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Tumor microenvironment-
mediated immune evasion
in hepatocellular carcinoma

Chen Chen †, Zehua Wang †, Yi Ding and Yanru Qin*

Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy

and is the third leading cause of tumor-related mortality worldwide. In recent

years, the emergency of immune checkpoint inhibitor (ICI) has revolutionized the

management of HCC. Especially, the combination of atezolizumab (anti-PD1) and

bevacizumab (anti-VEGF) has been approved by the FDA as the first-line treatment

for advanced HCC. Despite great breakthrough in systemic therapy, HCC

continues to portend a poor prognosis owing to drug resistance and frequent

recurrence. The tumor microenvironment (TME) of HCC is a complex and

structured mixture characterized by abnormal angiogenesis, chronic

inflammation, and dysregulated extracellular matrix (ECM) remodeling,

collectively contributing to the immunosuppressive milieu that in turn prompts

HCC proliferation, invasion, and metastasis. The tumor microenvironment coexists

and interacts with various immune cells to maintain the development of HCC. It is

widely accepted that a dysfunctional tumor-immune ecosystem can lead to the

failure of immune surveillance. The immunosuppressive TME is an external cause

for immune evasion in HCC consisting of 1) immunosuppressive cells; 2) co-

inhibitory signals; 3) soluble cytokines and signaling cascades; 4) metabolically

hostile tumor microenvironment; 5) the gut microbiota that affects the immune

microenvironment. Importantly, the effectiveness of immunotherapy largely

depends on the tumor immune microenvironment (TIME). Also, the gut

microbiota and metabolism profoundly affect the immune microenvironment.

Understanding how TME affects HCC development and progression will

contribute to better preventing HCC-specific immune evasion and overcoming

resistance to already developed therapies. In this review, we mainly introduce

immune evasion of HCC underlying the role of immune microenvironment,

describe the dynamic interaction of immune microenvironment with

dysfunctional metabolism and the gut microbiome, and propose therapeutic

strategies to manipulate the TME in favor of more effective immunotherapy.
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1 Introduction

Hepatocellular carcinoma (HCC) is the most common primary

liver malignancy and is the third leading cause of cancer-related

mortality worldwide in 2020 (1). HCC frequently develops on a

background of cirrhosis caused by multiple risk factors, including

chronic viral infection of hepatitis B virus (HBV) or hepatitis C virus

(HCV), alcohol abuse, aflatoxin exposure, non-alcoholic

steatohepatitis (NASH), and drug-related liver injury (2). Treatment

recommendations differ in various stages of HCC. The choice

between locoregional treatments mainly depends on the tumor

burden, location, and liver function (3). Based on clinical practice

guideline, surgical resection, radiofrequency ablation (RFA),

transarterial chemobolization (TACE), and liver transplantation are

effective for tumor confined to the liver, whereas systemic therapy

targeting the TME is available for unresectable HCC (3, 4). Since the

first tyrosine kinase inhibitor (TKI) sorafenib was proven to extend

the survival in advanced HCC patients without compromising liver

function in 2008 (5), multi-TKIs and vascular endothelial growth

factor (VEGF) inhibitors have been integrated into standard systemic

therapy for advanced HCC (6–9).

Cancer immunotherapies have greatly revolutionized the clinical

management of HCC in recent years, particularly the application of

immune checkpoint inhibitor (ICI). It has been proven that the

combination of atezolizumab (anti-PD1) and bevacizumab (anti-

VEGF) was superior to the first-line treatment sorafenib (10).

However, HCC continues one of the worst prognoses due to drug

resistance and frequent recurrence. A large percentage of HCC

patients still do not benefit from these immunotherapies or

undergo immune-related adverse events. A potential explanation is

these immune-based approaches primarily aim to reactivate
Frontiers in Immunology 02
dysfunctional T cell but ignore the immunosuppressive

contribution of the tumor microenvironment (TME).

The tumor microenvironment is a complex ecosystem that plays

an indispensable role from cancer initiation to distant metastasis (11).

It coexists and interacts with various immune cells and their products,

referred to the tumor immune environment (TIME). Dysfunctional

tumor-immunity cycle can lead to immune evasion by flawed antigen

recognition or by immunosuppressive TME (12). Tumor intrinsic

mechanism of immune evasion might be attributed to defects of

antigen presentation, loss of MHC-I molecules, and epigenetic

repression of tumor-associated antigens (TAA) (13). The

immunosuppressive TME is an external driver of immune escape

due to 1) the presence of immunosuppressive cells; 2) co-inhibitory

signals on lymphocytes; 3) the existence of immunosuppressive

soluble factors and signaling cascades; 4) metabolically hostile

tumor microenvironment, imposing barriers to tumor-infiltrating

immune cells; 5) the intra-tumoral microbes that alter the state of

the immune microenvironment to prompt HCC progression (14–19).

Figure 1 depicts mechanisms of immune evasion mediated by tumor

microenvironment in HCC.

The tumor immune microenvironment can determine whether

immunotherapy will be successful. Importantly, gut microbiota and

metabolism profoundly affect the immune microenvironment.

Understanding their complicated interaction will contribute to

better modulating HCC-specific immune response and overcoming

resistance to already developed therapies. In this review, we provide

an overview of immunosuppressive microenvironment in HCC,

mainly introduce mechanisms of immune evasion underlying the

role of immune microenvironment, gut microbial microenvironment,

and metabolism microenvironment, and propose novel strategies to

harness the TME to enhance HCC immunotherapy.
FIGURE 1

Mechanisms of immune evasion led by the tumor microenvironment in hepatocellular carcinoma. The immunosuppressive tumor microenvironment is
an external driver of immune evasion in HCC. The suppressive immune microenvironment is led by intricate interactions among suppressive immune
cells, stromal cells, immunoregulatory cytokines, and signaling cascades. Metabolic constraints and gut microbiota also contribute to the
immunosuppression. The permissive microenvironment favors tumor cells to proliferate in un uncontrolled manner and is no longer confined by the
host immunity. TME, tumor microenvironment; PAMP, pathogen-associated molecular patterns; TLR4, Toll-like receptor 4; AA, amino acid; ROS, reactive
oxygen species.
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2 Immunoediting and immune evasion

Cancer immunoediting is a dynamic process that includes

immune surveillance and tumor progression. It describes the

relationship between tumor cells and immune system, proceeding

through three phases: elimination, equilibrium, and escape (20).

During the elimination phase, immune effector cells are able to

recognize and eliminate tumor cells (20). In the equilibrium stage,

tumor cells have escaped the elimination stage. But adaptive

immunity still prevents the overall growth of the tumor, which

keeps tumor cells in a state of functional dormancy (20, 21). In the

escape stage, tumor cells continue to grow and proliferate in an

uncontrolled manner and is no longer confined by the host immunity

(20, 21). Tumor subclones that have acquired alterations could evade

detection and destruction (20, 21).

The cancer-immunity cycle is a multistep process (Figure 2). The

infinite proliferation and high tumor mutational burden of tumor

cells firstly activate innate immune cells, such as natural killer (NK)

cells, which target and lyse tumor cells to release tumor-associated

antigens into the TME. These molecules are subsequently recognized

by antigen-presenting cells (APCs), which travel to secondary

lymphoid organs where adaptive immune responses are primed and

activated (22). APCs present neoantigens to T cell receptor (TCR) of

CD8+ cytotoxic T lymphocytes via the major histocompatibility

complex (MHC) class I molecules. These activated T cells migrate

and infiltrate into the HCC tissue. The final step is the T lymphocyte-

mediated destruction of tumor cells, which in turn allows more

tumor-associated antigens released into the TME (23, 24). Of note,

the cancer-immunity cycle represents the adaptive aspect of immune

surveillance phase (25–27). Tumors can perturb the processes
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mentioned above to evade immune surveillance by tumor-intrinsic

mechanism (acquisition of genetic alterations) or tumor-extrinsic

mechanism (generation of an immunosuppressive TME).

