
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Geeta Rai,
Molecular and Human Genetics, Banaras
Hindu University, India

REVIEWED BY

Shanmuga Priyaa Madhukaran,
University of Texas Southwestern Medical
Center, United States

*CORRESPONDENCE

Tiffany Hensley-McBain

thmcbain@mclaughlinresearch.org

SPECIALTY SECTION

This article was submitted to
Molecular Innate Immunity,
a section of the journal
Frontiers in Immunology

RECEIVED 13 December 2022

ACCEPTED 17 February 2023
PUBLISHED 03 March 2023

CITATION

Aries ML and Hensley-McBain T (2023)
Neutrophils as a potential therapeutic
target in Alzheimer’s disease.
Front. Immunol. 14:1123149.
doi: 10.3389/fimmu.2023.1123149

COPYRIGHT

© 2023 Aries and Hensley-McBain. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Mini Review

PUBLISHED 03 March 2023

DOI 10.3389/fimmu.2023.1123149
Neutrophils as a potential
therapeutic target in
Alzheimer’s disease

Michelle L. Aries and Tiffany Hensley-McBain*

McLaughlin Research Institute, Great Falls, MT, United States
Alzheimer’s disease (AD) is the leading cause of dementia in the United States.

Sporadic or late-onset AD remains incompletely understood, with age as the

current greatest risk factor. Inflammation in general and neutrophils, a potent

mediator of inflammation, have been shown to exacerbate AD associated

dementia. This review explores the latest research on neutrophils in AD mouse

models and in human cohort studies and discusses current gaps in research and

needs for future studies. AD mouse models have shown neutrophil chemotactic

migration towards amyloid beta plaques in the brain. Capillary blood flow stalling

decreases blood perfusion to associated brain regions and mouse studies have

demonstrated that anti-Ly6G antibodies lead to a decrease in capillary blood

flow stalling and memory improvement. Several recent transcriptomic studies of

blood and brain tissue from persons with AD have shown an upregulation in

neutrophil-related genes, and studies have demonstrated neutrophil

involvement in brain capillary adhesion, blood brain barrier breaching,

myeloperoxidase release, and the propensity for neutrophil extracellular trap

release in AD. Neutrophil-derived inflammation and regulation are a potential

potent novel therapeutic target for AD progression. Future studies should further

investigate neutrophil functionality in AD. In addition, other aspects of AD that

may impact neutrophils including the microbiome and the APOE4 allele should

be studied.

KEYWORDS

Alzheimer’s disease, neutrophils, mouse models, human studies, transcriptomics,
inflammation, neuroinflammation, ApoE4
Abbreviations: 5xFAD, 5 familial Alzheimer’s disease mutations, 3 in the APP gene and 2 in the PSEN1 gene;

Aß, Amyloid beta; AD, Alzheimer’s disease; APP, Amyloid precursor protein; BBB, Blood brain barrier; CBF,

Capillary blood flow; CNS, central nervous system; DEGs, Differentially expressed genes; ICAM-1,

Intercellular adhesion molecule-1; IL-8, Interleukin-8; IP, Intraperitoneal injection; IV, Intravenous

injection; LOAD, Late-onset AD; MAPT, Microtubule associated protein tau; MDSCs, Myeloid derived

suppressor cells; MPO, Myeloperoxidase; MPO+, Myeloperoxidase positive; NET, Neutrophil extracellular

trap; NGAL, Neutrophil gelatinase-associated lipocalin; PS1, Presenilin 1; RO, Retro-orbital injection; ROS,

Reactive oxygen species; TFN, Tumor necrosis factor; VCAM-1, Vascular cell adhesion molecule-1; VE,

Vascular endothelial; WT, Wild type.
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1 Introduction

Alzheimer’s disease (AD) is the most common cause of

dementia and the 6th leading cause of death in the United States

(1). More than 6.5 million people in the United States are estimated

to be living with AD (1), which is characterized by amyloid beta

(Ab) plaques and neurofibrillary tau protein-containing tangles.

While the amyloid hypothesis suggests that misfolded Ab is the

toxic and causative agent of AD, the field has shifted toward

investigating other potential causes and therapeutic targets (2, 3).

