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Gut microbiota represents a hidden treasure vault encompassing trillions of

microorganisms that inhabit the intestinal epithelial barrier of the host. In the past

decade, numerous in-vitro, animal and clinical studies have revealed the

profound roles of gut microbiota in maintaining the homeostasis of various

physiological functions, especially immune modulation, and remarkable

differences in the configuration of microbial communities between cancers

and healthy individuals. In addition, although considerable efforts have been

devoted to cancer treatments, there remain many patients succumb to their

disease with the incremental cancer burden worldwide. Nevertheless, compared

with the stability of human genome, the plasticity of gut microbiota renders it a

promising opportunity for individualized treatment. Meanwhile, burgeoning

findings indicate that gut microbiota is involved in close interactions with the

outcomes of diverse cancer immunotherapy protocols, including immune

checkpoint blockade therapy, allogeneic hematopoietic stem cell

transplantation, and chimeric antigen receptor T cell therapy. Here, we

reviewed the evidence for the capacity of gut microflora to modulate cancer

immunotherapies, and highlighted the opportunities of microbiota-based

prognostic prediction, as well as microbiotherapy by targeting the microflora

to potentiate anticancer efficacy while attenuating toxicity, which will be pivotal

to the development of personalized cancer treatment strategies.

KEYWORDS

Gut microbiota, immunotherapy, immune checkpoint blockade, allogeneic
hematopoietic stem cell transplantation, chimeric antigen receptor T cell therapy
Abbreviations: ICB, immune checkpoint blockade; allo-HSCT, allogeneic hematopoietic stem cell

transplantation; CAR-T, chimeric antigen receptor T; PD-1/PD-L1, programmed cell death protein 1/

programmed cell death ligand 1; CTLA-4, cytotoxic T lymphocyte-associated antigen-4; TME, tumor

microenvironment; NSCLC, non-small cell lung cancer; irAEs, immune-related adverse events; OS, overall

survival; FMT, fecal microbiota transplantation; SCFAs, short−chain fatty acids; CRC, colorectal cancer;

GVHD, graft-versus-host disease; HR, hazard ratio; CI, confidence interval; IECs, intestinal epithelial cells;

LBP, Lactobacillus plantarum.
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Introduction

The human gut microbiota refers to the vast collection of

various microbes living on the epithelial barrier surfaces of the

gastrointestinal tract, including bacteria, fungi, viruses, archaea, and

protozoa (1). With the advances of molecular tools and technologies

such as 16S ribosomal RNA sequencing, metagenomic,

metabolomic, and metatranscriptomic, as well as the use of

gnotobiotic animal models, the intricate host-microbiota

interactions are progressively being deciphered (2). For one thing,

substantial researches have featured the key roles of gut microbiota

in human pathophysiological processes (3–5), including immunity,

metabolism, and inflammatory response. For another, albeit

multiple factors are proposed to propel cancer progression, the

deviation of gut microbiota, known as dysbiosis, is entertained as a

harbinger, promoter or even cause of a variety of malignant

conditions (6). Thereinto, a panel of potential pro-tumorigenesis

or anti-tumorigenesis microbial species have been identified too (7),

which lays the groundwork for the regulation of gut microbiota in

cancer therapy.

Meanwhile, with the incremental cancer burden worldwide, it

places greater demands on personalized cancer treatments with

powerful efficacy (8), although substantial advancements have been

made, especially cancer immunotherapy. Most notably, the limited

efficacy and undesired toxicities still remain the major hurdles of

current cancer therapies, which has been found to be heavily

influenced by distinct gut microflora patterns (9). Of them,
Frontiers in Immunology 02
immunotherapy has been considered as a major revolution, which

provides exciting hopes for patients in the fight against cancer, and

the effects of certain gut species on immunotherapy have now

become a topic of great scientificity (10, 11). In the light of these

findings, there is emerging interest in microbiotherapy by the

modulation of intestinal flora as one of the antitumor strategies in

recent years.