In acute infection, activated T cells can eliminate harmful

pathogens. However, during the progression of HCC, these

neoantigens are seldom eliminated, leading to the formation of

chronic inflammatory stimulation that mediates the silence of the

immune response and the loss of cytotoxic capacities of T cells.

Previous studies have reviewed the escape of the tumor-intrinsic

mechanism (28). The contributions of TME in this issue is usually be

ignored. Therefore, the crosstalk among immune microenvironment,

gut microbial microenvironment, and metabolic microenvironment is

of great importance to HCC immune evasion.
3 Immune evasion mechanism in the
immune microenvironment of HCC

Immune surveillance and evasion are respectively dictated by the

opposing activities of effector immune cells and immunosuppressive

cells in the TME (Figure 3). The hepatic TME is an intricate

ecosystem that is comprised of tumor cells, immune cells, non-

parenchymal liver cells, tumor-associated fibroblasts (29). Several

lines of evidence suggest that the crosstalk between tumor cells and

TIME components is a critical factor for the immune evasion of HCC

and for the major cause of resistance to immunotherapies. The

immunosuppressive milieu is consisted of immunosuppressive cells,

non-parenchymal cells, T-cell exhaustion, soluble cytokines, and

signaling cascades (30).
FIGURE 2

Cancer-immunity in HCC. Tumor cells release antigens into the tumor microenvironment due to necrosis or treatment. Dendritic cells capture cancer
antigens and traffic to the lymphoid organs where they present antigens to T cells, followed by T-cell priming and activation. These activated T cells
migrate and infiltrate into HCC tissue. CD8+ T cells recognize HCC cells via T cell receptor. The final step is T cell-mediated killing of tumor cells,
allowing more cancer-specific antigens to release. Tumor can perturb the processes mentioned above to occur immune evasion. DC, dendritic cell;
TME, tumor microenvironment; HCC, hepatocellular carcinoma.
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3.1 Immunosuppressive cells

Cytotoxic CD8+ T cells, CD4+ T cells, and NK cells work together

to maintain immune surveillance, whereas abundant immune cells

that resident in HCC contribute to immune evasion to prompt tumor

progression, such as myeloid-derived suppressor cells (MDSC),

regulatory T (Treg) cells, and tumor-associated macrophages

(TAMs). Under physiological conditions, all populations participate

in the manipulation of immune response, and thereby preserving

homeostasis and self-tolerance (30, 31). However, both adaptive and

innate immune response are blunted in HCC, as demonstrated by the

TIME with dysfunctional TILs and NK cells (32–34).

MDSCs is a heterogenous group of immature myeloid cells that

dampen CTL and NK cell effector functions, displaying a strong

immunosuppressive activity in tumor-bearing hosts (35, 36). Several

tumor-originated cytokines, such as IL-6, IL-1b, GM-CSF, G-CSF,

VEGF, and MCP-1, have been reported to induce MDSC

accumulation in preclinical models of HCC (37). An HCC-specific

cell cycle-related kinase (CCRK) could upregulate IL-6 production via

EZH2/NF-KB signaling, resulting in an extensive infiltration of

polymorphonuclear MDSCs (38). Hypoxemia is a key regulatory

factor that induces MDSCs accumulation via the chemokine C-C

motif Ligand 26 (CCL26)/CX3CR1 pathway (39). Hypoxia-inducible

factor 1a (HIF-1a) mediates ENTPD2 overexpression to convert

ATP to 5’-AMP, which recruits a great quantity of MDSCs into the

TME (40). Tumor-associated fibroblasts (CAFs) also facilitate the

production of MDSCs by activating IL-6/STAT3 pathway (41).

MDSCs accumulated in HCC could damage effector T cell function,

reduce NK cell cytotoxicity, and expand immune checkpoint

signaling, which blunt both innate and adaptive immune responses.

The liver contains a large number of MDSCs that up-regulate the

secretion of VEGF, TGF-b, and arginase, which inhibit T cell

activation (42). MDSCs were found to deprive essential amino acids

that are critical to T cell proliferation (43), and they release reactive
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oxygen and nitrogen species (iNOS or NOS2) that disrupt T cell

receptor (TCR) signaling (44). Galectin-9 expressed on MDSCs binds

to TIM-3 on T cells, which is associated with T cell apoptosis (45).

Furthermore, a high infiltration of MDSCs in HCC is able to facilitate

the conversion of naïve T cells into Treg cells (30). MDSCs also foster

an immune escape status by reducing NK cell cytotoxicity. In

senescent hepatocytes, MDSCs are recruited via the CCR2-CCL2

signaling, followed by differentiating into macrophages and blocking

HCC initiation. However, once the tumor is initiated and developed,

they would lose the ability of differentiation and cause inhibition of

NK cell responses (46). Specifically, MDSCs can impair NK cell

cytotoxicity by the NKp30 receptor and interact with Kupffer cells

to enhance PD-L1 expression (47).

The physiological role of Treg cells is to inhibit excessive immune

response to maintain homeostasis and autoimmune tolerance.

However, hyperactive work of Treg cells in HCC supports tumor

invasiveness, triggering a compromised T-cell immune response

through several mechanisms (48–50). More CD4+ CD25+ Treg cells

are enriched in the TME relative to that in in healthy individuals (51,

52). Treg cells are recruited by the chemokine receptor 6 (CCR6) and

chemokine ligand 20 (CCL20) axis and activated by the binding of

TCR with IL-10 and TGF-b signaling (53). Sorafenib, a multi-kinase

inhibitor for HCC, has been proven to reduce hepatic Treg infiltration

via suppressing TGF-b signaling (54). Long noncoding RNAs

(lncRNA) are also involved in Treg cell differentiation (55).

Specifically, the lncRNA-EGFR links an immunosuppressive state to

HCC by augmenting activation of AP-1/NF-AT1 axis in Treg cells,

thus prompting immune evasion (55). Overexpression of IL-35 has

been shown to positively correlate with CD39+ FoxP3+ Treg cell

infiltration, which may be another independent predictor for

treatment efficacy among HCC patients (56). Mechanistically, CD4+

CD25+ FoxP3+ Treg cells could damage CD8+ T cell cytotoxicity by

reducing the release of granzyme A, B, and perforin (57). Treg cells

selectively inhibit some molecules that are essential in CD8+ T cell
FIGURE 3

Roles of major immune cells in the HCC immune microenvironment. Immune cells existing in HCC can be roughly classified into one group that prompts an
effective anti-tumor response, and the other group that limits immune response against HCC cells and contribute to an immunosuppressive TME. DC,
dendritic cell; TIL, tumor-infiltrating lymphocytes; NK, natural killer; MDSC, myeloid-derived suppressor cell; Treg, regulatory T; TAM, tumor-associated
macrophage; VEGF, vascular endothelial growth factor; TGF-b, transforming growth factor-Β; IDO, indoleamine 2, 3-dioxygenase; Arg1, arginase 1; Gln,
glutamine; TCR, T cell receptor; MHC-I, major histocompatibility complex I; TME, tumor microenvironment; HCC, hepatocellular carcinoma.
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activation, such as TNF-a and IFN- g (57, 58). Treg cell constitutively
express CTLA-4 and secrete inhibitory molecules, such as IL-10 and

TGF-b (59, 60).