Age remains the greatest risk factor for AD, yet there is a need to

delineate contributions of additional factors and how they synergize

with age. Chronic systemic inflammation and immune activation

are associated with AD pathogenesis, and neuroinflammation

mediated by astrocytes and glial cells is observed in the brain

prior to the onset of cognitive decline (4–6). Peripheral

inflammation results in non-resident immune cells, including

monocytes, T cells, and neutrophils, crossing the blood brain

barrier (BBB) to contribute to damage and cognitive decline (7).

The contribution of the immune system to AD is now so widely

accepted that the largest single category of drugs in clinical trials for

AD in 2022 are those targeting inflammation or the immune system

(8). Despite the central role of neutrophils in inflammatory

responses, neutrophils have traditionally been understudied in

AD. However, recent evidence suggests they contribute to

neuroinflammation, neurodegeneration, and cognitive decline,

and their typical residence outside of the brain makes them an

accessible and promising therapeutic target for AD. In this review,
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we focus on neutrophil involvement in AD, most of which has been

investigated in mouse models. Figure 1 is an overview of potential

neutrophil involvement in AD based on neutrophil data from

previous human AD cohorts and mouse AD model studies.

Table 1 contains details on the mouse model, microscopy imaging

technique, region of the brain where neutrophils were found and

the antibodies and/or stains used for visualization. We also provide

a summary of neutrophil studies in human cohorts and tissues, and

review multiple transcriptomic studies that have indicated

neutrophil-related signatures as top pathways altered in AD. The

evidence is strong that neutrophils are dysregulated in AD,

suggesting they may be a therapeutic target to alleviate disease.

However, the lack of studies on neutrophil functionality in AD,

their relationship to genetic risk factors, sex, and age, and studies

mechanistically linking human neutrophils to disease are needed to

fully assess their therapeutic utility in AD.
1.1 Alzheimer’s disease overview

AD is a neurodegenerative disease resulting in impairment of

communication, memory, and the ability to perform daily living

tasks (1, 8). Women make up almost two-thirds of all AD patients

(1). Sex and age studies have demonstrated that women are twice as

likely to have AD as men even at the age of 45 (1). The percentage of

deaths caused by AD from 2000 to 2019 increased by 145%, whereas

stroke and heart disease decreased by 10.5% and 7.3%, respectively

(1). It is projected that the number of people living with AD will
FIGURE 1

Potential Neutrophil Involvement in AD from Human AD Cohorts and AD Mouse Model Studies. Neutrophils have been identified in the brain
vasculature and parenchyma in human cohorts and mouse models of AD. In both humans and mice, neutrophils are found near Ab plaques and
stain for NET markers. Neutrophils have been associated with BBB dysfunction, and mouse models suggest they also contribute to reduced cerebral
blood flow. An increased blood neutrophil-to-lymphocyte ratio and increased neutrophil activation, NET release, and ROS release have been
identified as potential peripheral markers of AD. Finally, correlative analyses in humans have demonstrated associations with brain neutrophils and
Braak staging and hyperactivation of peripheral neutrophils associated with cognitive decline. Mechanistic studies in mice demonstrated that
depleting neutrophils resulted in improved cerebral blood flow and improvement in behavioral tests.
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continue to rise (1). Early onset or familial AD typically presents

before the age of 65 and is caused by autosomal dominant

mutations in the amyloid precursor gene (APP) or the complexes

involved in amyloid cleavage, presenilin 1 and 2. However, 99% of

cases occur later in life (> 65 years of age), and the interconnected

mechanisms involved in sporadic or late-onset AD (LOAD) remain

incompletely understood (14). Previous studies have indicated that

Ab plaque deposits, phosphorylation of tau, tau tangles, immune

dysfunction, chronic inflammation, BBB breakdown, vascular

dysfunction, and neuronal death could begin to cause damage

decades before symptoms are noticed or a diagnosis is made (1, 7,

15). Historically, AD drugs have tried to target Ab fibril and plaque

accumulation and tau tangles, as they are not only pathological

hallmarks of AD, but studies have linked them mechanistically to

memory, cognitive, and physical dysfunction (1, 3). Treatments

aimed at neuroinflammation or increasing BBB integrity are more

recently being studied (8). A combination of treatments for

preventing or decreasing pathological contributors to AD, such

Ab plaques and tau tangles, while decreasing chronic inflammation

and increasing BBB integrity could be instrumental in slowing the

progression of AD. Since damage occurs before the onset of
Frontiers in Immunology 03
noticeable symptoms, methods for early detection are also crucial