In this review, we mainly discussed the interactions between gut

microbiota and cancer immunotherapies, including immune

checkpoint blockade (ICB) therapy, allogeneic hematopoietic stem

cell transplantation (allo-HSCT), and chimeric antigen receptor T

(CAR-T) cell therapy, and the opportunities of microbiota-based

patient stratification strategies such as the prediction of response

and the early recognition of toxic events, as well as the evidence for

the ability of microbiotherapy in the management of cancer

immunotherapy, including enhancing anticancer efficacy and

alleviating toxicity, thus, to decipher the roadmap of gut

microbiota in the exploitation of custom-fit therapeutic strategies

for cancer care. A diagrammatic representation of the interactions

between gut microbiota and cancer immunotherapy is described

in Figure 1.
Immune checkpoint blockade therapy

Currently, one hotspot of cancer immunotherapy is the ICB

therapy that inhibits programmed cell death protein 1/programmed
FIGURE 1

Interactions between the gut microbiota and cancer immunotherapy. The intestinal microbial ecosystem can be well modified by multiple patterns,
including diets, drugs, prebiotics, probiotics, and FMT, which provide fascinating opportunities for the clinical managements of diverse cancer
immunotherapy protocols such as ICB therapy, allo-HSCT, and CAR-T cell therapy. FMT, fecal microbiota transplantation; ICB, immune checkpoint
blockade; allo-HSCT, allogeneic hematopoietic stem cell transplantation; CAR-T, chimeric antigen receptor T. (By Figdraw).
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cell death ligand 1 (PD-1/PD-L1) and cytotoxic T lymphocyte-

associated antigen-4 (CTLA-4) signaling to reinvigorate CD8+ T

cells in the tumor microenvironment (TME) to potentiate killing of

tumor cells (12). Despite the remarkable effectiveness of ICB

therapy in a subset of patients of several cancer types, including

metastatic melanoma (13), classical Hodgkin lymphoma (14), non-

small cell lung cancer (NSCLC) (15), and colon cancers (16), most

patients were observed with primary or acquired resistance.

Furthermore, a number of challenges such as the immune-related

adverse events (irAEs) and biomarkers to predict response remain

to be determined (17). However, accumulating data have

pinpointed the indispensable roles of intestinal microbiota in

ICB therapy.
The effects of antibiotics on the response
of ICB therapy

Antibiotics-associated gut dysbiosis frequently confers

deleterious effects on cancer patients treated with ICB (18).

Derosa and colleagues (19) reported that antibiotics

administration within 30 days of beginning ICB therapy was

closely related to the inferior prognosis, including shorter

progression free survival and overall survival (OS), in both

advanced renal cell carcinoma and NSCLC patients. Similarly, the

negative influences of antibiotics on the clinical outcomes of ICB

have also be indicated in patients with melanoma (20), urothelial

carcinoma (21), and bladder cancer (22). Nevertheless, Cheung

et al. (23) and Fessas et al. (24) inversely revealed the detrimental

and protective effects of antibiotics use on the survival of ICB

treated hepatocellular carcinoma patients, respectively, which might

be attributable to the difference of the antibiotic types, therapeutic

regimens, baseline clinical characteristics and gut microbial features

of patients. In addition, one caveat here is the antibiotics application

might simply constitute a surrogate indicator of unsuited or

immunodeficient cancer patients who were non-responsive for

ICB therapy, which deserves further evaluation.
Influence of gut microbiota on the
effectiveness of ICB therapy

