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Bile acids (BAs) as cholesterol-derived molecules play an essential role in some

physiological processes such as nutrient absorption, glucose homeostasis and

regulation of energy expenditure. They are synthesized in the liver as primary BAs

such as cholic acid (CA), chenodeoxycholic acid (CDCA) and conjugated forms. A

variety of secondary BAs such as deoxycholic acid (DCA) and lithocholic acid

(LCA) and their derivatives is synthesized in the intestine through the involvement

of various microorganisms. In addition to essential physiological functions, BAs

and their metabolites are also involved in the differentiation and functions of

innate and adaptive immune cells such as macrophages (Macs), dendritic cells

(DCs), myeloid derived suppressive cells (MDSCs), regulatory T cells (Treg), Breg

cells, T helper (Th)17 cells, CD4 Th1 and Th2 cells, CD8 cells, B cells and NKT

cells. Dysregulation of the BAs and their metabolites also affects development of

some diseases such as inflammatory bowel diseases. We here summarize recent

advances in how BAs and their metabolites maintain gut and systemic

homeostasis, including the metabolism of the BAs and their derivatives, the

role of BAs and their metabolites in the differentiation and function of immune

cells, and the effects of BAs and their metabolites on immune-

associated disorders.

KEYWORDS

gut microbiota, bile acids, deoxycholic acid, lithocholic acid, tolerogenic macrophages,
regulatory B cells, regulatory T cells
1 Introduction

Bile acid (BAs) are cholesterol-derived molecules involved in essential physiological

processes including nutrient absorption, glucose homeostasis and regulation of energy

expenditure (1). There are two main sites of BA biosynthesis, hepatocytes and gut
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microbiota. BAs are synthesized in the liver as primary BAs such as

cholic acid (CA), chenodeoxycholic acid (CDCA) and their

conjugated forms. A variety of secondary BAs such as

deoxycholic acid (DCA) and lithocholic acid (LCA) and their

derivatives, a large pool of bioactive molecules is synthesized in

the intestine where they undergo bacteria-mediated transformation

(2). BAs and their metabolites are abundant in the mammalian gut,

and potentially distributed into other tissues and organs.

There exists a perfect immune system in different individuals,

including innate immune cells such as macrophages (Macs),

dendritic cells (DCs) and nature killer (NK) cells, and adaptive

immune cells such as T cells and B cells. In addition to these cells,

there also has a large amount of immune regulatory cells such as

regulatory T cells (Treg cells), Breg cells, and innate immune

lymphocytes (ILCs) to maintain local and systemic immune

homeostasis. The differentiation and functions of these immune

cells can be regulated by gut microbiota metabolites such as short-

chain fatty acids (SCFAs) (3–5), tryptophan derived metabolites (6–

8), and BA derivatives (9–12). BAs and their derivatives bind to

multiple nuclear and cell surface receptors, which are expressed in

the different immune cells such as Macs, DCs, MDSCs, Treg cells,

Breg cells, ILCs, Th17 cells, CD4 Th1 cells, Th2 cells, CD8 cells, B

cells and NKT cells. Each of BA and their derivatives has a different

affinity for the receptor to which it can bind. While these receptors

are bound and activated by different BA derivatives, they can affect

the differentiation and function of different immune cells

respectively. Understanding the effects of BAs and their

metabolites on immune cells may elucidate a variety of disease

states such as inflammatory bowel diseases, metabolic diseases,

obesity, and other chronic inflammatory conditions. We here

summarize recent advances in understanding the metabolism of

BAs, the role of BAs and their derivatives in the differentiation and

function of different immune cells, and the effects of BAs and their

derivatives on immune-associated disorders.
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2 BAs and their derivatives

2.1 BAs

BAs are the end-product of cholesterol metabolism (13, 14). The

liver generates two primary BAs, i.e., CA and CDCA. The final

products in the liver are mainly 3a-7a di-hydroxylated cholesterol

derivatives, i.e., CDCA, and 3a-7a-12a-tri-hydroxylated derivatives,

i.e., CA (14). These primary BAs in hepatocytes and/or in gut

microbiota (15) are conjugated with glycine, taurine or other

amino acids (15, 16). Then, the conjugated BAs are secreted into

the intestine, becoming the substrate of an array of bacterial enzymes.

This causes the generation of secondary BAs, i.e., LCA and DCA.
2.2 Secondary BAs and their derivatives

Secondary BAs DCA and LCA can be further modified into

different derivatives by microbes (17). A range of oxo-, epi- and iso-

derivatives of BAs is formed in the colon due to various

dehydrogenation and epimerisation reactions in gut bacteria (18),

such as 7-oxoCA, 7-oxoCDCA, 12-oxoCA and 12-oxoDCA (14).