to prevent damage, and stabilize or improve memory, cognition,

and physical function.
1.2 Alzheimer’s disease mouse models
used in neutrophil studies

Table 1 summarizes the mouse studies that have assessed

neutrophils in AD and includes the mouse model description and

strain number, if available. Each of the models that have been used

to study neutrophils in AD overexpress transgenic human amyloid

precursor protein (APP) under the mouse Thy1 or PrP promotor to

drive expression in central nervous system (CNS) neurons. They all

represent familial AD models since they also contain familial

mutations associated with AD in the human APP transgene.

Specifically, 5xFAD mice include the London mutation (V717I),

the Swedish mutation (K595N/M596L), and the Florida mutation

(I716V), while 3xTg-AD and APP/PS1 mice contain only the

Swedish mutation (16–18). These models also express transgenic

mutant human presenilin 1 (PS1) under the same promotors, which
TABLE 1 Alzheimer’s Disease Mouse Model Studies.

Reference Mouse Model Age in
Months Neutrophil Detection Findings

Baik et al.
(9)

5xFAD TG6799; B6SJL-Tg
[APPSwF1Lon,
PSEN*M146L*

L286V]6799Vas/J stock no.
006554

8
Allophycocyanin-

conjugated Ly6G (GR-1)
Neutrophils were observed in the frontal cortex using flow cytometry.

9 – 13
0.12 mg/kg Ly6C/G (GR-1)
was IV injected right before
imaging in the femoral vein

2-photon in vivo microscopy found neutrophils in the parenchyma
that originated from the blood.

Cruz
Hernández
et al. (10)

APP/PS1 B6.Cg-Tg(APPSwe,
PSEN1dE9)85Dbo/J; MMRRC

stock no. 034832-JAX
11 – 13

anti-CD45, anti-CD11b,
anti-Ly6G

Neutrophil concentration in the blood after anti-Ly6G treatment was
monitored using flow cytometry. Neutrophil concentration decreased

six hours after treatment.

Anti-Ly6G Alexa488
(0.1 mg/kg) was IV injected
right before imaging in the

tail vein

2-photon in vivo microscopy found neutrophils in the cerebral cortex
parenchyma. They were observed to migrate from the blood.

5xFAD B6SJL-Tg(APPSwF1Lon,
PSEN1*M146L*L286V)6799Vas/

Mmjax; MMRRC Stock no.
34840-JAX

5 – 6

Zenaro et al.
(11)

5xFAD APP with Swedish,
Florida, and London and PS1 with

M146L, L286V
And

3xTg-AD PS1(M146V), ßAPP
(Swedish) and tau (P301L)

And
3xTg-AD PS1(M146V), ßAPP
(Swedish) and tau (P301L) with

Itgal-/-

2 – 8
and

4 – 10

anti-CD45, anti-CD11b,
anti-Ly6G, anti-Ly6G

Whole brain homogenate was used to quantify neutrophil
concentration by flow cytometry. The concentration of neutrophils
was decreased in 3xTg-AD Itgal-/- and mice treated with an anti-

Ly6G antibody.

CMTPX or CMAC

2-photon in vivo microscopy found neutrophils in the cortex and
parenchyma. Neutrophils were observed migrating directional into
the brain with noticeable velocity or with low motility and swarm

behavior.

5xFAD APP with Swedish,
Florida, and London and PS1 with

M146L, L286V
And

3xTg-AD PS1(M146V), ßAPP
(Swedish) and tau (P301L)

2 – 8
and

4 – 10

Ly6G and CD45
(fluorescent)

Confocal microscopy discovered neutrophils in the choroid plexus,
hippocampus, and the vessels of the meninges and cortex.

