8) and a locus-wide significance

threshold (1 × 10-5), respectively to screen SNPs related to

exposure (19, 20). Linkage disequilibrium analysis was performed

to satisfy TSMR’s hypothesis 1. The linkage disequilibrium

correlation coefficient was set to r2<0.001 and clumping
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window >10000kb to ensure no linkage disequilibrium among the

included IVs. To avoid horizontal pleiotropy, IVs associated with

risk factors for allergic diseases were excluded using PhenoScanner

V2 (21). Palindromic and incompatible SNPs were excluded when

harmonizing the statistics of exposure and outcome, and SNPs

related to exposure that could not be matched in the GWAS

outcome statistics were excluded. To avoid the influence of weak

instrument bias on causal inference, we used the formula F=b2

exposure/SE
2
exposure to calculate the strength of the IVs (16, 20, 22)

and eliminate IVs with F < 10 (23).
2.3 Statistical analysis

TSMR was conducted to analyse the causality between bacterial

taxa and AD, AR, and AA. In the absence of horizontal pleiotropy,

the inverse-variance weighted (IVW) method can be the primary

method for analyzing causality in TSMR analysis (24). Before that,

we implemented the Cochrane’s Q test to evaluate the heterogeneity

between the IVs. If heterogeneity was detected(P<0.05), the

random-effects IVW model could provide a more conservative

estimate; otherwise, the fixed-effect IVW model would be used

(25). Other methods of TSMR analysis, including the weighted

median estimator (WM) and MR-Egger regression (26), can

supplement the IVW method and provide wider confidence

intervals (27). These three TSMR methods for causal inference

have their model assumptions. The IVW method is suitable for

situations where horizontal pleiotropy does not exist (24); the WM

method assumes that less than 50% of IVs have horizontal

pleiotropy (28). The MR-Egger regression assumes that more

than 50% of IVs are affected by horizontal pleiotropy (26).
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If the result of the TSMR analysis was nominally significant (P <

0.05), we considered that there might be a causal relationship

between the flora and outcome (29). If the causality between

bacterial taxa and outcome is identified as significant by two or

more TSMR methods, the result is considered robust (5).

The existence of horizontal pleiotropy may challenge the second

TSMR hypothesis; therefore, we adopted various methods to

monitor possible horizontal pleiotropy. Specifically, the p-value of

the MR-Egger intercept test and MR pleiotropy residual sum and

outlier (MR-PRESSO) global test can be used to assess the existence

of horizontal pleiotropy, and P < 0.05 was considered statistically

significant (5, 30). The MR-PRESSO outlier test can adjust

horizontal pleiotropy by detecting and removing outliers (31),

and the number of distributions in the MR-PRESSO analysis was

set to 1000 (17).

Additionally, we conducted a leave-one-out sensitivity analysis of

the identified significant results to determine whether the causal

relationship of the TSMR analysis was caused by a single SNP (32).

Finally, a reverse TSMR analysis was performed between allergic

diseases (AD, AR and AA) and the identified significant bacterial

taxa using positive TSMR analysis to examine whether a reverse causal

association existed. The reverse TSMR procedure was the same as that

for the above TSMR analysis. TSMR analyses were performed using the

‘TwoSampleMR’ (version 0.5.6) in R software (version 4.2.1).
2.4 Ethical approval

The GWAS data used in this study were public de-identified

data. The ethics committee approved these data; therefore, there

was no need for additional ethical approval.
FIGURE 1

Overview of present MR analyses and assumptions. AD, atopic dermatitis; AR, allergic rhinitis; AA, allergic asthma; SNP, single nucleotide polymorphism.
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3 Results

IVs were screened according to the conditions described above.

The details of the SNPs, that were eventually included in the TSMR

analysis of intestinal flora and allergic diseases, are presented in

Supplementary Table 1. After harmonization, the number of SNP

involved in each pair of bacterial taxa and allergic diseases was more

than three. The F-statistics of all SNPs were greater than ten,

indicating that there are no weak IVs. Moreover, it should be noted

that there is an inclusive relationship between intestinal flora

classifications. Thus, the SNPs included in the class and their

relevant order may overlap heavily. For example, SNPs of the order

Coriobacteriales, class Coriobacteriia, and family Coriobacteriaceae.
3.1 Results of the TSMR analysis (locus-
wide significance, P<1×10-5)

The causal relationship between each pair of bacterial taxa and

allergic disease was analyzed using the three TSMR methods

(Supplementary Table 2). Twenty-five potential causal

associations between bacterial traits and allergic diseases were

identified using one or more TSMR methods (Figure 2). Among

them, two bacterial taxa related to AD, four bacterial taxa associated

with AR and one bacterial taxon related to AA were cross-validated

using the IVW and WM methods (Table 1 and Figure 3). We

mainly focused on these seven relatively stable causal relationships.

