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Non-hematopoietic lymphoid stromal cells (LSC) maintain lymph node

architecture and form niches allowing the migration, activation, and survival of

immune cells. Depending on their localization in the lymph node, these cells

display heterogeneous properties and secrete various factors supporting the

different activities of the adaptive immune response. LSCs participate in the

transport of antigen from the afferent lymph as well as in its delivery into the T

and B cell zones and organize cell migration via niche-specific chemokines. While

marginal reticular cells (MRC) are equipped for initial B-cell priming and T zone

reticular cells (TRC) provide the matrix for T cell-dendritic cell interactions within

the paracortex, germinal centers (GC) only form when both T- and B cells

successfully interact at the T-B border and migrate within the B-cell follicle

containing the follicular dendritic cell (FDC) network. Unlike most other LSCs,

FDCs are capable of presenting antigen via complement receptors to B cells, which

then differentiate within this niche and in proximity to T follicular helper (TFH) cells

into memory and plasma cells. LSCs are also implicated in maintenance of

peripheral immune tolerance. In mice, TRCs induce the alternative induction of

regulatory T cells instead of TFH cells by presenting tissue-restricted self-antigens

to naïve CD4 T cells via MHC-II expression. This review explores potential

implications of our current knowledge of LSC populations regarding the

pathogenesis of humoral immunodeficiency and autoimmunity in patients with

autoimmune disorders or common variable immunodeficiency (CVID), the most

common form of primary immunodeficiency in humans.
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1 Introduction

Stromal cells comprise of heterogeneous populations of

mesenchymal cells, blood endothelial cells or lymphatic endothelial

cells. The mesenchymal stromal cells differ by their tissue localization,

their function and phenotype. LSCs are specialized stromal cell

subpopulations within lymphoid tissues. They form reticular

microenvironments to support adaptive immune cell retention,

activation, proliferation, and differentiation in homeostatic conditions

and in response to antigenic stimulation (1, 2). The reticular

microenvironment of secondary lymphoid organs is mainly

generated by heterogeneous fibroblastic reticular cells (FRCs)

differing in length and number of cytoplasmic extensions. During an

immune response, lymph nodes (LNs) require expansion to shelter

proliferating lymphocytes. Thus, LSC plasticity is beneficial to

accommodate LNs changes in size and architecture, including the

formation of germinal centers (GC). FRCs and lymphatic endothelial

cells (LEC), two LSC populations that express podoplanin, control this

process of LN expansion. Binding of FRCs and LECs via podoplanin to

C-type lectin-like type II transmembrane receptor (CLEC-2) on mature

dendritic cells releases the lymph node internal tension and allows its

expansion via FRC and LEC stretching and proliferation (3). LSCs

create the niche properties of these microenvironments not only by

structural components, but also by the secretion of soluble factors that

guide, retain, and promote immune cells in specific zones of the lymph

node. In a review published in 2021, Grasso et al. identified fourteen

LSCs subsets in human and twenty-one in mice (4). Single-cell RNA-

seq based experiments report up to nine different clusters of peripheral

non-endothelial LSCs in mice (5).

Common variable Immunodeficiency (CVID) is the most

common form of human primary immunodeficiency. The defining

immunological feature is hypogammaglobulinemia and poor vaccine

response (6, 7) due to impaired production of specific

immunoglobulins especially of IgA, IgG isotype and reduced output

of long-lived memory B cells and plasma cells (8, 9).

CVID comprises a heterogeneous group of disorders. CVID patients

have been divided into subgroups based on either their clinical or their

immunological presentation. When grouped according to clinical

presentation, patients who present only with infectious complications

belong to the CVIDio (infection-only) and patients who present further

manifestations of immune dysregulation belong to the complex CVID

(CVIDc) group. Immune dysregulation in CVIDc includes generalized

lymphadenopathy, granulomatous disease, interstitial lung disease,

gastroenteropathy and autoimmune manifestations (10). Additionally,

different suggestions have been made how to divide CVID patients

according to immunological parameters. The most commonly used

classification is EUROClass (11, 12). Here, patients are divided based

on the B-cell phenotype into patients with and without B cells. Patients

with B cells are further subdivided into patients with normal or strongly

reduced switched memory IgM-IgD-CD27+ B cells with or without an

expansion of activated CD21low B cells (12). The more severe reduction

of the switched memory B cells and the expansion of CD21low B cells is

associated with the complex presentation of CVID patients (12). Both

impaired production of specific class-switched immunoglobulins and

reduced output of long-lived memory B cells and plasma cells point

towards a disturbed function of GCs. Histologically, in some patients, GC
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formation is severely disturbed (13), in others GC formation is well