The significance of commensal intestinal bacteria on the efficacy

of ICB therapy has been well established in both pre-clinical models

and patients. A plethora of microbial taxa, including Akkermansia

muciniphila, Faecalibacterium spp., Bifidobacterium spp., and

Bacteroides fragilis (25), have been reported to potentiate the

antitumor efficacy of ICB therapy in both animal models and

cancer patients. Of specific note, it has been well demonstrated

that gut commensal bacteria such as Bifidobacterium and

Bacteroidales could significantly improve tumor control of

melanoma treated by anti-PD-L1 or anti-CTLA-4 via enhancing

antitumor immunity response in mice models (26, 27). Further, this

favorable role of commensal microbiome in ICB therapy was

elucidated in melanoma patients (28, 29). Additionally, a higher

diversity of gut microbiota at the starting point exhibited intimate
Frontiers in Immunology 03
relationships with the favorable responses to anti-PD-1

immunotherapy in patients with hepatocellular carcinoma and

advanced NSCLC (30, 31), which might be involved in the

enhanced memory T cell and natural killer cell signatures in the

periphery in response to anti-PD-1 therapy. Interestingly,

Helicobacter pylori seropositivity has been reported to be linked

with an inferior NSCLC patient survival on anti-PD-1 therapy (32),

and further be confirmed in in vitro co-culture assay and in H.

pylori-infected mice with reduced number and activation status of

tumor-specific CD8+ T cells in the tumors. Strikingly, apart from

the linkages between individual bacterial taxa and ICB therapy

outcome, the association of enteric microbiotypes (including

diverse discrete ecologically balanced communities) with the

response to melanoma patients treated by anti-PD-1 has also

been proposed in a recent combination analysis (33). That is, four

superclusters of a panel of microbial species, including two enriched

in favorable taxa (Favorable 1: Bifidobacteriaceae, Eggerthelacea,

Coriobacteriales, Akkermansia muciniphila, Fusobacteriaceae,

Erysipelotrichaceae , Lachnospiraceae , Streptococcaceae ,

Lactobacillaceae, and Porphyromonadaceae; Favorable 2:

Oscillospiraceae; by linear discriminant analyses) and two

enriched in unfavorable taxa (Unfavorable 1: Prevotellaceae and

Bacteroidales; Unfavorable 2: Rikenellaceae; by linear discriminant

analyses), were defined, which comprised distinct microbiotypes

with similar relationship between microbial composition and

clinical outcome.

Various publications have now demonstrated a role for gut

microbes in regulating responses to ICB therapy across several

cancer types (Table 1). In a phase I clinical trial including ten

patients with anti-PD-1-refractory metastatic melanoma (52), the

researchers found that re-induction of anti-PD-1 combination with

fecal microbiota transplantation (FMT) from complete response

donors exhibited inspiring outcomes with clinical remission in

three patients. Of them, FMT could remarkably increase the

intra-tumoral immune activity, which supports the concept of

overcoming resistance to immunotherapy through manipulating

the intestinal microflora. Another multicenter retrospective study

from Japan (53) revealed that probiotics administration was

relevant to the survival and disease control in advanced or

recurrent NSCLC patients that undergone anti-PD-1

monotherapy. Despite this, more thoughtful evaluations of the

effects of current commercially available probiotic formulations

on anticancer immunotherapy should be made, as they might be

harmful in the setting of ICB therapy by impairing intra-tumoral

IFN-g T cell responses (40).
Interactions of gut microbiota with the
toxicities related to ICB therapy

Evidence is accumulating that certain fecal microbiota

composition is related to the development of several toxicities

following ICB therapy such as irAEs, which result from off-tumor

immune activation. McCulloch et al. (33) indicated that two

microbial signatures, enriched for Streptococcaceae spp. and

Lachnospiraceae spp., were involved in distinct irAEs, and
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TABLE 1 Representative researches on the interactions between gut microbiota and the outcomes of ICB therapy across cancers in recent three years.

Patients Studies ICB agents Main findings

NSCLC
Grenda
et al. (34)

Pembrolizumab, n = 12, 25%; nivolumab or
atezolizumab, n = 35, 75%

Favorable survival: a high abundance of Bacteroidaaceae, Barnesiellaceae, and
Tannerellaceae;
Inferior survival: a high content of Ruminococcaceae family while a low abundance of
Clostridia UCG-014.

Shoji et al.
(35)

Nivolumab, pembrolizumab, atezolizumab, or
durvalumab, n = 24, 85.7%; pembrolizumab
combined with platinum-doublet chemotherapy,
n = 4, 14.3%

Responders: higher gut alpha diversity; enrichment of g_Blautia;
Non-responders: enrichment of o_RF32 order.