As a significant component in the TME, TAM frequently portends

a worse prognosis in HCC (61). TAMs arise from marrow-derived

monocytes and obtain versatile immunosuppressive functions at each

stage of differentiation. M1 and M2 are two polarizing phenotypes of

TAMs with high plasticity in response to different stimuli. Substantial

findings support that M1-polarized macrophages create pro-

inflammatory cytokines and prevent malignancy development,

whereas M2-polarized cells are able to produce tumor growth factor

(IL-6), angiogenic molecules (VEGF), and immunosuppressive factors

(Arg1, IL-10, TGF-b, and IDO) (62). Several HCC-originated

cytokines, including IL-4, IL-13, CSF-1, CCL2, CXCL12, and CTG,

promote CCR2+ inflammatory monocytes differentiation into TAMs in

the TME (63–65). Moreover, TME-derived TGF-b facilitates TIM-3

expression on TAMs, fostering HCC development and immune

tolerance (66). Osteopontin (OPN) correlates with PD-L1

upregulation and prompts TAM chemotaxis through the CSF1-CSF1

pathway (67). Under persistent hypoxia, HIF-1a/IL-1b loop between

tumor cells and TAMs fosters epithelial-mesenchymal transition

(EMT) and immune evasion (68). TAMs also produce cytokines and

chemokines to drive immune suppression in HCC. For example,

TAMs-derived CCL17, CCL18, and CCL22 could attract Treg cell

infiltration into the TME (69, 70). The interplay between MDSCs and

TAMs downregulates the production of IL-6, IL-12, and MHC-II but

upregulates IL-10 secretion. TAM-derived IL-10 damages downstream

CD8+ T cell and NK cell cytotoxicity but increases CD4+ CD25+

FOXP3+ Treg cell frequency (71, 72). Activated TAMs in the

peritumoral stroma of HCC secrete a set of pro-inflammatory

cytokines, such as IL-6, IL-23, IL-b, and TNF-a. These cytokines

trigger the expansion of T helper 17 (Th17) cells that overexpress

PD-1, CTLA-4, and GITR to exert an immunosuppressive function

(73). Overall, TAMs might be a promising target for future

HCC treatment.

Less common immunosuppressive cell types in human HCC

consist of B cell population expressing PD-1, Th17 cells, CD4+ T

cells expressing CCR4 and CCR6, CD14+ DCs expressing CTLA-4

and PD-1, tumor-associated neutrophils, tumor-associated

fibroblasts, and type-II T helper cells (Th2) (74–77). These cells

cooperate in the formation of immunosuppressive milieu and their

presence usually manifests a poor prognosis in HCC.
3.2 Non-parenchymal liver cells

Liver is an immune organ with a number of immunocompetent

cells. Non-parenchymal resident cells, such as Kupffer cells, hepatic

stellate cells (HSC), and liver sinusoidal endothelial cells (LSEC),

cooperate in the maintenance of immune tolerance.

Kupffer cells are liver-resident macrophages that act as antigen-

presenting cells (APC) to form the first line of defense against pathogens

(78, 79). Kupffer cells can contribute to hepatocarcinogenesis and

immune escape underlying several mechanisms: 1) secretion of

immunosuppressive cytokines (IL-10) (80); 2) upregulation

of inhibitory immune checkpoint ligand PD-1 (81); 3) downregulation

of costimulatory molecules (CD80 and CD86) (42, 82); 4) production of
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Indoleamine 2-3 dioxygenase (IDO) (83); 5) recruitment of Treg cells

and T helper 17 (TH17) cells (42, 81, 82). The interaction of PD-L1

expressed by Kupffer cells and PD-1 expressed by T cells leads to T-cell

exhaustion in human HCC (84). HSCs can secrete hepatocyte growth

factor (HGF) that enables MDSC and Treg cells to accumulate inside the

liver (85). Also, HSCs express high levels of PD-L1 to induce T cell

apoptosis (86). LSECs not only motivate Treg cell activation via TGF-b
but also highly express PD-L1 (87). Tumor-associated fibroblasts (TAF)

can trigger NK cell dysfunction by secreting prostaglandin E2 (PGE2) and

IDO, and prompt MDSC production by releasing IL-16 and

CXCL12 (41).
3.3 T-cell exhaustion

Immune checkpoints involve co-inhibitory molecules preventing

T-cell overactivation. Liver tumor cells and stromal cells express

corresponding ligands to evade anti-tumor immunity (88). Co-

inhibitory checkpoints include programmed cell death-1 (PD-1),

cytotoxic T lymphocyte protein 4 (CTLA-4), lymphocyte-activation

gene 3 (LAG3), T-cell immunoglobulin and mucin-domain

containing 3 (TIM3), and others (88), acting as pivotal regulators of

T-cell exhaustion (30, 31, 89).

CTLA-4 is expressed by activated T cells and is constitutively

present on Treg cells. It prevents T cell proliferation and induces Treg

cell activity inside HCC tissues (75, 90). PD-1 is expressed by

activated T cells, NK cells, Treg cells, MDSCs, monocytes, and DCs,

while its ligand, PD-L1, is mainly expressed by tumor and stromal

cells. The interaction of PD-1/PD-L1 is suppressive for antigen-

specific T cell activation (91–93). In HCC, high infiltration of PD-

1+ CD8+ T cells predicts a worse prognosis and a higher risk of

recurrence (94). In turn, overexpression of PD-L1 in tumor cells

prompts CD8+ T cell apoptosis (94). The immune microenvironment

of HCC also involves the overexpression of PD-L1 and PD-L2 in

Kupffer cells, LSECs, and leukocytes (95).

The immunosuppressive roles of LAG3 and TIM3 have recently

been uncovered in HCC. LAG3 that binds MHC-II molecules with

high affinity, is upregulated upon T cell activation and is a molecular

signature of T cell exhaustion (96). LAG3 expression is significantly

higher on CD4+ and CD8+ tumor-infiltrating lymphocytes (TILs)

than in other immune constituents among HCC patients (97).

Similarly, TIM3 is expressed on CD4+ and CD8+ TILs, TAMs, NK

cells in human HCC models (98). TIM3 interacts with its ligand

galectin-9 mediating T-cell dysfunction (99), whereas its expression

on Treg cells leads to enhanced suppressive activity (100). Notably,

TIM3 is highly expressed in less differentiated tumor cells (101),

which predicts poor prognosis in HBV-associated HCC (102).

Overall, immune checkpoints are expressed on the surface of T

cells in different phases. Tumor cells evade immune-mediated

destruction not only by expressing ligands to activate these

receptors but also favor a suppressive TME by recruiting non-

neoplastic cells to express these ligands. Immune checkpoint

inhibitors (ICIs) are monoclonal antibodies designed to specifically

disrupt inhibitory ligand-receptor interaction, removing T-cell

exhaustion and recovering immune elimination (103–105)

(Table 1). LAG3, TIM3, and PD-1 may function synergistically to

facilitate HCC immune evasion and develop drug-resistance to PD1
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or PD-L1 blockades (66, 106). Preclinical data support LAG3 and

TIM3 inhibitors in combination with PD1 or PD-L1 ICIs, though

their clinical values still require further elucidation.
3.4 Soluble molecules

The local milieu of cytokines and soluble mediators partly dictate

the immune microenvironment of HCC. Considering a more

complex layer, effects of these pleiotropic molecules greatly differ in

their target immune cell population, or in acute or chronic

inflammatory milieu (107). Non-parenchymal cells and infiltrating

immune cells could secrete several cytokines and concurrently keep

sensitive to these cytokines (108, 109). Secretion of TGF-b, IL-10, and
VEGF into the TME all contributes to immunosuppression (42).

A well-identified example is TGF-b that is abundant in the TME

of HCC. It could be generated by tumor cells, TAMs, and Treg cells

and downregulates anti-tumor immunity at varying levels. Explicitly,

TGF-b drives the polarization of TAMs into pro-tumorigenic M2-

phenotype (110); favors the differentiation of naïve CD4+ T cells into

Treg cells (111); impairs effector CD8+ T cell and NK cell cytotoxicity

(112, 113); inhibits DC cell activation (114); and exert inhibitory

effects on B cells (115). High serum TGF-b might predict poor anti-

cancer response to sorafenib and pembrolizumab in HCC patients

(116, 117). Evidently, TGF-b plays multitude effects on immune and

tumor cells, hindering the inflammatory reaction and supporting

immune evasion in HCC.