preserved or even associated with follicular hyperplasia but associated

with a failure of GC output (14). The CVIDc phenotype as well as the

accumulation of CD21low B cells in peripheral blood is associated with

the occurrence of ill-defined GCs in secondary lymphoid tissues (12). In

2014, Unger et al., described a perturbed organization of the FDC

network in CVID patients with ill-defined GCs (15), but to this day,

the potential implications of the lymphoid stromal compartment in

CVID pathogenesis has never been characterized. Considering the

coordinating role of stromal cells in the orchestration of the immune

response, we propose a review of LSC subsets and their function and

hypothesize potential detrimental effects of altered LSC-immune cell

interaction in the failure of memory formation and immune tolerance

in CVID.
2 Specialized stromal niches during an
immune response

Lymph nodes consist of the cortex, paracortex and medullar

region, containing-B-cell follicles, T cells and plasma cells

respectively (Figure 1). Afferent lymph drains into the subcapsular

sinus where it encounters the first subset of stromal cells, the marginal

reticular cells (MRC). MRCs produce CXCL13 and the receptor

activator of nuclear factor kappa-B ligand (RANKL). MRCs reside

in close proximity to LECs and subcapsular sinus macrophages,

which present antigen to naïve GC precursor B cells to prime

humoral immune response in GCs (16). In mice, MRCs generate a

niche fostering the development of subcapsular sinus macrophages

through RANK-RANKL interaction (17). MRCs are considered,

along with CD21/Podoplanin double negative LSCs (18), as

potential precursors of follicular dendritic cells (FDC), of which

they can replenish after their depletion (19, 20). Interestingly, B-cell

activating factor (BAFF), a significant hallmark of FDCs supporting

B-cell differentiation and survival (21), is also expressed by MRCs

(22). Additionally, Sato et al. identified splenic MRCs as phagocytes

helping to clear apoptotic GC B cells in CD19eGFP mice, highlighting

a central role of MRCs in GC homeostasis (23).

Chemokines and antigens contained in the lymph efficiently enter

the paracortex, the area where T cells interact with antigen presenting

cells (24), via reticular conduits assembled from extracellular matrix

bundles of elastin or collagen (25, 26) secreted from by T zone

reticular cells (TRCs). These conduits are found mainly within the

paracortex and much less in the B-cell zone. TRCs control T-cell

activation and localization in the paracortex by secreting CCL2

(ligand of CCR2), CCL5 (ligand of CCR1, CCR3 and CCR5), CCL7

(ligand of CCR1, CCR2, CCR3 and CCR5), and CXCL16 (ligand of

CXCR6). TRCs also attract CCR7high-expressing B cells (27, 28) and

T cells into the paracortex by secreting the CCR7 ligands CCL19 and

CCL21 (Figure 1) (29). In addition to chemokine secretion, TRCs

form guardrails with their cytoplasmic extensions, preventing T cells

to migrate out of the T-cell zone. In 2014, Cremasco et al. performed a

genetic ablation of lymph node TRCs in a mouse model and observed

an altered localization of T cells in the paracortex (30).

At the initiation of an immune response, antigen-activated GC

precursor B cells and activated T cells meet at the border of the T- and
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B-cell zone. In the case of a successful cognate interaction, both will

progress to form a GC within B cell follicles of the cortex, where B

cells undergo somatic hypermutation, affinity maturation, selection,

and memory formation (31, 32). This highly specialized

microenvironment consists of a “dark zone” and a “light zone”

defined by the T-B cellular and cytokine composition. GC B cells

usually migrate between both zones before differentiating into long-

lived plasma or memory B cells (32). Both zones of the GCs present

differences in reticular architecture and cellular diversity e.g. LSCs

direct the formation of these zones by two opposite chemokine

gradients: CXCL12 and CXCL13 (1, 33, 34). These chemokines

diffuse in a solubilized form in the extracellular environment or

alternatively, bind to extracellular matrix components to create

short, immobilized gradients on extracellular surfaces (1, 35).