There also exist multiple forms of LCA derivatives such as allo-

LCA, iso-LCA, isoalloLCA, 3-oxo-LCA, 3-oxoallo-LCA, and 3-

ketoLCA (19, 20). In addition, the derivatives such as ursoDCA

(UDCA) (21) and iso-DCA (9, 22) are also produced by 7a-
hydroxysteroid dehydrogenase (7a-HSDH) and 7b-HSDH.
3 Effects of gut microbiota on BAs

Gut microbiota is not only involved in the generation of

conjugated BAs but also plays a critical role in the transformation

of BAs into other metabolites (Figure 1). In human, there have four
FIGURE 1

Gut microbiota is not only involved in the generation of conjugated BAs, but also plays a critical role in the transformation of BAs from conjugated
BAs to deconjugated BAs and the generation of secondary BAs DCA and LCA and their derivatives.
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distinct ways to transform BAs, including deconjugation,

dehydroxylation, oxidation, and epimerization, which have been

well reviewed (18).
3.1 Conjugation of BAs

Primary BAs can be conjugated with glycine and taurine in the

liver. Then these conjugated BAs are released into the intestine via

gallbladder (23). However, recent studies also show that gut

microbiota such as Clostridium bolteae possesses an ability to

conjugate BAs with phenylalanine, leucine, and tyrosine (15). 25

strains such as Bacteriodetes Bacteroides vulgatus, Firmicutes

Lactobcillus ruminis and Actinobacteria Hungatella hathewayi,

representing 24 species in the gut microbiota, can conjugate glycine

to DCA, CDCA, or CA in vitro (24). 28 strains such as Bacterorides

vulgatus, Lactobacillus ruminis, Holdemania filiformis, and

Clostridium scindens, representing 27 species in the gut microbiota

are capable of conjugating CDCA, DCA or CA to one or more other

amino acids such as alanine, arginine and aspartate (24).
3.2 Deconjugated BAs

Liver derived conjugated BAs can be deconjugated in the small

intestine by bile salt hydrolases (BSHs). These BSHs can be detected

in gut microbiota (25) such as Lactobacillus spp (26).,

Bifidobacterium spp (27)., Enterococcus spp (28)., Clostridium spp

(29, 30)., and Bacteroides spp (31).. More recent studies show that

BSHs can be found in 591 intestinal bacterial strains within 117

genera in human gut microbiota. Notably, 27.52% of these bacterial

strains contains only BSH paralogs (32). These different phenotypes

of BSHs exhibit different activity in the gut bacteria. BSH-T3, which

is found in Lactobaclillus, shows the highest enzyme activity,

whereas BSH-T5 and BSH-T6 mainly from Bacteroides, which

have high percentage of paralogs, exhibit different enzyme and

deconjugation activity (32).
3.3 Secondary BAs and their derivatives

After deconjugation, BAs can be converted into secondary BAs,

i.e., DCA and LCA, and their derivatives by dehydroxylation,

oxidation and epimerization.

Three distinct microbial 3a-, 7a-, and 12a- HSDHs, which

result in oxidization and epimerization of specific hydroxyl groups

on BAs can be found in gut microbes (33), such as Clostridium

clusters XIVa, IV and XI. The bacteria such as C. scindens, C.

hylemonae and C. perfringens are shown to produce enzymes

capable of 3a-dehydrogenation. 3a-dehydrogenation also occurs

in Blautia producta and Eggerthella lenta (34, 35). The BA

transformations can also be carried out by 7-dehydroxylation in

Clostridium scindens in vitro and in vivo (36). Recently, Funabashi

et al. (37) showed that a set of six enzymes, which was necessary for

conversion of CA to DCA, was engineered into a nonproducing

bacteria, conferring production of DCA and LCA (37).
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Paik et al. identified 12 human gut bacterial genera including

Adlercreutzia, Bifidobacterium, Enterocloster, Clostridium,

Collinsella, Eggerthella, Gordonibacter, Monoglobus, Peptoniphilus,

Phocea, Raoultibacter, andMediterraneibacter, which could convert

LCA to 3-oxoLCA and isoLCA (20). In addition, both metabolites

3-oxoLCA and iso-alloLCA were absent in germ-free (GF) mouse

models, also suggesting that these derivations were from microbiota

(12 ) . Ruminoco c cu s gnavu s , C l o s t r i d ium absonum,

Stenotrophomonas maltophilia, and Collinsella aerofaciens

contribute to the ursoDCA pool via conversion of 7-oxo-LCA in

an nicotinamide adenine dinucleotide (NADH) or nicotinamide-

adenine dinucleotide phosphate (NADPH)-dependent fashion (38,

39). 7a-epimerization to UDCA also occurs in the gut bacterium

members such as Clostridium baratii (18).
4 Regulation of BAs and their
metabolites in the immune cells