They were observed to migrate from the blood.

Smyth et al.
(12)

APP/PS1 (APPswe,PSEN1dE9)
85Dbo, MMRRC stock No:34832-

JAX
4 and 12 MPO, S100A8, and CD66B

An increase in neutrophils in AD brains was observed using Zeiss
Axio Imager and an automated fluorescence microscope.

Kong et al.
(13)

3xTG B6;129-Psen1tm1MpmTg
(APPSwe,tauP301L) 1Lfa/Mmjax

12 Ga-PEG-cFLFLFK
Increased neutrophil infiltration in the brains of Tg mice was

observed using PET Imaging.
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encodes for the catalytic subunit of the g-secretase responsible for

Ab production. One commonly used model, 3xTg-AD, also

includes human transgenic microtubule associated protein tau

(MAPT) with the P301L mutation in addition to mutant human

APP and PS1. All of these models overexpress Ab in the CNS and

develop diffuse Ab plaques starting as early as 2-3 months of age

(19). Memory tasks in these APP mouse models to assess AD-like

progression temporally follow the progression of AD in humans,

with the earliest impairments demonstrated in spatial working

memory through a Barnes maze or Morris water maze task (19).

In these tasks, mice use visuospatial cues to find a target, such as an

escape hole in the Barnes maze or a raised platform in the water

maze. Deficits in recognition memory present later and have been

demonstrated with the novel object recognition task, which

measures the animal’s innate exploratory behavior. These models

are best representative of the pathophysiology of familial AD and

have multiple drawbacks, including the nonphysiological,

overexpression of Ab, potential disruption of endogenous genes

by the transgenes, and lack relevance to LOAD. Recently, there have

been new developments in attempts to generate better LOAD

models that include risk genes for AD, such as APOE and

TREM2 (20). However, neutrophils have yet to be examined in

LOAD models or in the context of LOAD genetic risk factors, an

important gap in understanding neutrophils in AD, as

discussed below.
2 Neutrophils in normal physiology
and disease

Neutrophils are formed in the bone marrow from myeloid

precursors and are the most abundant leukocyte in humans and a

dominant leukocyte population in mice (21). Neutrophils are

critical in containing invading pathogens and have been widely

studied for their antibacterial responses until recently they were

mainly viewed as bacteria eaters (22). However, roles for

neutrophils in antiviral responses, tissue repair, and mediating

sterile inflammation have become evident. Neutrophils contain

pathogens via several mechanisms including 1) phagocytosis, 2)

the release of antimicrobial molecules through degranulation, and

3) containment and killing of pathogens via release of nuclear DNA,

termed neutrophil extracellular traps (NETs) (22). While

neutrophil inflammatory responses are beneficial in controlling

infection, they can also cause unintended tissue damage due their

release of antimicrobial peptides, lytic enzymes meant to degrade

extracellular matrix, and reactive oxygen species (ROS) (23). As

such, neutrophils are known contributors to many inflammatory

diseases, including inflammatory bowel disease, rheumatoid

arthritis, diabetes, and cardiovascular disease (24). Recent

evidence suggests neutrophils contribute to inflammation and

disease progression in AD (9–13, 25–29). Aging is accompanied

by low-grade systemic inflammation and dysregulation of the

immune system, termed inflammaging (4), and neutrophil

activation and alterations in cell death mechanisms may synergize

with age to promote inflammation in AD. Indeed, neutrophils
Frontiers in Immunology 04
isolated from elderly individuals produced more ROS and had

elevated CD11b, an adhesion molecule (30).

Neutrophils are generally short-lived due to their propensity to

undergo preprogrammed homeostatic apoptosis, with findings

from studies investigating neutrophil lifespan in vivo ranging

from 8 hours to 5 days in humans and less than 1 day in mice

(31–33). The least inflammatory mechanism of neutrophil

clearance from tissues is caspase-3 mediated apoptosis followed

by engulfment by macrophages (21, 32, 34). Neutrophil activation

and lifespan is impacted by cytokine signaling and interactions with

microbes and their products in the environment (35, 36).