Within the dark zone, CXCL12-expressing reticular cells (CRCs)

display thin and cytoplasmic extensions actively shaping a reticular

network (34), allowing activated B cells, centroblasts, to crawl around

the GC in response to a CXCL12 gradient. This is a result of CXCL12,

also known as stromal-derived factor-1 (SDF-1), being the main

ligand of the CXCR4 receptor, which is expressed on centroblasts

(Figure 1). Interestingly, CRCs do not express the markers found on

FDCs, FRCs, and complement 3-tagged (C3) antigen-capture

mediators: FcɣRII, CD35, suggesting that CRCs do not act as

antigen-presenting cells (34, 36).
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After proliferation and somatic hypermutation of BCR variable

region genes of both heavy and light chain (31), centroblasts

sequentially downregulate their CXCR4 expression and differentiate

into non-proliferating CXCR5-expressing centrocytes and migrate

towards the light zone. This movement occurs along the soluble

homeostatic CXCL13 gradient, also known as B cell-attracting

chemokine 1 (BCA-1) and is produced by FDCs and TFH in humans.

CXCL13 can diffuse throughout the tissue reticular fibers (33); or

alternatively, CXCL13 can interact with extracellular matrix

components directly (such as heparin). This allows the formation of

shortly and sharply immobilized CXCL13 gradients (1). CXCL13 is then

able to re-solubilize via the activity of the protease cathepsin B, an

essential process for the formation of B-cell follicle (1). FDCs create a

network of cytoplasmic extensions in the light zone far denser than the

CRC network seen in the dark zone. Centrocyte migration in the light

zone is crucial during immune responses, BCR are selected for high

affinity antigen receptor specificity by TFH cells and FDCs. FDCs,

however, do not process antigens but acquire native antigens through

immune-complex internalization via the complement receptor CR1

(CD35) or CR2 (CD21) in an actin-dependent manner. These immune

complexes are retained in non-degrading endosomal vesicles for an

extended period. Periodically, these complement-opsonized immune

complexes cycle to the centrocytes cell surface (37) resulting in

antigen-driven selection within the niche (Figure 2). Alternatively,
FIGURE 1

Lymph node stromal cells subset localization and functions. In the different zones of a lymph node, highly specialized lymphoid stromal cells (LSCs)
secrete different chemokines and survival factors contributing to the organization of the lymph node, permitting the different steps of the adaptive
immune response to take place successfully. Beside the selective secretion of chemokines, LSCs also contribute to the structure and transportation of
lymph-derived antigens by the production of extracellular matrix including reticular conduits. FDC as the main LSCs within the light zone of GCs have
the additional capacity of antigen presentation by surface expression of immune complex bound antigen.
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FDCs can capture and retain lymph-borne low molecular weight

antigens (smaller than 70kDa) that arise from reticular conduits

unsheathed by TRCs cytoplasmic processes as mentioned above

(Figure 1) (26, 38).

FDCs have been reported to support the survival and proliferation of

positively selected centrocytes in GCs by the secretion of the survival

factor BAFF (39, 40). On the other hand, Seyler et al. described that

BAFF/APRIL blockade results in the destruction of the FDC network

(41), indicating that BAFF is directly or indirectly involved in the

formation or maintenance of the FDC network within GCs (42).

After positive selection in the light zone of GCs, centrocytes will

differentiate into long-lived memory B cells or plasma cells (31, 32).

While little is known whether there is a specific niche for memory B

cells, plasma cells locate mainly to the medullary region of lymph

nodes beside and before migrating to the bone marrow. In the lymph

node, medullary reticular cells (medRC), and medullary

macrophages, secrete interleukin-6 (IL-6), a cytokine involved in B

cell differentiation into plasma cells, and survival factors such as the
Frontiers in Immunology 04
A-proliferation-inducing-ligand (APRIL), extending plasma cell

survival (43, 44) (Figure 1).

Thus, the different subsets of LSCs play essential roles at all the

sites of the normal immune response in secondary lymphoid

tissues (Table 1).
3 LSCs and loss of immune tolerance

LSCs are also involved in maintaining peripheral tolerance by

regulating activation and expansion of autoreactive T- and B-cell

clones within secondary lymphoid organs. This aspect of LSCs has

mostly been studied in mice, with only a few studies describe these in

human LSCs. In murine lymph nodes, FRCs and LECs mediate tolerance

via the expression of the AIRE-like protein DEAF-1 (deformed

epidermal autoregulatory factor-1 homolog), allowing the presentation

of tissue-restricted antigens to CD8 T cells (45) (Figure 2A). These

stromal cell subsets can act as analogs of medullary epithelial cells in the
FIGURE 2