IL-10, a tolerance-inducing molecule in the HCC TME, is

produced by tumor cells, TAMs, Treg cells, and DCs (118). It

dampens the recruitment of tumor-infiltrating T cells (119) and

upregulates PD-L1 expression in monocytes (120). High circulating

levels of IL-10 have been shown to induce decreased TIL activity (121)

and increased MDSCs (122). Increased plasma level of IL-10 portends

to a poor prognosis in HCC patients (49, 123).

VEGF, a well-known regulator driving tumor angiogenesis, is

mainly secreted by both tumor cells and the surrounding stroma

(124). In addition to prompt angiogenesis, VEGF attenuates anti-

tumor response by negatively affecting antigen-presenting cells
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(APCs) and effector T cells while maintains immunotolerant TME

by positively increasing MDSCs and Tregs recruitment (125). Also,

VEGF increases PD-1 expression on T cells and PD-L1 expression on

TAMs. Focal gains at chromosome 6p21 leads to overexpression of

VEGFA and thereby foster an immunosuppressive TME (126, 127).

Overall, these findings build the fundamental to test the efficacy of

drugs that counteract the immunosuppressive actions of TGF-b,
VEGF, or IL-10 in HCC.
3.5 Signaling cascades

Tumor-intrinsic signaling cascades also affect the composition

and function of HCC immune infiltrates. In a mouse model of HCC,

CTNNB1 mutation or activation of WNT-b-catenin pathway could

downregulate CCL5 expression and dampen DC recruitment, leading

to immune escape and resistance to anti-PD-1 therapy (128). The

expression of NKG2D ligand on HCC cells is also downregulated by

b-catenin signaling, which is detrimental to the MHC-dependent

immune response responsible by NK cells (129). Loss of p53 function

facilitates the recruitment of immunosuppressive cells, and hepatoma

CDK20 activation prompts the recruitment of MDSCs (38). In

addition, overexpression of MYC, accounting for around 50-70%

HCC cases, has been associated with PD-L1 upregulation (130).

Finally, chronic HBV infection also results in overexpression of

PD-L1 on Kupffer cells, leukocytes, and LSECs, and thus enhancing

inhibitory signals in HCC TME (95, 131).
4 Immune evasion mechanism in the
gut microbial microenvironment
of HCC

The microbes reside within the tumor cells and immune cells.

Increasing evidence suggests a critical link between the microbiota and

the immune system (132–134). Intra-tumoral microbes and their

products, defined as the tumor microbe microenvironment, have the

potential to affect the tumor immunemicroenvironment. Gut microbiota
TABLE 1 Immune checkpoint inhibitors and their targets in HCC.

Target ICI Clinical trial Tumor type Phase Status Enrollment

PD-L1

Atezolizumab NCT04803994 Intermediate-stage HCC III recruiting 434

Durvalumab NCT05301842 Locoregional HCC III recruiting 525

Sintilimab NCT04220944 Unresectable HCC I recruiting 45

PD-1

Nivolumab CheckMate-040 Advanced HCC I-II active 659

Pembrolizumab Keynote-224 Advanced HCC II active 156

Tislelizumab NCT03412773 Unresectable HCC III active 674

CTLA-4
Ipilimumab NCT03682276 HCC I-II recruiting 32

Tremelimumab NCT01008358 Advanced HCC II completed 20

TIM-3 Cobolimab NCT03680508 Advanced HCC II recruiting 42

LAG3 Relatilimab None None None None None
HCC, hepatocellular carcinoma; ICI, immune checkpoint inhibitor; PD-1, programmed death 1; PD-L1, programmed death 1-ligand; CTLA-4, cytotoxic T lymphocyte-associated protein 4; TIM-3, T
cell immunoglobulin and mucin domain containing-3; LAG-3, lymphocyte-activation gene 3.
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is termed as a collection of microorganisms that colonize the intestine

(135). Of note, the gut microbiota could repress immunosurveillance and

prompt hepatocarcinogenesis. Understanding how gut microbes affect

hepatic immune escape creates therapeutic innovations to improve HCC

immunotherapy. The negative roles of microbes on TIME are

multifaceted: 1) microbial activation of TLR4; 2) microbial dysbiosis; 3)

microbe-derived metabolites; 4) microbial stimulation of

inhibitory checkpoints.
4.1 PAMP-TLR4 axis mediates
immune evasion

Microbial adjuvanticity is explained as the immunomodulatory

function of the pathogen-associated molecular patterns (PAMP), which

could be sensed by pattern recognition receptors (PRR). The most well-

elaborated subtype of PRR is Toll-like receptor (TLR) (136). Microbial

activation of TLRs contributes to the formation of immunosuppressive

TME. TLR4 is considered to be one of the most important receptors to

prompt hepatocarcinogenesis, which is expressed by hepatocytes,

Kupffer cells, HSCs, LESCs, DCs, NKs, B cells, and T cells (137).

Overexpression of TLR4 has been identified in HCC tumor samples

(138, 139). TLR4 primarily recognizes lipopolysaccharide (LPS) that is a

constituent of the cell wall of Gram-negative bacteria. LPS-induced

TLR4 signaling is associated with microvascular invasion, early

recurrence, and shortened survival in HCC patients (140).

Microbes mediate immune escape of HCC through direct or

indirect TLR4-dependent manners. Firstly, TLR4 affects the

recruitment and differentiation of various tolerance-inducing cells.

Bacterial LPS recognized by TLR4 could stimulate hepatocytes to

express CXCL1 that is a chemokine recruiting CXCR2+

polymorphonuclear MDSCs (141). Similarly, Fusobacterium

recognized by TLR4 regulates IL-6/STAT3/C-MYC signaling

pathway, facilitating TAM polarization into M2 phenotype (142).

The interaction of TLR4 with macrophages indirectly prompts the

accumulation of Treg cells in hepatoma cell lines, along with the

upregulation of IL-10 and CCL22 (138). Secondly, LPS-induced TLR4

directly activates JNK/MAPK signaling to enhance the invasive ability

and EMT of HCC cells (143). EMT enables epithelial cells to obtain

mesenchymal characters to favor the formation of an

immunosuppressive TME via upregulating co-inhibitory

checkpoints and inducing resistance to NK cell-mediated lysis

(144–146). The association between EMT and immunosuppression

has been widely reported in HCC (147). Thirdly, LPS-mediated

TLR4-AKT pathway upregulates the expression of Sox2, a stemness

marker gene, thereby increasing the number of cancer stem cells

(CSCs) of HCC (148). It is well known that CSCs are involved in

immune evasion through certain intrinsic and extrinsic mechanisms

(149). There is a tight association between TLR4 expression and CSC

characteristics, contributing to the failure of immune surveillance

(150). Furthermore, TLR4 is a direct target of microRNA-122 (miR-

122), a tumor suppressor that inhibits the expression and activities of

cytokines, such as VEGF, IL-6, COX-2, prostaglandin E2, and MMP-9

(151). Downregulation of miR-122 is linked to immune escape of

HCC by targeting TLR4, which is associated with PI3K/AKT/NF-KB
Frontiers in Immunology 07
signaling pathway (151). Additionally, LPS-activated STAT3

signaling upregulates VEGF production for HCC angiogenesis

(152). As discussed previously, VEGF is a key negative regulator of

anti-tumor immunity.