Newsome
et al. (36)

Anti-PD-1, n = 44, 67.7%; anti-PD-L1, n = 19,
29.2%; combination of anti-PD-L1/CTLA-4, n =
2, 3.1%

Responders: enrichment of the genera Ruminococcus, Akkermansia, and
Faecalibacterium.

Zhang
et al. (37)

A total of 69 patients receiving ICB
monotherapy,
including nivolumab, pembrolizumab, or
atezolizumab

Prolonged survival: enrichment of Phascolarctobacterium;
Reduced survival: overrepresentation of Dialister.

Zhang
et al. (38)

Nivolumab, n = 36, 48.0%; pembrolumab, n =
39, 52.0%

Responders: higher gut microbiota alpha diversity; enrichment of Desulfovibrio,
Actinomycetales, Bifidobacterium, Odoribacteraceae, Anaerostipes, Rikenellaceae,
Faecalibacterium, and Alistipes;
Non-responders: overrepresentation of Fusobacterales, Fusobacteriia, Fusobacterium,
Fusobacteria, and Fusobacteriaceae.

Botticelli
et al. (39)

Nivolumab, n =12, 100%

Clinical benefits: short chain fatty acids (i.e., propionate, butyrate), lysine and nicotinic
acid were significantly associated with long-term beneficial effects;
Disease progression: 2-Pentanone (ketone) and tridecane (alkane) were significantly
associated with early progression.

Melanoma
McCulloch
et al. (33)

A total of 94 patients receiving single-agent
anti-PD-1 immunotherapy, including
nivolumab, pembrolizumab or investigational
anti-PD-1, or pembrolizumab in combination
with pegylated interferon

Non-progressors: enrichment of Ruminococcus (Mediterraneibacter) torques, Blautia
producta, Blautia wexlerae, Blautia hansenii, Eubacterium rectale, Ruminococcus
(Mediterraneibacter) gnavus and Anaerostipes hadrus;
Progressors: increased abundance of Prevotella spp., Oscillibacter spp., Alistipes spp.
and Sutterellaceae spp.

Spencer
et al. (40)

Anti-PD-1, n = 132, 100%
Responders: higher abundance of Ruminococcaceae family and Faecalibacterium genus
than non-responders.

Andrews
et al. (41)

A total of 77 patients receiving ipilimumab
(anti-CTLA-4) in combination with PD-1
checkpoint blockade agent (either nivolumab or
pembrolizumab)

Responders: enrichment of Bacteroides stercoris, Parabacteroides distasonis and
Fournierella massiliensis;
Non-responders: overrepresentation of Klebsiella aerogenes and Lactobacillus rogosae.

HCC
Lee et al.
(42)

Nivolumab, n = 24, 58.5%;
pembrolizumab, n = 17, 41.5%

Responders: enrichment of Lachnoclostridium, Lachnospiraceae, and Veillonella;
Disease progression: overrepresentation of Prevotella 9.

Wu et al.
(43)

A total of 61 patients receiving intravenously
anti-PD-1 based systemic therapy

Responders: enrichment of Faecalibacterium, Blautia, Lachnospiracea incertae Sedis,
Megamonas, Ruminococcus, Coprococcus, Dorea and Haemophilus;
Non-responders: overrepresentation of Atopobium, Leptotrichia, Campylobacter,
Allisonella, Methanobrevibacter, Parabacteroides, Bifidobacterium and Lactobacillus.

Ponziani
et al. (44)

A total of 11 patients received tremelimumab,
an anti-CTLA-4 monoclonal antibody, and/or
Durvalumab, an anti-PD-L1 monoclonal
antibody

Responders: enrichment of Akkermansia whereas depletion of Enterobacteriaceae in
disease control group versus non-responders.