Potentially altered function of lymphoid stromal cells in patients with CVID and autoimmunity. LSCs may contribute to altered immune function in CVID
by several mechanisms. In homeostasis, TRCs maintain tolerance through the presentation of self-restricted antigens via MHC-II expression, in an IFNɣ-
dependant manner. IFNɣ activates the promoter IV region of the class II transactivator CIITA leading to MHC-II expression. Upon the recognition of self-
restricted antigens presented by TRCs, CD4 T cells differentiate in an IL-2-dependent manner into FOXP3 Treg, preventing the expansion of autoreactive
TFH cells (A). An increased MHC-II expression due to high IFNɣ expression in secondary lymphoid tissues combined with low local IL-2 levels could
contribute to the expansion of TFH cells at the expense of Treg cells observed in lymph nodes of CVID patients with autoimmune manifestations (D).
Additionally, TRCs can also modulate tolerance of CD8 T cells by expressing DEAF-1, which mediates the a MHC-I mediated presentation of tissue-
restricted antigens under tolerizing conditions thereby inhibiting the generation of autoreactive CD8 T cells (A). A downregulation of DEAF1 in TRCs
might contribute to the observed autoimmunity in some of the patients (D) In addition, as the serum of CVIDc patients often present high levels of BAFF,
an increased production of BAFF by FDCs combined with a unlimited TFH support increases the risk of a defective B cell selection (B, E). A dampened
CXCL12 secretion by CXCL12hiLepRhi medRCs could alter the migration of CXCR4+ plasmablasts into the medullary cords (C, F) and contribute to the
potential lack of GC-derived plasma cell response in CVID.
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thymus mediating tolerance induction (45). In addition, LSCs can

present tissue-restricted self-antigens via MHC-II to naive CD4 T cells

in the absence of co-stimulatorymolecules (46). The expression ofMHC-

II by TRCs is stimulated by the activity of the IFNg-inducible promoter

IV (pIV) region of the class II transactivator (CIITA) (Figure 2A) (46).

The presentation of self antigens induces a conversion of CD4 T cells into

FOXP3-expressing regulatory T cells (Treg) rather than autoreactive

TFH cells in an IL-2/CD25 signaling-dependent manner (47). Blockade

by neutralizing anti-IL-2 antibodies reduces Treg conversion and

enhances autoreactive TFH cell proliferation, subsequently driving an

expansion of autoreactive GC B cells (47) (Figure 2B). Additionally,

deleting MHC-II in murine LECs leads to a reduced Treg proliferation,

suggesting an essential role of LECs in supporting Treg homeostasis (48).

Furthermore, FDCs (Figure 2B) are a major source of IFNa and are

thus considered as active players in the pathogenesis of murine SLE

models (49). It is still unknown how an increased FDC proliferation

induced by IFNa affects tolerance (50). Unfortunately, there is limited

literature describing potential links between LSC function and SLE in

humans. In the Mrl/lpr mouse model of lupus, lymph nodes display an

abnormal architecture and hypertrophy (51). The expansion of
Frontiers in Immunology 05
autoreactive B cells in the 564 Igi mouse model of SLE (expressing a

transgenic polyreactive BCR reacting to nucleic acid antigens), is

promoted by IFNa secretion from FDCs after TLR7 stimulation by

ssRNA. Thus, TLR-induced secretion of IFN type I by FDCs may

contribute directly to an altered peripheral immune tolerance (49).

Similarly, altered secretion of survival factors such as BAFF, in the GC

niche can contribute to autoimmunity by extended survival of autoreactive

cells as seen in a BAFF-transgenic mouse model (52) (Figure 2B).

In support of the reported role of stromal cells in tolerance

maintenance or pathogenesis of autoimmunity (46, 48, 53–55),

LSCs are thought to be involved in the pathogenesis of rheumatoid

arthritis (RA). Indeed, the lymph node stromal microenvironment

displays alterations during the earliest phases of the disease. In vitro,

human RA LSCs express less CXCL12, and secrete less CCL19,

CCL21 and CXCL13 upon stimulation with TNFa and LTa1b2
(56), potentially affecting migration, survival and selection of

immune cells during the onset of RA (Figure 2C). Additionally, the

capacity to expand lymph nodes during immune responses is also

altered in RA-risk and in RA-early phase patients. RA LSCs display a

reduced contractility as compared to non-disease LSCs (57). RA-risk
TABLE 1 Lymphoid stromal cell subtypes in human.