BAs and their metabolites can act on the receptors expressed in

Macs, DCs, MDSCs, Tregs, Th17 cells, ILCs, CD4 cells, CD8 cells, B

cells and NKT cells to modulate their differentiation and function

for gut and systemic homeostasis (12, 14, 40–42) (Figure 2). These

receptors include a range of nuclear receptors such as farnesoid X

receptor (FXR), liver-X-receptor (LXR), pregnane X receptor

(PXR), vitamin D receptor (VDR), retinoid related orphan

receptor (RORgt), constitutive androstane receptor (CAR), and

membrane receptors such as G-protein BA receptor 1 (GPBAR1)

(Takeda G protein-coupled receptor 5 (TGR5)), sphingosine-1-

phosphate receptor 2 (S1PR2), cholinergic receptor muscarinic 2

and 3 (CHRM2 and 3), and MAS related GPR (G-protein coupled

receptor) family member X4 (MRGPRX4) (43), which have been

reviewed by Biagioli et al. (44).
4.1 Myeloid derived cells

4.1.1 Macrophages
Macrophages (Macs) can be mainly divided two subpopulations,

inflammatory macrophages (iMacs) and immune tolerogenic

macrophages (tMacs). IMacs (M1) are mainly involved in pro-

inflammatory responses, whereas tMacs (M2) are mainly involved in

immune suppressive responses. Intestinal Macs reside either within the

lamina propria (LP) or the muscle layer. Muller et al. (45) have

discussed recent advances in gut Macs. In the resting intestine,

mature resident (immune tolerogenic) ly6clow/-CX3CR1hiMHC IIhi

Macs from inflammatory Ly6chigh monocytes/Macs can express IL-

10 and maintain intestinal homeostasis (46). Studies found that BAs

and their metabolites can induce immune tolerogenic Macs. However,

BAs, especially cBAs also cause inflammatory Macs. The contradicts in

the effects of the BAs on the Macs are derived from different receptors

expressed in the Macs. The majority of BAs-activated receptors such as

FXR, TGR5, VDR, LXRs, PXR and S1PR2 have been detected in

myeloid cells (10).

TGR5 is essential to maintain a tolerogenic phenotype of the

Macs (10, 47, 48). Its activation can promote Mac polarization from
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the M1 (pro-inflammatory phenotype) to the M2 (immune

tolerogenic phenotype) Macs, and reduce pro-inflammatory

cytokines (49). TGR5 activation also blocks NLRP3-dependent

inflammation such as lipopolysaccharide-induced systemic

inflammation, type-2 diabetes-related inflammation and alum-

induced peritoneal inflammation (50, 51). Secondary BAs DCA or

LCA can function as endogenous inhibitors of NLRP3

inflammasome activation by activating TGR5 (52), which can

cause a TGR5-cAMP-PKA-dependent ubiquitination of NLRP3 to

inhibit its activation (53). The knockout of TGR5 in mice can

accelerate LPS-induced inflammation in the liver and abolish the

suppressive effects of TGR5 agonist on inflammatory cytokines

(54). TGR5 natural ligands are LCA > DCA > CDCA > UDCA > CA

(55). FXR is also essential to maintain a tolerogenic phenotype of

the Macs as demonstrated in FXR KO mice (10). FXR can activate

SOCS3, CYP450 and fibroblasts growth factor 19 (FGF19) to inhibit

inflammation. In addition, FXR also activates SHP to inhibit NF-

kB, AP-1 and NLRP3 (56–59), and is recruited to the iNOS and IL-

1b promoters to stabilize the NCoR1 complexes, which can make

these genes in the basal state (60). The assembly of NLRP3

inflammasomes is also suppressed by FXR, which physically

interacts with NLRP3 and caspase-1 (52, 61, 62). In addition,

PXR as a nuclear receptor also binds to LCA (55). PXR activation

decreases the expression of IL6, TNFa, and IL8 mRNAs (42).

Notably, high cellular concentrations (≈100–500 mM) of BAs,

particularly the hydrophilic secondary BAs, might function as

danger-associated molecular pattern molecules (DAMPs) to cause

a calcium-dependent activation of NLRP3 inflammasome (52, 62).