Overall, these findings suggest that microbial stimulation of TLR4

can change the TIME. Intriguingly, drugs targeting TLR4 might be

adjuvants to immune checkpoint inhibitors. Besides interacting with

TLR4, a specific gut microbe can exert immunomodulatory effect via

many different PRR-mediated signaling pathways, while some of

them await further exploration (153).
4.2 Microbial dysbiosis mediates
immune evasion

Maintenance of a balanced microbiota composition is crucial to

forming an ecological barrier to insults from the external stimuli. The

gut microbiota and mucosal immunity interact with each other to

maintain intestinal homeostasis. Once this balance is disrupted,

microbial dysbiosis would provide survival advantages for

pathogenic bacteria along with decreased number of beneficial ones

(154). An imbalance in gut microbiota composition is detected in

HCC, with a significant increase of E. coli and Atopobium cluster

while a significant regression of Lactobacillus species, Bifidobacterium

species, and Enterococcus species (154). A recent study pointed out

that a high cholesterol diet could induce gut microbial dysbiosis

(depleted Bifidobacterium and Bacteroides) while altered flora

metabolites in HCC patients (155).

Dysbiosis-mediated immune escape refers to a variety of

mechanisms. Firstly, microbial dysbiosis can affect the content of

immunogenic substances participating in intestinal homeostasis

maintenance. High levels of lipopolysaccharide (LPS) have been

detected in both pre-clinical models and HCC patients (154, 156),

which is likely attributed to the leaky gut and bacterial translocation

(157). Accumulation of circulating LPS from Bacteroides can prompt

immune tolerance and hepatocarcinogenesis (156, 158). Likewise,

TLR2 agonist lipoteichoic acid (LTA) can act on HSC to prompt

senescence-associated secretory phenotype and enhance hepatocyte

proliferation (159, 160). Secondly, microbial dysbiosis may alter the

intracellular tight junction, thereby enhancing the interaction of

dangerous signals with immune cells and facilitating the chronic

inflammation (161–164). Previous studies supported that HCC often

occurs in the context of chronic inflammation (165–167). Explicitly,

some microbiota can invade colonic epithelial cells and activate

intrinsic signaling pathways, aggravating the host inflammatory

responses and releasing more cytokines (168, 169). Dysbiosis-driven

chronic inflammatory can trigger oxidative stress that can deplete

sensitive microbes and leave resistant strains (170). More

importantly, it can mediate immune evasion by prompting

angiogenesis, disrupting adaptive immunity, and altering the

expression of pathogen recognition receptors (such as TLRs) and

downstream signaling (171, 172). Overall, changes in microbiome

composition are associated with the leaky gut (160, 173),

endotoxemia, and systemic inflammation (174–176), predisposing

the affected individuals more sensitive to developing HCC.
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4.3 Microbe-derived metabolites mediate
immune evasion

Microbial metabolites could enter the blood circulation and their

receptors spread over both tumor cells and tumor infiltrating

lymphocytes. Gut microbe-mediated bile acid metabolism regulates

immune escape via decreasing the recruitment of NK T cells.

Secondary bile acids (SBA) are derived from primary bile acids, of

which process is mediated by gut microbes (177). SBA could

downregulate the secretion of chemokine CXCL16 that interacts with

CXCR6 to recruit NK T cells. Therefore, a reduced number of NK T cells

through SBA via downregulating CXCR6-CXCL16, is beneficial for

immune escape and HCC progression. Conversely, antibiotics that

eliminate gut microbes could revert the above effects (178).

Deoxycholic acid (DCA) belongs to a gut bacterial metabolite that

can induce DNA damage. A research confirmed that dietary or

genetic obesity could result in microbial dysbiosis, thereby leading

to an increasing level of DCAs (179). DCA has been shown to induce

hepatic stellate cell senescence, thereby provoking the secretion of

multiple cytokines that prompt hepatocarcinogenesis in mice model

exposed to chemical carcinogen (179). Therefore, decreasing DCA

level or targeting gut microbiota can specifically prevents immune

evasion and inhibits HCC progression. Some other microbial-derived

metabolites, such as N-acetylmuramic acid and N-acetylglucosamine,

also exert their immunosuppressive effects on the TME (180).
4.4 Microbial activation of inhibitory
checkpoints mediates immune evasion

The interactions between microbes and immune checkpoints

could protect tumors from immune attack. The well-known

inhibitory checkpoints include PD-1, CTLA-4, TIM-3, LAG-3,

TIGIT, CEACAM1. Fap2 protein of Fusobacterium mucleatum

binds to inhibitory receptor TIGIT or CEACAM1, repressing the

activity of NK cells and effector T cells (181–183). The helicobacter

pylori HopQ outer membrane protein interacts with CEACAM1 to

inhibit immune cell activities (184). In addition, CD47 expressed by

tumor cells can recognize its ligand SIRPa expressed by DCs and

macrophages. CD47-SIRPa interaction could repress antigen

presentation activity and phagocytosis (185). However,

Bifidobacterium can upregulate the production of IFN-I in DCs,

enhancing antigen presentation and T cell activation. Emerging

evidence indicates that intravenous injection of Bifidobacterium

could improve the efficacy of CD47 blockade (186). Overall,

microbial stimulation of inhibitory checkpoints could manipulate

HCC immune escape, but connections between microbes and

inhibitory checkpoint deserve more investigation.
5 Immune evasion mechanism in the
metabolic microenvironment of HCC

In response to external stress, such as nutrient competition,

hypoxia, suppressive metabolites, tumor cells occur metabolic

adaptions for survival from senescence and immune evasion.

Understanding additional immunosuppressive mechanisms led by
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metabolic constraints would create a promising avenue to shift

immune evasion to immune elimination (187). Figure 4 introduces

mechanisms of metabolism-mediated immune escape in HCC.
5.1 Glucose deprivation

Glucose is not only the most dependent nutrient for tumor cells,

but also an essential energy source for immune cell activation,

differentiation, and function (188, 189). Owing to the enhanced

aerobic glycolysis, tumor cells consume a large amount glucose.

This activity limits the glucose availability and results in lactate

accumulation that acidifies the TME, severely impeding CD8+ T

cell activation and function (190). Glucose restriction in TILs is found

to reduce mTOR activity, glycolytic capacity, and IFN-g production,
and thereby immune cells gradually lose their effector functions (191,

192). By contrast, Treg cells can use lactate to fuel the tricarboxylic

acid (TCA) cycle and support their survival under a low glucose

environment (193). Moreover, M2-like TAMs and MDSCs can be

highly glycolytic and use glucose to reinforce their survival and

suppressive activity (194–196). In addition, lactate prompts TAM

M2 polarization, MDSC differentiation, as well as PD-L1 expression in

TAMs and MDSCs, contributing to immunosuppression (196–200).
5.2 Amino acid deprivation

Competition uptake for amino acids also contributes to immune

escape (201, 202). For example, glutamine (Gln) deficiency in the TME

inhibits effector T cell activation and reduces cytokine production

(203). Also, Gln deprivation impairs Th1 cell differentiation while

favoring Treg cell maintenance (204, 205). Intriguingly, TAM can

enhance Gln synthetase to provide Gln and support TAMs in skewing

towards the M2 phenotype even within a Gln-deficiency environment

(206). Likewise, arginine (Arg) has been reported to be deprived in the

TME. Arginase 1 (Arg1) or 2 convert arginine to ornithine that

hampers CD8+ T cell activation and cytotoxicity (207). Conversely,

Arg1 maintains the immunosuppressive property of MDSCs and

facilitate repolarization of M2-like macrophages, consequently

maintaining an immunosuppressive TME (208). In addition, tumor

cells also outcompete T cells for methionine (Met). Met recycling

pathway has been reported to drive T cell exhaustion in HCC (209).
5.3 Lipid metabolism and toxicity

Tumor cells display enhanced lipogenesis and produce a large

amount of lipids in the TME. Immune cells uptake excessive lipids by

CD36 or Mincle, leading to increased lipid metabolism and high

oxidative stress. The direct consequences are T cell dysfunction and

ferroptosis. However, Treg cells with high-level of glutathione

peroxidase 4, prevents ROS accumulation and ferroptosis. Further,

lipid-mediated endoplasmic reticulum stress prompt M2

differentiation and favors their suppressive function. Cholesterol

homeostasis is disrupted due to the overexpression of acyl

coenzyme A-cholesterol acyltransferase 1 (ACAT1), consequently

accelerating the migration of HBV-related tumor cells while

inhibiting the function of HCC-specific TILs (210, 211).
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5.4 Metabolites

Metabo l i t e s ex i s t ing in the HCC TME a l so ho ld

immunomodulatory properties. Indoleamine-pyrrole 2,3-

dioxygenase (IDO) is a heme-containing enzyme catalyzing the

conversion of tryptophan to kynurenine. Its activation supports

malignant cells to escape from immune clearance (30). Hyperactive

IDO leads to the depletion of tryptophan from the TME contributing

to T-cell anergy (212). Moreover, kynurenine accumulation

upregulates PD-1 expression in effector T cells (213) and induce

Treg cell production (214). IDO upregulation plays a role in drug-

resistance to ICIs in patients with HCC. It has been confirmed that

inhibiting IDO adds therapeutic benefits of ICI (215).