Lymphoid Stromal Cell
subtype

Abbreviation Localization Markers Function

TRC: T-zone
reticular cells

T zone PDPN+ CD31-
CCL21+ CCL19+
IL-7+, CD157+
Madcam1-

Shape reticular backbone of secondary lymphoid organs (SLO). Allow
antigen circulation in reticular conduits. Produce collagen. Secrete
chemotactic (CCL21, CCL19) and survival (IL-7) factors. Controls SLO
microarchitecture through PDPN/CLEC-2 axis.

MRC: Marginal
zone reticular
cells

Marginal zone
Interfollicular
region. Below
subcapsular sinus
(SCS)

CD157+
Madcam1+

Precursors of FDC, secrete RANKL and CXCL13. Create a niche for SCS
macrophages through RANKL expression

MedRC:
medullary zone
reticular cells

Medullary zone CD157-
Madcam1-

Secrete IL-6, CXCL12, BAFF. Form a dense meshwork inside medullary
cords by expressing collagen I and laminin.

FDC: Follicular
dendritic cells

Light zone of
germinal centers
(GC)

PDPN+ CD31-
CXCL13+ CD21
+ CD35+ BAFF

Immune complexes cycling and presentation through CD21 and CD35
expression. Secrete CXCL13 for B cell migration in the GC light zone.
Shape a dense reticular network.

CRC: CXCL12
expressing
reticular cells

Dark zone of GC CXCL12+ Secrete CXCL12 for B cell migration in the GC dark zone. Shape a
reticular network allowing B cells to easily crawl along CXCL12 gradient.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1122905
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cousin et al. 10.3389/fimmu.2023.1122905
individuals also show lower numbers of lymphoid tissue inducer cells,

which are crucial for lymphoid tissue formation and homeostasis

through close interactions with stromal cells (57, 58). Overall, these

results suggest that the stromal compartment of lymph nodes is

dysfunctional and potentially contributes to autoimmunity and RA.
4 Potential role of LSCs in the
pathogenesis of common variable
immunodeficiency (CVID)

The failure of long-lived switched memory and plasma cell

responses in CVID (8) suggests a failure of GC function. Fitting

this hypothesis, GC formation is frequently altered in CVID patient’s

secondary lymphoid organs. Thus, in some patients mature GCs and

plasma cells are absent in LNs, as seen in patients with ICOS

(inducible co-stimulator) deficiency (13), while in LNs of CVID

patients with non-malignant lymphoproliferation, GCs are gigantic

but irregularly shaped, with plasma cells and memory B cells are still

strongly reduced and displaced within follicles (15). Despite the fact

that this knowledge exists for over 20 years, the pathomechanisms

underlying the GC output failure is poorly understood. At present no

report on LSCs - essential for establishing the GC niche - have been

published in CVID patients. The only report on an altered stromal

environment in CVID describes stromal cells isolated from bone

marrow failing to support the development of pro-B cells into

immature B cells (59). The alterations in secondary lymphoid

tissues of CVID patients would provide unique opportunities to

study the role and interaction of LSCs within the adaptive immune

response. In 2014, Unger et al. showed by histological analysis a

disruption of the CD23+ FDC network in addition to irregularly

shaped gigantic and poorly polarized GCs in LNs of CVID patients

(15). As LSCs are involved in shaping the GC compartment by the

secretion of chemokines (CXCL12, CXCL13, CCL19, CCL21),

survival factors (IL-7, RANKL), the generation of reticular conduits

and the presentation of antigen (CR1, CR2 expression by FDCs), we

hypothesize that an impaired interaction between lymphocytes and

LSCs in CVID patients may contribute to the altered GC’s

polarization and microenvironment and therefore result in the poor

GC output in some of the patients. It is also intriguing that these

irregularly-shaped GCs are associated with autoimmunity in these

CVID patients characterized by an increased circulation of T-

bethighCD21low B cells (15), an increased number of T-bet

expressing cells in GCs, and local as well as systemic TH1-driven

inflammatory environment (12, 60). Indeed, in CVIDc patients with

immune dysregulation, the CD4 T cell differentiation appears to be

redirected toward a TH1 phenotype. This shift leads to an

accumulation of T-bethighCD21low B cells in peripheral blood and

of increased IFNɣ production in secondary lymphoid organs

(12) (Figure 2D).