Conditions that delay or prevent neutrophil apoptosis can result

in neutrophilia or secondary necrosis, a more inflammatory

mechanism of cell death that releases intracellular contents, which

can then cause host tissue damage. Delayed neutrophil apoptosis

has been observed in multiple inflammatory diseases including

acute respiratory disease syndrome, chronic pulmonary

obstructive disease, cardiovascular disease, rheumatoid arthritis,

and cystic fibrosis (37). However, the role of neutrophil lifespan

perturbations in neurodegenerative diseases, including AD, has yet

to be examined.

Finally, it should be mentioned that in addition to pro-

inflammatory functions and contributions to resolution of

inflammation and tissue repair, neutrophils can also suppress

immune responses by acting as granulocytic myeloid derived

suppressor cells (MDSCs). MDSCs arise from the myeloid lineage

and impede both innate and adaptive immunity (38), and

granulocytic MDSCs inhibit activation and expansion of T cells.

While some studies suggest there may be a role for granulocytic

MDSCs, particularly in the early stages of the disease, there are very

few studies that have examined these cells in AD and no studies

have assessed them in brain tissue of persons with AD or from AD

mouse models (39).
2.1 Neutrophils in mouse models of
Alzheimer’s disease

AD mouse models have been used to study the progression,

prognosis, nuances of different pathophysiological mechanisms,

novel therapeutic targets, and treatment for AD (19, 20). AD

mouse models are a useful way to study the pathology of

inflammation associated molecules and evaluate potential

therapeutics (4). As discussed previously, each of the mouse

models used to study neutrophils in AD have been familial AD

models, with mutant human transgenes for APP, PS1, and in some

cases MAPT (Table 1). Of note, there are important differences

between mouse and human neutrophils, including blood

frequencies, production of defensin molecules, receptor

expression, morphology, signaling, and granule protein contents,

so conclusions connecting neutrophil contributions to disease

should be restricted to mouse neutrophils until confirmed in

human neutrophils (40, 41). Mouse models of humanized

neutrophils are lacking, with only one model reported to develop

human neutrophils and no studies investigating humanized
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neutrophils in mouse models of disease (42). However, studies of

mouse neutrophils in mouse models provide the foundation for

investigating mechanisms in human blood and tissue samples and

in in vitro systems. Studies investigating neutrophils in mice

predominantly utilize either myeloperoxidase (MPO), which is

often used as a surrogate neutrophil marker in both mouse and

human studies, or Ly6G, which is a nearly exclusive neutrophil

marker in mice with no known human equivalent (43, 44). Mouse

model studies have shown that neutrophils exhibit migration along

a chemotactic gradient towards Ab plaques in the brain and migrate

across the blood brain barrier (BBB) (7, 9–11, 13). Neutrophils have

a higher meandering index and velocity in ADmice than their wild-

type (WT) counter parts and have been shown to be in higher

concentrations not only in brain-associated capillaries, but across

the BBB as well (9, 10). Previous studies have demonstrated

neutrophil accumulation at adhesion sites in brain capillaries,

especially at locations of low vascular endothelial (VE) cadherin

expression and breaching the BBB surrounding adhesion sites in

AD mouse models, which was not observed in their age and sex-

matched wild-type counterparts (7, 9–11). Increased expression of

vascular cell adhesion molecule-1 (VCAM-1), P-selection, E-

selectin, intercellular adhesion molecule-1 (ICAM-1) was found

in the vessels of the cortex and meninges of 5xFADmice as young as

4 months old (11). Neutrophils have been observed in multiple

brain regions in AD models, including the cortex, hippocampus,

cerebellum, brainstem, vessels of meninges, choroid plexus,

amygdala, midbrain, hypothalamus, thalamus, and olfactory bulb

(7, 10–13). Neutrophils are found near Aß plaques, are known to

release NETs, and associate with tissue damage in AD models (11–

13, 26). Increased NET release by neutrophils is observed in AD and

has been proposed to be one of the possible mechanisms for

neutrophil BBB breaching and neuronal damage (7, 11, 45).