Adenosine is another immunosuppressive metabolite,

concurrently impairing T cell functionality and prompting Treg cell

proliferation (216, 217). Both tumor cells and MDSCs express

ectonucleotidase CD39 and CD73 hydrolyzing ATP/ADP to

adenosine (216). HCC patients with high levels of CD39 tend to

have increased risk of recurrence and shortened overall survival (218).

Overexpression of CD73 has been reported in human HCC cell lines,

where it promotes HCC growth and metastasis (219).

5.5 Hypoxia
It is a common phenomenon that tumor cells consume excessive

oxygen leading to an anoxia TME. HIF-1a is a major transcriptional
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factor that is upregulated in T-cell in response to hypoxia. First, hypoxia

prompts the expression of inhibitory checkpoints, such as PD-1, LAG-

3, TIM-3, and CTLA-4 (220). It also drives PD-L1 and IL-10 expression

on MDSCs, which enhances their suppressive activity (221). Second,

HIF-1a-induced EMT could create advantages for hepatoma cells to

recruit IDO-overexpressing TAMs to repress T-cell response, and

thereby facilitating immune escape via CCL20-dependent manner

(147). Third, hypoxia-induced HIF-1a is detrimental to Treg cell

differentiation and stability (222). Furthermore, HIF-1a binds to the

promoter region of VEGF, followed by enhanced tumor angiogenesis

(223). Hypoxia also aggravates the accumulation of lactate, which

acidifies the TME and curtails effector immune cell function (224).

Lactate contributes to the M2-like TAM polarization and maintains

Treg cell function in a glucose-deficiency TME (197, 225). Under

hypoxic condition, the COX-2/PGE2 axis stabilizes HIF-2a expression

and activity to prompt HCC progression and develop drug-resistance

to sorafenib (226). Overall, hypoxia can drive immunosuppression and

exacerbate HCC immune escape.
6 Potential therapeutic strategies
in the TME

Auspiciously, systemic therapies with molecular and immune

therapies have remarkably revolutionized the management of HCC.
FIGURE 4

Mechanisms of metabolism-mediated immune escape. In the TME, hypermetabolic tumor cells interfere with immune cell function by depriving
nutrients and produce various types of metabolic stress. Tumor cells utilize large amounts of glucose and amino acids to fuel their glycolysis and amino
acid metabolism. These activities greatly limit nutrient availability to T cells, leading to the formation of immunosuppressive TME. Tumor cells also release
excessive lipids into the TME, resulting in the enhanced lipid metabolism, high oxidative stress, and T-cell dysfunction. Conversely, Treg cells express
high levels of glutathione peroxidase 4, avoiding ROS accumulation and the induction of ferroptosis. Cancer metabolism produces various metabolic
stimuli, including hypoxia, low PH, and ROS, all of which impede CD8+ cytotoxicity and fitness. The solid black arrows present that the majority of
nutrients are consumed by the cells, whereas the dashed black arrows indicate a paucity of molecule available to the cells. The red arrows represent
inhibited metabolic pathways. MDSC, myeloid-derived suppressor cell; Treg, regulatory T; TAM, tumor-associated macrophage; Th1, T helper 1; IDO,
indoleamine 2, 3-dioxygenase; Arg1, arginase; ROS, reactive oxygen species; KYN, kynurenine; Met, methionine; Gln, glutamine; Gpx4, glutathione
peroxidase 4.
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Five single-agent molecular agents have been adopted by the US Food

and Drug Administration (FDA) (3, 4, 227). In 2017 and 2018, two

anti-PD-1 blockades, nivolumab and pembrolizumab, are approved

as the second-line treatments for HCC (228). Notably, the superior

results of atezolizumab plus bevacizumab versus sorafenib for

advanced HCC heralded a new orientation of combination

therapies (10). Currently, numerous clinical trials are in progress

with ICIs, along with combined with anti-VEGF agents or tyrosine

kinase inhibitor (TKIs). All approved drugs for HCC have been

displayed in Table 2. A more refined understanding of the tumor

microenvironment has led to great interests on ICIs. It is well

evidenced that the immunosuppressive microenvironment in HCC

triggers immune tolerance and escape by different mechanisms.

Therefore, harnessing the TME by direct or indirect manners

would provide new breakthroughs in HCC clinical treatment.
6.1 Targeting the immune
microenvironment

A promising approach is to deprive or neutralize cells with

immunosuppressive functions. MDSCs have been considered as a

potential target for resetting the immune tolerance status of HCC.

Trabectedin not only targets malignant cells but also induces

apoptosis or senescence of bone marrow cells (236). It has been

reported to exert a strong cytotoxic effect on HCC cells (237). Another

agent is estrogen that reportedly reduces IL-6 stimulation and inhibits

STAT6 activation, leading to the disruption of bone marrow cells in

HCC models (238, 239). The combination therapy of anti-PD1/PD-
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L1 and anti-MDSCs (CCRK inhibition, p38 MAPK inhibitor, and

C5AR blockade) may exert a synergistical effect on eradicating HCC

(38, 240, 241). Also, combination use of radiation and IL-12 could

boost anti-tumor immunity by reducing MDSC accumulation and

ROS production (242). Many potential targets of MDSCs have been

designed to interfere with immature myeloid cells (Table 3), but their

combination with anti-PD-1/PD-L1 blockades still require additional

validation in preclinical and clinical models. Alternatively, inhibiting

Tregs or TAMs is another strategy to restore immune response (258,

259). Treg can be depleted by numerous agents, such as

cyclophosphamide, gemcitabine, mitoxantrone, fludarabine, and

CCR4-targeted antibodies (253). Sorafenib, a multi-kinase inhibitor

for HCC, is able to reduce Treg infiltration into the liver by

downregulating the TGF- b signaling (54). It has been shown that

WNT-b-catenin signaling induces M2-like polarization of TAM and

thereby reinforces malignant behaviors, whereas blocking WNT-b
-catenin pathway in TAMs may rescue immune evasion of HCC

(260). Overall, the modulation of suppressive immune cells is a

possible adjuvant therapy to attenuate HCC progression. As shown

in Table 3, treatment of MDSCs, TAMs, and Tregs targets in HCC has

been documented and could be a new strategy for treating HCC (254–

257, 261).

TGF-b pathway is a promising target for HCC therapy, as its

inhibition tends to reduce the EMT and reactivate NK cells.

Galunisertib is a small molecular inhibitor that reduces the

phosphorylation of SMAD2, downregulating TGF-b pathway and

inhibiting HCC progression (262). Galunisertib monotherapy has

been shown to extend overall survival of advanced HCC patients in a

phase-II trial (263). Combination of galunisertib and sorafenib
TABLE 2 FDA-approved drugs for hepatocellular carcinoma.