As CVID patients with autoimmune manifestations often present

a decreased TREG/TFH ratio (61), it will be interesting to test for a

reduced IL-2 as an important factor regulating this ratio and a

potentially altered capacity of FRCs and LECs to mediate tolerance

by regulating autoreactive FH cell development of CD8 T cells as

potentially suggested by Klocperk et al. (62) mediated by FRCs and
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LECs in CVID, the investigation of their expression of DEAF-1 in

CVID-derived LN biopsies may be of interest (Figure 2D).

Up to 30% of CVID patients present autoimmune manifestations

(11, 63, 64). These include different forms of autoimmunity ranging from

mainly autoantibody-mediated, mixed T- and B-mediated autoimmunity

in interstitial lung disease or arthritis and mostly T-cell driven

autoimmune enteropathy. Autoantibody-mediated manifestations

include especially autoimmune hemolytic anemia and immune

thrombocytopenia (11) which represent the most frequent

autoimmune manifestations in CVID. Autoimmune cytopenias are

characterized by a reduced number of class-switched memory B cells,

an expansion of CD21low B cells in peripheral blood (65, 66), as well as a

dysregulated B and T cell homeostasis with elevated serum levels of Fas-

ligand, IL-10 and BAFF (66). The best example for a T- and B cell

mediated immune manifestation in CVID is the occurrence of a

granulomatous and lymphocytic interstitial lung disease where

Maglione et al. described even tertiary lymphoid structures containing

B cells and CD23 positive FDCs within the affected lung tissue (67). Later,

Ng et al. observed a dense and preserved CD21 positive FDC network in

tertiary lymphoid structures of two CVID patients with interstitial lung

disease (68). The bronchioalveolar fluids of these patients reflect the

alveolar lymphocytic inflammation and contain a high percentage of

CD21low B cells (69). Knowing that the stromal/immune cell

interactions play a central role in maintenance of tertiary lymphoid

structures by generating an environment favorable for lymphoid

neogenesis (70), it would be of interest to investigate the stromal cell

distribution and phenotype in TLS in lung biopsies fromCD21low CVID

patients with inflammatory or autoimmune pulmonary diseases.

The pro-survival factors of B cells and plasma cells BAFF and APRIL

are often overexpressed in various autoimmune disorders including RA

and SLE (41, 71). To date, mutations in their receptors BAFF-R (72) and

TACI (73) and APRIL (74) but not BAFF have been associated with

CVID. In 2007, Knight et al. reported high levels of BAFF and APRIL in

peripheral blood of CVID patients (75). It remains to be investigated

whether the autoimmune manifestations observed in some CVID

patients are associated with BAFF and APRIL increased

concentrations. Knowing that dendritic cells, macrophages (76), FDCs

(77, 78), medRCs (44) and possibly MRCs (79) can secrete BAFF/APRIL,

high concentrations of BAFF/APRIL in peripheral blood may reflect

altered BAFF/APRIL secretion by the stroma niche of GCs, supporting

the local expansion and survival of autoreactive B cells in CVID patients

with autoimmune dysregulations (Figure 2E). Similarly, the displacement

of class-switched plasma cells to intra-follicular instead of medullary

regions in many CVIDc patients with lymphadenopathy (15) may be

secondary to altered LSC mediated chemokine gradients or plasma cell

niches (Figure 2F). In 2018, Takeuchi et al. described a medRC subset

located in the medullary cords of mice (80). These cells were

CXCL12highLepRhigh, and thus might be involved in the generation

of the CXCL12 gradient between the paracortex and the medulla,

allowing the migration of CXCR4 positive plasmablasts in medullary

cords. Assessing CXCL12 production and expression in medRCs of

CVID patients might bring new insights in understanding the potential

defective migration of CXCR4 positive plasmablasts to medullary

cords (Figure 2F).

The investigation of altered shape, size and disturbed function of

GCs and plasma cell niches within secondary lymphoid tissues of

patients with immunodeficiency and immune dysregulation like
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CVID or specific molecularly defined immunodeficiencies, provide a

unique opportunity for in depth characterization of human lymph node

stromal environment by novel technologies like single cell investigation

and high-resolution immunofluorescence. These findings will not only

provide key insights into the dysregulation of GC function in CVID but

will potentially influence our understanding of factors relevant in

peripheral immune tolerance as well as vaccine response.
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