However, this happens only while Macs are preactivated after

exposure to endotoxin (52, 62). The hydrophobic primary BA

such as ChenoDCA (CDCA) can induce NLRP3 activation and

secretion of IL-1b by promoting ROS production and K+ efflux in

Macs (63). Hao H et al. also found that BAs synergistically with

ATP induced a prolonged calcium influx and activated NLRP3 (53).
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In addition, the conjugated BAs such as tauroCA (TCA) can

activate S1PR2, which is shown to promote immune cell

infiltration and inflammation in mouse models (64). Activating

S1PR2 promotes caspase-11-dependent Mac pyroptosis and

worsens E. coli sepsis (65). S1PR2 is also activated by the

conjugated BAs to result in proinflammatory effects that can

increase liver damage (66). S1PR2 deficiency significantly reduces

cholangiocyte proliferation and cholestatic injury (64). Blockade of

S1PR2 inhibits S1P-induced NLRP3 priming and inflammatory

cytokine secretion (67).

4.1.2 Dendritic cells
Dendritic cells (DCs) play a critical role in inducing protective

adaptive immunity. However, DCs are also emerging as critical

regulators of the immune responses (68). Secondary BA DCA

suppresses LPS-induced expression of pro-inflammatory IL-1, IL-6,

and TNFa in DCs (69), which can be rescued through DCA receptor

TGR5 deficiency. The inhibitory effects of TGR5 are mediated

through suppressing NF-kB by TGR5–cAMP–PKA signaling (69).

BA-dependent TGR5 activation also induces the differentiation of

human monocytes into IL-12 and TNF-a hypo-producing DCs via

the TGR5-cAMP pathway (70). In addition, isoDCA can limit FXR

activity in DCs and confer upon them an anti-inflammatory

phenotype (9). The exposure of INT-747/obetiCA, which can

activate FXR (10), greatly attenuates the differentiation CD14+

monocytes into mature DCs (71). A reduced number of activated

DCs in the colon of mice administered with INT-747/obetiCA was

also observed. In addition, VDR activation also inhibits the

production of inflammatory cytokines, and the differentiation and

maturation of DCs (72).

4.1.3 Myeloid derived suppressor cells
Myeloid derived suppressor cells (MDSCs) play a key role in the

immune suppression in some diseases, especially in cancer, and also
FIGURE 2

Regulations of BAs and their derivatives on the differentiation and function of immune cells for gut and systemic homeostasis. BAs and their
derivatives not only promote the generation and function of anti-inflammatory cells, but also inhibit inflammatory cells through different receptors in
the immune cells.
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have prominent role in tumor angiogenesis, drug resistance, and

promotion of tumor metastases (73). Many pathogens, ranging

from viruses to multicellular parasites, can promote the expansion

of MDSCs (74). These MDSCs can be divided into monocytic and

granulocytic MDSCs. The BA derivative TDCA can increase the

number of granulocytic MDSCs in the spleen of septic mice (75).
4.2 Lymphoid derived cells

4.2.1 CD4 T helper cells
There have multiple CD4 T helper (Th) cell subsets such as

FoxP3+ regulatory T cells, RORgt+IL17+ Th17 cells, T-bet+IFNg+

Th1 cells and Gata3+IL4+IL13+ Th2 cells. These CD4 Th cells play a

critical role in maintaining the immune homeostasis of individuals.

Studies have found that the differentiation and function of these

cells can be regulated by BAs and their derivatives.

1) FoxP3+T regulatory cells. FoxP3+T regulatory (Treg) cells

express transcription factor Foxp3 (76, 77), and differentiate in the

thymus or the periphery (78). BAs and their metabolites can affect

the differentiation and function of Treg cells, which help protect

against extracellular pathogens and maintain host immune

tolerance, respectively (79). Indeed, secondary BAs such as

isoalloLCA and isoDCA can promote the differentiation of Treg

cells (9, 11, 12, 80, 81) (Figure 3). The isoalloLCA may be through

the production of mitochondrial reactive oxygen species (mitoROS)

to promote the expression of Foxp3 (11). Nuclear hormone receptor

NR4A1 is also required for the regulation of isoalloLCA in Treg

cells (80). Whereas the secondary BA derivatives isoDCA mediated

Treg cells is through diminishing DC immunostimulatory

properties (9). A distinct Treg population expressing the

transcriptional factor RORg can also be induced in the colonic LP

by colonization with gut symbionts (81, 82). These RORg+ Treg cells
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have a distinct phenotype (Helios– and Nrp1–). Their accumulation

is influenced by enteric factors derived from diet or commensal

colonization (12, 81). In addition, VDR also drives T cell

maturation facilitating the induction of T regulatory cells (83)

and reduces Th17 cell formation (84).