We also performed the leave-one-out sensitivity analysis for the

identified significant bacterial taxa, and the results further validated

the robustness of our results (Supplement Figure 1). In the absence
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of heterogeneity, horizontal pleiotropy, and outliers, the results of

TSMR analysis are credible.

3.1.1 AD
Seven causal associations from bacterial taxa to AD were

identified by the IVW method. Considering the cross-validation,

the results of the two bacterial taxa remained stable. In specific, our

TSMR analysis found that genus Dialister (OR: 0.839, 95%

confidence interval (CI): 0.714-0.987, P=0.034) and genus

Prevotella (OR: 0.924, 95% CI: 0.854-0.999, P=0.047) were

associated with a higher risk of AD. In the sensitivity analysis,

Cochrane’s Q test did not suggest evidence of heterogeneity in the

genus Dialister (P=0.214) and genus Prevotella (P=0.672)

(Supplementary Table 3). The MR-Egger intercept test observed

no horizontal pleiotropy in the genus Dialister (P=0.188) and genus

Prevotella (P=0.914) (Supplementary Table 4). Similarly, MR-

PRESSO global test didn’t detect any horizontal pleiotropy in the

genus Dialister (P=0.231) and genus Prevotella (P=0.667)

(Supplementary Table 5). For the MR-PRESSO outlier test, no

outlier was found in the genus Dialister and genus Prevotella

(Supplementary Table 5).

3.1.2 AR
Eleven causal relationships from bacterial taxa to AR were

identified by the IVW method. Considering the cross-validation,

the results of the four bacterial taxa remained stable. Specifically,

class Coriobacteriia (OR: 0.789, 95% CI: 0.634-0.982, P=0.034) and

its child taxon, order Coriobacteriales and family Coriobacteriaceae,

all had a protective effect on AR. On the contrary, the family

Victivallaceae (OR: 1.107, 95% CI: 1.017-1.205, P=0.019) was
FIGURE 2

Causal analysis of intestinal flora and allergic diseases (locus-wide significance, P<1×10-5). MR-PRESSO, Mendelian Randomization Pleiotropy
Residual Sum and Outlier; IVW, inverse-variance weighted method; WM, weighted median estimator; AD, atopic dermatitis; AR, allergic rhinitis; AA,
allergic asthma.
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associated with a higher risk of AR. In the sensitivity analysis,

Cochrane’s Q test did not suggest evidence of heterogeneity in class

Coriobacteriia (P=0.071), family Coriobacteriaceae (P=0.071),

family Victivallaceae(P=0.938) and order Coriobacteriales

(P=0.071) (Supplementary Table 3). No horizontal pleiotropy was

observed by MR-Egger intercept test in class Coriobacteriia

(P=0.609), family Coriobacteriaceae (P=0.609), family

Victivallaceae(P=0.507) and order Coriobacteriales(P=0.609)
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(Supplementary Table 4). Similarly, MR-PRESSO global test

didn’t detect any horizontal pleiotropy in class Coriobacteriia

(P=0.081), family Coriobacteriaceae (P=0.081), family

Victivallaceae(P=0.938) and order Coriobacteriales(P=0.949)

(Supplementary Table 5). For the MR-PRESSO outlier test, no

outlier was found in class Coriobacteriia, family Coriobacteriaceae,

f am i l y V i c t i v a l l a c e a e and o rd e r Co r i o b a c t e r i a l e s

(Supplementary Table 5).
FIGURE 3

Forest plot of the causality between cross-validated 7 bacterial taxa with the risks of AD, AR, or AA. IVW, inverse-variance weighted method; WM,
weighted median estimator; AD, atopic dermatitis; AR, allergic rhinitis; AA, allergic asthma.
TABLE 1 Summary of causality between intestinal flora and AD, AR or AA (P<1×10-5).