Importantly, MPO deficient AD model mice demonstrated better

cognitive outcomes and reduced inflammation (26).

Neutrophil adhesion plays a significant role in AD pathology, as

adhesion not only leads to neutrophil transport across the BBB and

a local increase in inflammation, but could possibly result in chronic

vascular permeability, and possible BBB damage (7, 9–12).

Moreover, neutrophil accumulation has also been associated with

capillary blood flow (CBF) stalling, which decreases blood perfusion

in neighboring brain regions and increases cognitive dysfunction in

mouse models (9, 10, 12). Mouse CBF networks demonstrated high

similarity to CBF networks in humans, suggesting that this may also

be a mechanism of AD pathogenesis in humans (10, 12).

Multiple studies have demonstrated that decreasing neutrophil

accumulation and adhesion with neutrophil-targeting antibodies or

with the use of LFA-1 deficient mice, decreases CBF stalling and

increases spatial short-term memory (10, 11, 46). Moreover, early

treatment of AD model mice, by neutrophil depletion or adhesion

disruption (LFA-1 null mice), was shown to increase memory and

act as a protectant for memory loss in the future, as young mice

treated for a month showed memory improvement months after the

treatment ended (11). These studies suggest neutrophils are a

potential contributor to AD pathogenesis, and additional studies
Frontiers in Immunology 05
in mice are needed to elucidate their function, phenotype, and

mechanisms of dysregulation.
2.2 Neutrophils in human cohorts of
persons with Alzheimer’s disease

Studies investigating human cohorts have corroborated mouse

model findings and have provided evidence that neutrophils have a

role in AD pathogenesis. Transcriptional analyses of brain tissue

across multiple studies have continually revealed a significant

increase in differentially expressed genes (DEGs) related to

neutrophil signaling pathways in AD patients compared with

controls (29, 47–52). In fact, in several studies neutrophil DEGs

were among the strongest contributors to differential signals in

peripheral and brain transcripts (29, 49, 53). These studies revealed

increased adhesion and cell surface interaction transcripts coupled

with decreases in immature neutrophil biomarkers (29, 47, 49).

Increased proinflammatory pathways in general are also common

among these AD transcriptomic studies (29, 47, 49, 52), and these

inflammation-related DEGs correlate most strongly with

neutrophils (29). These neutrophil signatures also associate with

AD progression across multiple studies (12, 25, 47, 54, 55).

It is now well established that neutrophils infiltrate the brain

during AD (7, 11, 12, 29). Studies that investigated specific brain

regions identified neutrophils in the temporal cortex, and

hippocampus, and cerebellum of persons with AD in both the

parenchyma and vasculature (11, 12, 29). Neutrophils in brains

from persons with AD were observed near or at Ab plaques, were

more likely to stain for NET-associated markers, and were found

near sites of BBB dysfunction (11, 12, 54, 55). Neutrophils were

more likely to be found in small vessels and associated with

increased adhesion, which could exacerbate vascular dysfunction

(12). Peripheral neutrophils also express higher levels of CD11b

in persons with AD, again suggesting the involvement of

neutrophil adhesion in AD pathogenesis (56). Vascular

dysfunction has been observed in AD patients before onset of

cognitive dysfunction and has been associated with a reduced

CBF, hypoperfusion, breakdown of endothelial tight junctions,

neuronal death, and BBB immune cell infiltration including by

neutrophils (15, 57, 58). Neutrophils outside of the brain may also

contribute to AD pathology. Neutrophil-specific cytokines in

cerebral spinal fluid associate with BBB impairment in persons

with AD (59). Peripheral neutrophil-related soluble factors,

including neutrophil gelatinase-associated lipocalin (NGAL),

MPO, interleukin-8 (IL-8), and tumor necrosis factor (TFN),

also associated with decline in executive function in patients with

mild AD (25). These findings indicate that neutrophils are likely a

significant contributor to increased neuroinflammation and BBB

break down and potentially contribute to cognitive decline in

AD patients.