2) RORgt+IL17+ Th17 cells. RORgt+IL17+ Th17 (Th17) cells

cause autoimmunity and inflammation (85). The nuclear hormone

retinoid-related orphan receptor g (RORg) is selectively expressed

by Th17 cells, acting as a critical transcription factor for Th17 cell

differentiation in chronic inflammation and autoimmune diseases

(86). The BA metabolite 3-oxoLCA, which can directly bind to

RORg (11), inhibits Th17 cell differentiation by blocking the

function of RORg (11, 87). Similar to 3-oxoLCA, isoLCA also

suppresses Th17 cell differentiation by inhibiting RORg (20). A

sulfated product of LCA, lithocholic acid 3-sulfate (CA-3-S) can

also selectively inhibit Th17 cell differentiation by targeting RORg
(88). Thus, the inhibition of RORg provides therapeutic benefits in
the intestinal inflammation and reduces the frequencies of Th17

cells (89).

3) T-bet+IFNg+ Th1 and Gata3+IL4+IL13+ Th2 cells. T-

bet+IFNg+ Th1 (Th1) and Gata3+IL4+IL13+ Th2 (Th2) cells can

regulate appropriate cellular and humoral immune responses to

pathogens and be involved in the progress of many diseases. Both

IL-12 and IFN-g make naive CD4+ T cells highly express T-bet and

signal transducer and activator of transcription (STAT) 4 to

differentiate to Th1 cells, while IL-4 makes naive CD4+ T cells

highly express STAT6 and Gata3 to differentiate to Th2 cells.

Through a VDR-dependent mechanism, the unconjugated LCA

in physiological concentrations can inhibit the activation of human

and mouse CD4+ Th1 cells, resulting in decreased TNFa and INF-g
production (90). VDR activation also promotes a shift from the Th1

to the Th2 phenotype through increased production of the

transcription factors c-maf and Gata-3 (91). VDR can be
FIGURE 3

Regulation of BAs and their derivatives on the differentiation of Tregs. BA derivative isoDCA increases Foxp3 induction by diminishing DC
immunostimulatory properties. IsoalloLCA promotes the differentiation of Treg cells through the production of mitochondrial reactive oxygen
species, which lead to increased expression of Foxp3. Nuclear hormone receptor NR4A1 is also required for the effect of isoalloLCA on Treg cells. In
addition, a distinct Treg population expressing the transcriptional factor RORg is also induced in the colonic lamina propria by BAs and their
metabolites.
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activated by LCA and its metabolites such as 3-oxoLCA, 3-

ketoLCA, LCA acetate, LCA propionate and iso-alloLCA. In

addition, PXR activation also inhibit CD4 T cell proliferation in

vitro. Liver puncture biopsy specimens from 34 matched patients

before and after UDCA treatment showed the relationship between

the infiltration of CD4 T cells and UDCA (92).

4) Innate lymphoid cells. Innate lymphoid cells (ILCs) are the

importance in tissue homeostasis, morphogenesis, metabolism,

repair, and regeneration. These cells can be divided into 3 groups,

ILC1, ILC2 and ILC3 (93). In terms of function, ILC1s, ILC2s, and

ILC3s mirror CD4+ Th1, Th2, and Th17 cells respectively (94).

ILC3s can highly express BA receptors such as TGR5, FXR, and

RORgt. The receptor RORgt is required for the generation of

ILC3 (95).

4.2.2 CD8+ cells
BA derivatives 24-NorursoDCA (NorUDCA) can reshape

immunometabolism in CD8+ T cells and alleviate hepatic

inflammation (96). TCA inhibits the response to IFNa therapy in

the patients with chronic hepatitis B through suppressing CD8+ T

and NK cell function (97). Cholestatic mice are featured with

dysfunctional T cells response, as indicated by decreased sub-

population of CD4+ and CD8+ cells and increased CTLA-4+CD4+

and CD8+ subsets (98). Transcription factor VDR activation also

reduces the ongoing proliferation of CD8+ cells (99). PXR is

expressed in human CD8+ T lymphocytes. PXR activation also

inhibits CD8+ cell proliferation in vitro.

4.2.3 B cells
B cells play an important role for immune response not only in

antibody production but also in antigen presentation and cytokine

production. BA receptor VDR activation reduces the proliferation of
Frontiers in Immunology 06
B lymphocytes (99), induces apoptosis of activated B cell apoptosis

(100) and inhibits Ig production by B cells (101). Indeed, recent

studies show that BAs can impair vaccine response, possibly via

inhibiting post-class-switched memory B cell responses (102).