Human gut microbiota Nsnps Traits Method OR 95%CI P-value

Genus Dialister 11 AD WM 0.812 0.664-0.994 0.043

IVW 0.834 0.714-0.987 0.034

Genus Prevotella 11 AD WM 0.872 0.783-0.970 0.012

IVW 0.924 0.854-0.999 0.047

Class Coriobacteriia 13 AD WM 0.752 0.582-0.972 0.030

IVW 0.789 0.634-0.982 0.034

Family Coriobacteriaceae 13 AR WM 0.752 0.583-0.970 0.028

IVW 0.789 0.634-0.982 0.034

Family Victivallaceae 11 AR WM 1.120 1.001-1.252 0.047

IVW 1.107 1.017-1.205 0.019

Order Coriobacteriales 13 AR WM 0.752 0.574-0.985 0.039

IVW 0.789 0.634-0.982 0.034

Genus Holdemanella 11 AA WM 1.175 1.018-1.355 0.028

IVW 1.124 1.002-1.261 0.046
fron
AD, atopic dermatitis; AR, allergic rhinitis; AA, allergic asthma; Nsnp, number of single nucleotide polymorphism; WM, weighted median estimator; IVW, inverse-variance weighted method;
OR, odd ratio; CI, confidence interval.
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3.1.3 AA
Three causal associations from bacterial taxa to AA were

identified by the IVW method. Considering the cross-validation,

only one bacterial taxon remained stable. Specifically, our TSMR

analysis found that genus Holdemanella (OR: 1.124, 95% CI: 1.002-

1.261, P=0.046). In the sensitivity analysis, Cochrane’s Q test did

not suggest evidence of heterogeneity in the genus Holdemanella

(P=0.198) (Supplementary Table 3). No horizontal pleiotropy was

observed by the MR-Egger intercept test in the genus Holdemanella

(P=0.886) (Supplementary Table 4). Similarly, MR-PRESSO global

test didn’t detect any horizontal pleiotropy in the genus

Holdemanella (P=0.227) (Supplementary Table 5). For the MR-

PRESSO outlier test, no outlier was found in the genus

Holdemanella(Supplementary Table 5).
3.2 Results of the TSMR analysis (genome-
wide significance threshold, P<5 × 10-8)

In the TSMR analysis of intestinal flora as a whole and allergic

diseases, the IVW, WM, and MR-Egger regression methods did not

find any significant causal associations. In the sensitivity analysis,

Cochrane’s Q test did not suggest evidence of heterogeneity, MR-

Egger intercept test and MR-PRESSO global test didn’t detect any

horizontal pleiotropy, and the MR-PRESSO outlier test didn’t find

any outliers. All the results are shown in Supplementary Table 6.
3.3 Reverse TSMR analysis

The results of reverse TSMR analysis are presented in

Supplementary Table 7. Considering cross-validation, we did not
Frontiers in Immunology 06
find any reverse causal relationships between the intestinal flora

classification shown in Table 1 and allergic diseases.
4 Discussion

Using large-scale GWAS statistics, seven bacterial traits

associated with AD, AR, and AA were identified by the current

TSMR analysis (Figure 4). In accordance with some prospective

observational studies (10, 33) and animal experiments (34, 35), our

TSMR study also revealed that the genus Dialister and genus

Prevotella may be protective factors for AD. Th2-skewed and

Th17-skewed immune dysregulation are some of AD’s most

significant pathogenesis mechanisms (36), whereas Treg cells can

inhibit Th2 and Th17 allergic inflammation and restore immune

tolerance (37). Furthermore, the genus Dialister is a propionate

producer in the intestinal tract (38), and genus Prevotella can break

down fibers and produce propionate and butyrate (39). Several

studies have discovered that the content of short-chain fatty acids

(SCFAs) such as propionate and butyrate in patients with AD is

significantly lower than that in healthy individuals (40, 41). As

important SCFAs, propionate and butyrate can inhibit the Th2-

skewed and Th17-skewed inflammation in AD. Specifically, both can

inhibit histone deacetylase (42) and induce the differentiation of

peripheral CD4+T cells to Treg cells, thus producing anti-

inflammatory cytokine IL-10 and inhibiting the function of Th2

and Th17 cells (43). In addition, some studies have shown that

butyrate can inhibit the release of histamine and other inflammatory

mediators from mast cells by inhibiting the interaction between

Immunoglobulin E and mast cells (44). Therefore, we speculate

that the protective effect of these two bacterial taxa on AD might

be related to SCFAs, especially propionate and butyrate.
FIGURE 4

Bacterial taxa associated with AD, AR or AA identified by the current MR analysis. The blue arrow indicates that the bacterial taxa is the protective
factor of the outcome and the red arrow indicates that the bacterial taxa is the risk factor of the outcome. MR, Mendelian randomization; IVW,
inverse-variance weighted method; WM, weighted median estimator.
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The Genus Holdemanella was considered as risk factor for AA

based on the TSMR analysis. Reportedly, the abundance of the

genus Holdemanella is negatively correlated with the propionate

content in patients with diabetes and cognitive impairment (45).