Neutrophil function in AD remains understudied. The

identification of NETs in brain tissue and NET markers in

plasma in AD is suggestive that neutrophils may be prone to
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NET release (11, 53, 54). Peripheral blood neutrophils in persons

with AD produce more ROS and neutrophil hyperactivation was

associated with faster cognitive decline (53, 60). In addition,

reduced neutrophil phagocytosis has been observed in patients

with mild cognitive impairment and AD (61, 62). Another study

demonstrated that neutrophil granule proteins bind Ab and inhibit

its aggregation (63). Additional beneficial roles for neutrophils in

AD, including removal of Ab, tissue repair, or immune system

suppression remain unexamined. More studies illuminating

neutrophil function and the mechanisms by which increased

frequencies of activated neutrophils, or a loss of beneficial

neutrophil functions may be involved in the plethora of

pathophysiological processes associated with AD are needed.
3 Discussion

There is strong evidence that neutrophils infiltrate the brain

during AD and multiple studies suggest mitigating neutrophil

infiltration or targeting neutrophilic inflammation may be a

beneficial therapeutic strategy (11, 12, 29). However, neutrophils

are not a homogeneous population and the methods used to

identify neutrophils in AD in studies published so far (Ly6G+

cells, MPO+ cells, GR-1+ cells) represent a population composed

of cells with varying phenotypes and functions (7, 12). While

multiple studies suggest that increased NETs may contribute to

AD pathogenesis, it remains possible that neutrophils may be

playing an anti-inflammatory role as gMDSCs, contributing in the

removal of Aß via phagocytosis, or participating in tissue repair.

Along these lines, one study demonstrated fewer low density

neutrophils in persons with probable AD, which may represent

fewer gMDSCs with immune suppressive properties (64). Another

study demonstrated that reducing TNFa led to increased

neutrophil infiltration, reduced pathogenic amyloid and tau

accumulation, and improved cognitive performance (65).

However, TNFa modulation may have shifted neutrophil

functionality in addition to altering neutrophil frequency in the

brain, but function was not examined. Future studies should focus

on further investigating neutrophil functionality to determine

their potential as a therapeutic target and investigate crosstalk

with microglia and astrocytes or the various anti-inflammatory

drugs already in the pipeline for AD that may alter neutrophil

function or homeostasis.

Transcriptional and blood studies have demonstrated that age,

sex, and APOE genotype are confounding variables that must be

addressed in AD studies (25, 49, 59, 66, 67). Hypotheses for why

AD is more common in females include sexual dimorphism of

genes, hormones, and the immune system (66, 68, 69).

Neutrophils also exhibit differences based on sex and their

functionality decline with age (70, 71). In females, neutrophils

have been shown to exhibit decreased NET release and reduced

RNA expression of primary granules and elastase (45, 70) and

increased MPO expression in comparison with their age matched
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male counterparts (69, 70). Several of these neutrophil factors,

such as MPO and NET release have also been associated with an

increased risk of AD (12, 25, 26, 45, 55). These data demonstrate

the need for in-depth studies investigating the role of sex and age

on neutrophil dysregulation in AD. Neutrophils should also be

investigated in the context of genetic risk factors for AD. The

APOE4 allele, the greatest genetic risk factor for LOAD, is known

to modulate inflammatory responses in microglia and astrocytes

via inflammatory pathways important for neutrophil homeostasis

and functionality (e.g. NFkb, MAPk) (72). Thus, we hypothesize
that the APOE4 allele may increase inflammatory neutrophil

responses. Neutrophils may also be impacted by microbiome

alterations, which are well-established in AD (73–75). We have

previously shown that microbiome alterations associate with

increased neutrophil lifespan in chronic infection (36), and

these connections should be investigated in AD to determine if

microbiome modulation is a way to mitigate neutrophilic

inflammation. Promoting neutrophil apoptosis is a potential

way to promote the resolution of inflammation without severely

compromising host defense (76), yet neutrophil apoptosis in AD

has yet to be examined. Finally, further examination of neutrophil

transcriptional changes or phenotypes may reveal additional

biomarkers for early AD diagnosis, allowing for earlier AD

treatment that delays progression.
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