4.2.4 NKT cells
NKT cells are an unusual population of T cells, which can

recognize lipids presented by CD1d, a non-classical class I like

molecule. These cells include two subtype, type I and II NKT cells,

which pay a critical role in tumor immunity. Type I NKT cells generally

promote tumor immunity; whereas type II NKT cells suppress it. But,

type I NKT cells can also induce immunosuppressive cells such as Treg.

BA receptor FXR activation in NKT cells results in a profound

inhibition to produce osteopontin, a potent pro-inflammatory

mediator along with IL-1b and IFN-g (60). TGR5 agonists induce

NKT cells polarization toward IL-10 secreting type I NKT cells and

significantly expand the subset of IL-10 secreting type II NKT cells

(103). Recent studies show that gut microbiota-mediated BA

metabolism can regulate liver antitumor immunity via controlling an

accumulation of NKT cells (104).
5 BA metabolites and immune-
associated disorders

BAs and their metabolites play an important role in

maintaining the homeostasis of local and system immunes.

Damages of the homeostasis are related to the occurrence and

development of immune-associated disorders such as gut diseases,

metabolic diseases, tumors, neurodegenerative diseases, allergic

diseases, autoimmune diseases and infectious diseases

(Figure 4) (105).
FIGURE 4

BAs and their metabolites are related to the occurrence and development of immune-associated disorders such as gut diseases (inflammatory bowel
disease, coeliac disease and irritable bowel syndrome), metabolic diseases (obesity, type 2 disbetes, cardiovascular disease and nonalcoholic fatty
liver disease), tumor (such as colorectal cancer and liver cancer), neurodegenerative disease (Alzheimer’s disease, Parkinson’s disease, Huntington’s
disease and Multiple sclerosis), allergic diseases, autoimmune diseases and infections (such as bacterium infection). Red dotted lines indicate that
BAs and their metabolites in virus infection can also promote innate immunes.
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5.1 Gut inflammation associated diseases

Gut diseases such as inflammatory bowel diseases (IBDs),

coeliac disease and irritable bowel syndrome are gut

inflammation associated diseases. Intestinal bowel diseases (IBD),

including Crohn’s disease (CD) and ulcerative colitis (UC), are

chronic relapsing disorders (14). The effects of BAs on IBD have

been reviewed (10, 44, 106). Accumulating evidences have shown

that the gut microbiota plays a pivotal role in maintaining intestinal

homeostasis. There exist decreased microbial diversity and

abnormal microbial composition in the patients with IBD (99),

which are characterized by increased phyla Proteobacteria and

Fusobacteria (mainly Fusobacteria varium in UC and

Fusobacteriaceae in CD patients), and reduced phyla Firmicutes

(107–111). Since the majority of BSH expressing bacteria is

members of Firmicutes phylum (112), these changes might impact

on BA metabolism, which is related to the occurrence and

development of IBD (113).

Recent metabolomics has revealed a consistent defect in the BA

metabolism, which is companied with an increase in primary BAs

and a reduction in secondary BAs in the patients with IBD (114, 115).

Vantrappen et al. first demonstrated that the decrease in the BA pool

size is inversely correlated with the Crohn’s disease activity index

(116). There also exhibit a severe reduction in fecal secondary BAs

such as DCA and LCA, and an increased abundance of primary bile

acids such as CA and CDCA in active patients with IBD (115). The

levels of 3-oxoLCA and isoLCA are also significantly reduced in the

patients with IBD (20). Similar findings with increased primary BAs

and their conjugated forms, and reduced secondary and

unconjugated BAs (117) are also observed in paediatric patients

with IBD (118). In addition, a reduction of LCA also impacts on

activation of VDR, that is an anti-inflammatory receptor in

macrophages. The patients with IBD are also characterized by an

increased 3-sulfated DCA and LCA in the feces (119), suggesting that

in add i t i on to BSH-dependent deamida t i on , o the r

biotransformations such as sulfatation might also be impaired in

patients with IBD (119). Thus, the supplementation of secondary BAs

may be a potential strategy for the therapy of the patients with IBD.

Primary and secondary BAs are identified as signaling

molecules acting on a family of cell membrane and nuclear

receptors such as TGR5, FXR, PXR and VDR, which are highly

expressed in the gastrointestinal tract. Studies have demonstrated

that both BA receptors FXR and TGR5 are essential to maintain a

tolerogenic phenotype of intestine immune. Ablating these

receptors can promote the polarization of intestinal T cells

toward a pro-inflammatory phenotype (14). FXR or TGR5 KO

mice are prone to develop an exaggerated inflammatory response

upon exposure to dextran sodium sulfate (DSS) or trinitrobenzene

sulfonate (TNBS) (120). Upon BA activation, FXR controls

expression of genes, which can limit the inflammatory responses.