Drug Classification Target Approval Treatment Clinical
trial Efficacy Reference

Sorafenib
Multi-kinase
inhibitor

BRAF, VEGFR, PDGFR, KIT 2007 First line NCT00492752
OS: 10.7 VS 7.9 months

(placebo)
(229, 230)

Regorafenib
Multi-kinase
inhibitor

VEGFR, PDGFR, FGFR1, KIT,
RET, BRAF

2017 Second line NCT01774344
OS: 10.6 VS 7.8 months

(placebo)
(7)

Nivolumab ICI PD-1 2017 Second line

CheckMate-
040

CheckMate-
459

ORR: 20%
OS: 16.4 VS 14.7 months

(sorafenib)
(231, 232)

Lenvatinib
Multi-kinase
inhibitor

VEGFR, FGFR, PDGFR, RET,
KIT

2018 First line NCT01761266
OS: 13.6 VS 12.3 months

(sorafenib)
(8)

Pembrolizumab ICI PD-1 2018 Second line
Keynote-224
Keynote-240

ORR: 17%
OS: 13.9 VS 10.6 months

(placebo)
(233, 234)

Cabozantinib
Multi-kinase
inhibitor

VEGFR, MET, RET, KIT, AXL 2019 Second line NCT01908426
OS: 10.2 VS 8 months

(sorafenib)
(6)

Ramucircumab
Monoclonal
antibody

VEGFR 2019 Second line NCT02435433
OS: 8.5 VS 7.3 months

(placebo)
(9)

Nivolumab +
Ipilimumab

ICI plus ICI PD-1 + CTL1-4 2020 Second line
CheckMate-

040
ORR: 33% (235)

Atezolizumab +
Bevacizumab

ICI plus anti-
VEGF

PD-L1 + VEGF 2020 First line IMbravel
OS: 19.2 VS 13.4 months

(sorafenib)
(10)
f

ICI, immune checkpoint inhibitor; OS, overall survival; ORR, overall response rate; VEGFR, vascular endothelial growth receptor; PDGFR, platelet-derived growth factor receptor; FGFR, fibroblast
growth factor; PD-1, programmed cell death-1; PD-L1, programmed cell death ligand 1; CTLA-4, cytotoxic T lymphocyte-associated antigen-4.
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demonstrated an improvement of efficacy compared to historical

records of sorafenib monotherapy (NCT01246986). The combination

strategy of galunisertib and PD-1 blockade is ongoing in clinical trials

(NCT02423343 and NCT02947165). The monoclonal anti-TGF-b
antibody ascrinvacumab also showed hopeful results among HCC

patients in a phase I-II trial (264) and its combinational application

with nivolumab is currently under investigation (NCT05178043).

Targeting VEGF enables ICIs more effective through multiple

pathways (265, 266). VEGF inhibition not only transiently normalizes

abnormal vasculature, but also increases CTL infiltration and

modulates checkpoint expression on T lymphocytes (267, 268).

Therefore, VEGF inhibition appears to be an ideal combinatorial

partner for ICI as a locoregional therapy for HCC. IMbrave150 trial

demonstrated that the addition of anti-VEGF inhibitor

(Bevacizumab) significantly improved efficacy from ICI

(atezolizumab) (10). Other combinations of ramucirumab (anti-

VEGFR2) or Lenvatinib (anti-VEGFR and anti-FGFR) with ICIs

also have been investigated (269).
Frontiers in Immunology 11
6.2 Harnessing the microbiome for
HCC immunotherapy

Targeting the gut microbiota for HCC is increasingly attractive,

including probiotics, prebiotics, fecal microbiota transplantation

(FMT), and antibiotics. Since the gut microbiota dynamically

regulates the host immunity, manipulating the gut microbiota may

be a new orientation to improve anti-HCC immunotherapy.

Probiotics can keep gut microbial balance when given in certain

amounts. Probiotic supplement as a dietary approach to repress HCC

growth has been demonstrated. Feeding probiotics mixture Prohep

(comprising Lactobacillus rhamnosus and Escherichia coli) could

reduce liver tumor size, alter gut microbial composition to

beneficial bacteria (Oscillibacter and Prevotella), and decrease the

secretion of VEGF (270). Supplementing probiotics to Chinese

subjects who are exposed to AFB1, such as Lactobacillus rhamnosus

LC705 and Propionibacterium, could reduce the urinary excretion of

aflatoxin-DNA adduct (AFB1-N7-guanine) (271). This finding kept
TABLE 3 A summary of molecular targets in the tumor immune microenvironment of HCC.

Target
cell Molecule Major effects Therapeutic strategy Reference

MDSC

CCL26 CCL26 mediates MDSC recruitment in the hypoxic regions of HCC. CCL26 blockade (39)

CCL9/CCR1 CCL9/CCR1 induces MDSCs recruitment to the spleen. CCL9/CCR1 blockade (243)

ENTPD2/CD39L1 HIF-1 prompts MDSC accumulation via ENTPD2/CD39L1 in HCC. ENTPD2/CD39L1 blockade (40)

CCRK
CCRK induction drives mTORC1-dependent G-CSF expression to recruit MDSCs and
enhance tumorigenicity in HCC.

Anti-CCRK (244)

IL-6 IL-6 expression level is highly associated with MDSC phenotype in HCC patients. Anti-IL-6 (245)

PD-L1 PD-L1+ MDSCs are increased in HCC patients. PD-L1 blockade (246)

C5AR C5AR can recruit MDSCs to the TIME. C5AR blockade (240)

Treg

PD-1 PD-1-mediated inhibitory signal in the TME. PD-1 blockade (247, 248)

CTLA-4
Tumor-induced regulatory DC subset inhibit immunity via CTLA-4-dependent IL-10
and IDO production.

CTLA-4 blockade (75, 249)

TIM3
Antibodies against TIM3 restore immune response of HCC-derived T cells to tumor-
specific antigens.

TIM3 blockade (97, 250)

LAG3
Antibodies against LAG3 restore immune response of HCC-derived T cells to tumor-
specific antigens.

LAG3 blockade (97)

GITR
GITR-ligation can improve anti-tumor response by abrogating Treg-mediated
suppression in HCC.

GITR blockade (251)

ICOS ICOS+ FOXP3+ Treg cells are enriched in the HCC TME. ICOS blockade (252)

CCR4 Tregs can be targeted and depleted by mABs towards CCR4. Anti-CCR4 (253)

TGF-b TGF-b prompts Treg infiltration into the liver. Sorafenib (54)

TAM

IL-6, IL-23, IL-b,
TNF-a

Cytokines enhance the expansion of IL-17-producing CD4+ Th17 cells.
Anti-IL-6, anti-IL-23, anti-

IL-b, anti-TNF-a
(73, 254)

TGF-b TGF-b prompts TIM-3 expression in TAMs. Anti-TGF-b (66)

IL-1b IL-1b prompts EMT and HCC immune escape. Anti-IL-1b (68)

CCR2 CCR2 prompts EMT transition and M2-plarization of TAMs. Anti-CCR2 (255, 256)

CSF-1 CSF-1 reprograms polarization of TAMs. CSF-1 receptor antagonist (257)
f

MDSC, myeloid-derived suppressor cell; Treg, regulatory T; TAM, tumor-associated macrophage; HCC, hepatocellular carcinoma; TME, tumor microenvironment; TIME, tumor immune
microenvironment; CCL26, C-C motif ligand 26; ENTPD2, endothelial growth factor; IDO, indoleamine 2, 3-dioxygenase; HIF, hypoxia-inducible factor; G-CSF, granulocyte-colony-stimulating factor;
CSF, colony-stimulating factor; DC, dendritic cell; mAB, monoclonal antibody; TNF-a, tumor necrosis factor a; TGF-b, transforming growth factor b; EMT, epithelial-mesenchymal transition.
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in line with the protective capacity of probiotics against AFB1-

induced HCC (272, 273). In another rat study, probiotics treatment

containing Lactobacilli , Bifidobacteria , and Streptococcus

thermophilus subsp Salivarius, can alleviate diethylnitrosamine

(DEN)-induced hepatocarcinogenesis by preserving intestinal

homeostasis and ameliorating chronic inflammation (154). Also,

mice models treated with probiotics had a lower level of Th17 cells

in gut compared to untreated mice. Therefore, probiotic can improve

microecological balance, enhance intestinal barrier function, and

prevent immune evasion of HCC.