Thus, we speculate that the genus Holdemanella may promote Th2

inflammation in AA by affecting SCFAs such as propionate (46).

However, the exact mechanism is still unclear and it is necessary to

further study the possible role of the genus Holdemanella.

Class Coriobacteriia and its child taxa, order Coriobacteriales,

and family Coriobacteriaceae, all have negative effects on AR,

whereas, family Victivallaceae is the risk factor for AR. The

relationship between these intestinal florae and allergic diseases

was cross-validated using two IVW and WM methods. However,

the function of this bacteria is poorly understood. Currently, there

are no studies on the relationship between these bacterial taxa and

allergic diseases, and the specific flora of AR and AA were reported

for the first time in this study. Therefore, our study may provide a

new perspective for mechanistic research on AR and AA.

In addition to the seven stable causal associations above, the IVW

method yielded several interesting results, which are supported by

previous studies.We also discovered that the family Bacteroidaceae and

its child taxon genus Bacteroides were both risk factors for AD. Studies

have reported that the abundance of the genus Bacteroides in patients

with AD is significantly higher than that in healthy people (47), and its

proportion is positively correlated with the severity of AD symptoms

(33). Lipopolysaccharide, the metabolite of the family Bacteroidaceae

and genus Bacteroides, can promote Th2 inflammation in AD (48).

Moreover, the genus Bacteroides and genus Prevotella share a common

ancestor but have inhibitory effects on each other (49). Genus

Bacteroides is dominant in people who consume protein and animal

fat in their main diet. In contrast, genus Prevotella is predominant in

people who take fruits and vegetables as their main diet (50). The

research of Nosrati et al. showed that vegetable intake could improve

AD symptoms (51). This suggests that the relationship between

intestinal flora and AD can be studied from the perspective of diet in

the future. After all, it is much easier to adjust eating habits than to

change genetic or environmental factors.

Butyrate, a metabolite of gut microbiota, may be an important

connector between gut microbiota and allergic diseases (52). Genus

Subdoligranulum (53) and genus Collinsella (54), both butyrate

producers, were also determined to be protective factors of AR and

AA by the IVWmethod. However, there are some differences in the

role of butyrate in patients with AR and AA. Specifically, Th2-

skewed and Th17-skewed immune dysregulation are important

pathogenic mechanisms of AR (55). Similarly, the genus

Subdoligranulum may also inhibit Th2 and Th17-mediated

inflammation in AR by producing butyrate. In addition, IL-4, an

important cytokine in Th2 inflammation, can impair the airway

epithelial barrier function in AR patients. In this case, butyrate can

improve the function of the airway epithelial barrier (56), which

may explain the protective effect of genus Subdoligranulum on AR.

Moreover, the inflow of eosinophils into the lung parenchyma is a

hallmark of AA (46). Butyrate flows into eosinophils through

monocarboxylate transporters and promotes apoptosis (57). In

addition, type 2 innate lymphoid cells (ILC2) can promote T2
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immunity in AA (46). Butyrate can inhibit the release of type 2

immune factors such as IL-5 and IL-13 by ILC2 cells, which can

reduce the inflammatory response of AA (58).

This study has several advantages. Firstly, this is the first bi-

directional TSMR study to reveal the causal relationship between

intestinal flora and allergic diseases (AD, AR, and AA), which is not

disturbed by confounding factors or reverse causality. Second, we

set strict conditions for the screening of instrumental variables, and

only when more than two TSMR methods identify the causal

relationship can it be considered conceivable. Thirdly, we

provided evidence for research on the intestinal-skin and

intestinal-lung axes from a genetic perspective. Seven bacterial

taxa associated with AD, AR, and AA were identified using

TSMR analysis. These identified significant bacterial taxa could

serve as candidate microbiome interventions in future clinical trials

of allergic diseases. Meanwhile, our findings may provide an

innovative perspective for research on allergic diseases: targeted

regulation of specific bacterial taxa such as supplementing beneficial

bacteria and inhibiting the growth of harmful bacteria to prevent

and treat AD, AR and AA.

There are also some limitations of this study. Firstly, the

number of instrumental variables involved in GWAS statistics of

intestinal flora is limited, and there are no data available at the

species level. Secondly, we could not determine whether there were

overlapping participants in the GWAS data of the exposures and

outcomes involved in this study. Thirdly, demographic data were

lacking in the original research; therefore, we could not perform

subgroup analysis on factors such as gender. Our results need to be

verified by further clinical and basic research. In future study, we

will increase the sample size and more accurately explore the

relationship between intestinal flora and allergic diseases at the

species level.
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