FXR KO naïve mice are characterized by intestinal inflammation

with increased expression of pro-inflammatory cytokines as

compared to wild type (WT) mice (120). In addition to FXR,

PXR is also involved in IBD. Human PXR activation represses

intestinal immune response in a NF-kB dependent manner (121).

Compared with WT mice, DSS induced colitis was more severe in
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PXR KO mice (122), which could be protected by pregnenolone

16a-carbonitrile (PCN, a human PXR agonist) (122). Notably,

several studies showed that PXR polymorphisms had no

markedly effects on the risk of IBD (123). Another nuclear

receptor VDR can also be activated by the secondary BA LCA

and/or its metabolites 3-oxoLCA and iso-alloLCA (12). Studies

found that VDR plays a beneficial role in patients with IBD (124).

Its polymorphisms are related with susceptibility to IBD (125). In

mouse model of colitis, VDR KO can exacerbate the symptoms in

IL-10 KO mice, whereas vitamin D supplementation improves the

symptoms. Intestinal epithelial cells-specific VDR KO mice showed

a more severe colitis than WT mice (126). Taken together, these

receptors may provide new perspectives on the treatment of

intestine diseases such as IBD.
5.2 Metabolic diseases

Metabolic diseases such as obesity, type 2 diabetes (T2D),

cardiovascular disease and non-alcoholic fatty liver disease

(NAFLD), are generally considered a chronic inflammatory

disease (127, 128). Altered bile acid metabolism can contribute to

these chronic inflammatory diseases (129). BAs and their

derivatives are valuable therapeutic agents for treating these

inflammatory metabolic diseases (129).

Obesity is mainly induced by the disequilibrium of energy

intake and energy expenditure, which results in metabolic

disorders and chronic low-grade inflammation. UDCA

supplementation can control diet-induced obesity in prenatally

malnourished mice (130). Dietary acetic acid suppress high-fat

diet-induced obesity in mice by altering taurine conjugated bile

acids metabolism (131). Watanabe et al. reported that the

administration of BAs to mice increased energy expenditure in

brown adipose tissue (BAT), preventing obesity and resistance to

insulin (132). The proportion of non-12-OH bile acids, including

HCA, HDCA, glycohyodeoxycholic acid (GHDCA), UDCA,

GUDCA, and CDCA in total bile acid is significantly lower in

people with high body mass index (BMI), indicating that non-12-

OH bile acids may contribute to the process of obesity (133). In the

individuals with obesity, T2D and NAFLD, which are characterized

by recruitment of immune cells, abnormal production of cellular

inflammatory cytokines and acute phase reactants, and activation of

inflammasomes, are associated with dysregulation of BA

homeostasis (127, 134). Recent studies suggested that size and/or

composition of BA pool changed in patients with T2D, and found

that BAs and their derivatives improved T2D by reducing the levels

of inflammatory cytokines (135). BA metabolism is also altered in

patients with hepatic steatosis and glucose and lipid dysmetabolism

(136). Dysregulation of BA metabolism was linked to steatosis,

inflammation, and fibrosis in patients with NAFLD (137).

Intervention of BAs could effectively control and prevent obesity

and NAFLD (132, 138). Studies from animal models and human

patients have found that NAFLD disease progression is closely

associated with BA dysregulation (139–143).

Inflammation plays an important role in the development and

progression of cardiovascular diseases (CVDs). Hypertension and
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hyperlipidemia, the key risk factors of CVDs, are related to