Prebiotics are foods that selectively accelerate beneficial

microorganism growth and suppress harmful bacterial growth,

thereby adjusting gut microbial homeostasis (274). Besides, they

can result in the production of short-chain fatty acid (SCFA) and

ultimately inhibit HCC development. Prebiotics were found to

maintain microbial stability and decrease pro-inflammatory

pathways that trigger HCC initiation and progression (275). In

mice given transplantation of BCR-ABL-transfected BaF3 cells,

insulin-type fructans hold the promise to decrease hepatic BaF3 cell

infiltration, relieve inflammation, and increase portal propionate

content (276). Propionate inhibits BaF3 cell proliferation via

cAMP-dependent pathway or by binding with GPR43 (276).

Overall, prebiotics supplementation is a novel strategy to treat HCC.

Using antibiotics is another effective strategy to interrupt the

tumor-prompting gut-liver axis. Antibiotics can reduce bacteria

translocation, decrease pro-inflammatory signals from the leaky gut,

and repress the synthesis of bacterial metabolites. For example,

intestinal sterilization with antibiotic cocktail (containing neomycin,

ampicillin, vancomycin, and metronidazole) has been proven to

efficiently reduce the number and size of liver tumors induced by

DEN-CCL4 or DMBA-HFD (179, 277). Consistently, the antibiotic

cocktail (ABX, including vancomycin, primaxin, neomycin) or

vancomycin treatment selectively elicited anti-tumor responses with

increased CXCR6+ NK T cells and heightened IFN-g production in

HCC mouse models (178). As mentioned previously, CXCR6

expression level is controlled by gut microbiome-mediated primary-

to-secondary bile acid conversion. A recent study suggests that

vancomycin can inhibit HCC progression in insulin-fed TLR5-

deficient mice (278). Concurrently, vancomycin can lead to

selective depletion of gut microbiota, comprising Bifidobacteria, G+

Lachnospiraceae, and Ruminococcaceae.

FMT refers to the infusion of fecal solution from a healthy donor

to the recipient intestinal tract to treat a disease associated with

altered gut microbiota (279). FMT has successfully been used to treat

Clostridium difficile infection via mechanisms including activation of

mucosal immune system, maintenance of bile acid metabolism, and

repair of the intestinal barrier (280). For example, alcohol-sensitive

mice exhibited a decrease in Bacteroidetes and an increase in

Actinobacteria following alcohol intake. After FMT, liver injury was

relieved and dysregulated flora was partially recovered (281). Bajaj

et al. reported that FMT enriched with Lachnospiraceae and

Ruminococcaceae is able to restore the disruption of microbial

diversity and function led by antibiotics in advanced cirrhosis

patients (282). However, there are limited data on FMT in the

treatment of HCC, and it is unclear whether microbial dysbiosis

can be reverted by FMT (275). More studies are needed to validate the

safety and efficacy of FMT in the future.
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The significance of gut microbiota in modulating anti-tumor

response to ICIs has been widely highlighted (283, 284). On the

one hand, the dynamic change of gut microbiota can predict early

outcome of immunotherapy. In a study, fecal samples from patients

who respond to ICI showed higher taxa richness and more gene

counts compared to non-responding patients (285). Stool fecal

microbiota transplantation from cancer patients, who respond to

ICIs, into germ-free or antibiotic-treated mice, ameliorated the

efficacy of PD-1 ICIs, whereas fecal transplantation from non-

responders failed to do so (286). This provoking finding is also

supported by two other studies, describing different gut microbiota

associated with improved response to ICIs (287, 288). Given those

HCC patients with microbial dysbiosis, it is reasonable to speculate

that the underlying dysbiosis potentially leads to immunotherapy

failure. Microbial intervention may produce more profound effects in

HCC than in other tumors. A feasible strategy is to combine ICI and

selective microbiota manipulation. Recently, a clinical trial

(NCT03785210) combining vancomycin treatment with ICI has

been initiated, which will answer whether such a combination

strategy would benefit patients with HCC. On the other hand, there

is an association between the gut microbiota and immune-related

toxicity (289). Targeting the specific microbiota may strengthen the

effects of CTLA-4 blockade by reducing collateral toxicity (148).
6.3 Manipulating immunometabolism
in the TME

The tumor-immune crosstalk inevitably leads to metabolic

modifications in tumor cells and immune cells, serving as one of

the most important mechanisms of immune evasion of HCC.

Nutritional interventions aim to target immunometabolism in the

TME (290). Dietary has been shown to have direct effects on both

immune cells and tumor cells.

A ketogenic diet targets the Warburg effect in tumor cells by

reducing glucose consumption while reprogramming effector T cells

to rely on the OXPHOS (290, 291). In response to an increase of

ketone bodies, CD4+ and CD8+ T cell secrete more cytokines, such as

IFN-g, TNF-a, perforin, and granzyme B (290). Nutritional

interventions of essential amino acids also affect anti-tumor

response. For example, arginine supplementation could switch T-

cell metabolism from glycolysis to OXPHOS to enhance their survival

(292, 293). Met supplementation might restore anti-tumor immunity

by prompting the secretion of IL-2, TNF-a, and IFN-g from TILs

(294). IDO inhibition renders the TME less immunosuppressive by

avoiding tryptophan depletion. It has been reported that IDO is

involved in drug-resistance to ICI (295). Combinatorial treatments of

IDO inhibitor and anti-PD1 or anti-CTLA4 blockades were shown to

prolong survival in mouse models (295, 296). A phase I-II clinical trial

(NCT03695250) is underway to evaluate IDO1 inhibitor (BMS-

986205) in combination with nivolumab in patients with liver

cancer. Caloric restriction is an alternative strategy to treat HCC. A

study supported that caloric restriction in combination with radiation

can decrease the abundance of Treg cells and expand the proliferation

of CD8+ TILs in the TME (297). Moreover, it supports an immune

signature linked to superior anti-tumor immunity and confers stem

cell-like properties to effector T cells (298, 299). Altogether, targeting
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tumor-associated metabolic pathways is crucial to enhancing

response to immune surveillance.
7 Conclusion

The tumor microenvironment of HCC is a dynamic and

complicated network. Intricate interactions among suppressive

immune cells, immunoregulatory cytokines or signaling, hostile

metabolites, and the unbalanced gut microbiome collectively create a

permissive TME that mediates immune evasion to favor HCC growth.

In recent years, the combination therapy of atezolizumab and

bevacizumab opened a new era for HCC treatment. However, HCC

is still one of the worst prognoses and novel strategy targeting the TME

is an urgent need. Given the complexity of the TME in HCC,

combinatorial therapies can include ICIs, agents targeting

immunosuppressive immune cells, anti-VEGF inhibitors, anti-TGF-b
antibodies, microbiota manipulation, and metabolism intervention. A

more holistic approach should be considered as a standard treatment

for patients with advanced HCC. However, the molecular

underpinnings governing immune evasion still need further

clarification. Profound appreciation of the tumor-stromal interactions

will enhance our understanding of the negative drivers of

immunosurveillance. Multidimensional analysis, such as single cell

analysis and next-generation sequencing technology, contribute to

exploring detailed mechanisms behind HCC occurrence and

identifying other targets in the TME.
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