inflammation in the heart and vessels (144). The signaling

pathways mediated by immune and inflammatory mediators

have been implicated within the atherosclerotic lesion (145). A

growing number of studies have shown a strong relationship

between gut microbiota and CVDs such as coronary

atherosclerosis, hypertension and heart failure (146). High fiber

diet significantly improved cardiac function through modulating

the composition of intestinal flora and the production of

metabolites production, including the biosynthesis of bile acids

and linoleic acid metabolism (147) . Dietary mannan

oligosaccharides can increase fecal BA excretion and decrease

atherosclerosis development (148).
5.3 Tumors

BAs have been considered as pro-carcinogenic molecules (149,

150). Studies have also implied the involvement of BAs in

colorectal, gastric, hepatocellular, pancreatic, breast, prostate and

ovarian cancer (149). However, inflammation play a decisive role in

inducing tumorigenesis, promoting tumor development, tumor

invasion and migration (151). Human epidemiological evidence

has confirmed the close relationship between chronic inflammation

and tumorigenesis (152) such as that inflammation is a common

medical complication in colorectal cancer (CRC) patients, which

p l a y s s i gn ifi c an t r o l e s i n tumor p rog r e s s i on and

immunosuppression (153). Some epidemiological studies have

shown an association between fecal and serum BAs and CRC

(154). TGR5 activation by UDCA and LCA can exert anti-

inflammatory responses through TLR4 activation or by reducing

pro-inflammatory cytokine production in the colon that can

decrease the frequency of developing CRC (155). Altered BA

metabolism also promoted helicobacter pylori-induced

inflammation-driven gastric carcinogenesis (156). Remarkably

decreasing percentages of serum conjugated DCA were closely

associated with hepatocellular carcinoma (HCC) (157).
5.4 Neurodegenerative diseases

Various studies have shown the role of neuro-inflammation in

the occurrence, diagnosis, and treatment of neurodegenerative

diseases. Neuro-inflammation can trigger the formation of other

factors responsible for causing several neuronal diseases including

Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s

disease (HD), multiple sclerosis (MS), ischemia, and several others

(158, 159). Parkinson disease (PD) is a progressive neurodegenerative

disease that affects peripheral organs as well as the central nervous

system and involves a fundamental role of neuro-inflammation in its

pathophysiology. There is increasing evidence for inflammation as a

determinant in the pathogenesis of Parkinson’s disease (160). UDCA

and TUDCA have shown neuroprotective properties in these
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neurodegenerative diseases (161). TDCA is also as a potential

therapeutic tool in neurodegenerative diseases (162).
5.5 Rheumatoid arthritis

Rheumatoid arthritis (RA) is an autoimmune disease

characterized by joint destruction, synovitis, and pannus

formation. Additional proinflammatory cytokines, such as IL-7,

IL-17, IL-21, IL -23, GM-CSF, IL-1b, IL-18, IL-33 and IL-2 are

involved in the pathogenesis of RA (163). Elevated levels of primary

BAs have been found in the feces of some RA patients, which can be

used to predict RA arthritis severity (164). Secondary BAs such as

DCA and LCA can suppress macrophage cytokine production via

FXR (165).
5.6 Allergic asthma

Obesity is a risk factor for the development of asthma and is

associated with worsening symptoms and poor asthma control

(166). Altered bile acid profiles have been reported in asthmatic

patients. GCA, GDC, TCDC and taurocholate increased with

asthma, compared to healthy individuals (167).
5.7 Infectious diseases

Bacterium and virus infection can cause inflammation. BAs are

associated with infectious diseases such as Clostridioides difficile or

Salmonella Typhimurium infection (105). BAs regulate immune

responses upon ligation of these two receptors FXR and TGR5,

which are located at the interface of the host immune system with

the intestinal microbiota (10). However, studies have also reported

that BAs activated several key innate signaling pathways to

potentiate antiviral immunity (10). The intestinal regionalization

of acute norovirus infection is regulated by the microbiota via bile

acid-mediated priming of type III interferon (168, 169).
6 Conclusion

There are multiple forms of BAs such as conjugated and

deconjugated primary BAs, secondary BAs DCA and LCA, and

their derivatives. While primary BAs are generated in the liver, four

distinct ways, including deconjugation, dehydroxylation,

dehydrogenation and epimerization are used to transform

primary BAs into secondary BAs and their derivatives by gut

microbiota. These primary and secondary BAs and their

derivatives can act on the receptors expressed in Macs, MDSCs,

DCs, Tregs, Th17 cells, ILCs, CD4 cells, CD8 cells, B cells and NKT

cells to modulate their differentiation and function, which can affect

both the innate and adaptive immune responses for homeostasis. In
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addition, dysregulation of BA homeostasis is also found in the

inflammation associated disorders such as IBD.

BAs have been used therapeutically in China for over 2500 years

(170). Currently, the Food and Drug Administration (FDA) has

approved a formulation of UDCA, Ursodiol, which has vast beneficial

effects such as anti-inflammatory (171). It has been used to treat a

variety of diseases such as cholesterol gallstones, primary biliary

cirrhosis, primary sclerotic cholangitis, nonalcoholic fatty liver

disease, chronic viral hepatitis C, recurrent colonic adenomas,

cholestasis of pregnancy, and recurrent pancreatitis (171). With

understanding of BAs and their metabolites on the local and

systemic immunes, more precise therapy based on BA metabolites

will be used in inflammation-associated diseases.
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