HBC
Mao et al.
(45)

Thirty patients with HCC and 35 patients with
biliary tract cancer who were treated with anti-
PD-1 based systemic therapy

Favorable survival: enrichment of Lachnospiraceae bacterium-GAM79, Alistipes sp
Marseille-P5997, Ruminococcus calidus, and Erysipelotichaceae bacterium-GAM147;
Worse survival: higher abundance of Veillonellaceae.

CRC
Wang et al.
(46)

Phase Ib/II study of regorafenib plus
toripalimab enrolled forty-two subjects

Non-responders: increased relative abundance and positive detection rate of
Fusobacterium than responders.

GC
Che et al.
(47)

Nivolumab, n = 43, 55.8%; pembrolizumab, n =
29, 37.7%; camrelizumab/toripalimab/
tislelizumab, n = 5, 6.5%

Helicobacter pylori-negative group: a longer overall survival (OS) and progression-free
survival (PFS) than those in the positive group, with an estimated median OS of 17.5
months vs. 6.2 months (HR = 2.85, 95% CI: 1.70-4.78; P = 0.021) and a median PFS of
8.4 months vs. 2.7 months (HR = 3.11, 95% CI: 1.96-5.07, P = 0.008);
H. pylori-positive group: a higher risk of nonclinical response to anti-PD-1 antibody,
with an OR of 2.91 (95% CI: 1.13-7.50).

(Continued)
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melanoma patients with high Streptococcus spp. abundance in

pretreatment microbiome samples tended to develop irAEs.

Although higher rates of irAEs than anti-PD-1 or anti-CTLA-4

monotherapy, responders to combined ICB therapy targeting both

CTLA-4 and PD-1 and responders to monotherapy exhibited

similar compositional characteristics of gut microbiota with an

enrichment of Ruminococcus/Ruminococcaceae consistently

observed across diverse melanoma cohorts (41). Moreover, the

researchers found a significantly higher abundance of Bacteroides

intestinalis in patients developed ≥grade 3 irAEs versus those who

did not, with upregulation of mucosal IL-1b in patient samples of

colitis and in pre-clinical models.

Disturbances of intestinal homeostasis play a key role in driving

ICB-associated toxicity. Stat3+/+ melanoma-bearing mice with

acquired gastrointestinal impairment by Citrobacter rodentium

infection and dextran sodium sulfate treatment displayed a

predilection for anti-CTLA-4-mediated irAEs, with accumulation

of neutrophils, cytotoxic and IFN-g+ CD8+ and CD4+ T cells, and

inflammatory cytokines such as IFN-g and IL-6 in the colon (54).

Furthermore, the pre-inflammation fecal microbiota of melanoma

patients that presented a paucity of genetic pathways related to

polyamine transport and B vitamin biosynthesis was linked with an

increased risk of colitis (55). Remarkably, modulation of the gut

microbiota can mitigate irAEs in cancers (56). Of them, ICB-related

colitis could be successfully treated by FMT, with reconstitution of

the intestinal microflora and increase in the proportion of

regulatory T cells within the colonic mucosa (57). Additionally,

microbial metabolites working at the interface between

microorganisms and host immune system might abrogate ICB-

induced colitis too. Renga et al. demonstrated that indole-3-

carboxaldehyde, a microbial tryptophan catabolite, protected ICB-

induced colitis mice from intestinal injury through a dual action on
Frontiers in Immunology 05
both the host and the microbes (58), which provides a new avenue

in optimizing ICB therapy based on bacterial metabolome.
Prognostic utility of the gut microbiota-
derived models for the outcome of
ICB therapy

Gut microflora has emerged as a tumor-extrinsic predictive

biomarker to the response of ICB therapy, and the machine learning

models trained by microbial features provide a hopeful opportunity

for outcome prediction. Recently, despite the heterogeneity across

five melanoma cohorts, three modified leave-one-out cross-

validation methods, including generalized linear model, random

forest, and polynomial support-vector machine, based on batch-

corrected intestinal microbiome data consistently predicted the

outcomes to anti-PD-1 therapy in all cohorts (33). Of them, the

Clostridium phylum was identified as a predictor of favorable

outcome for a subset of cohorts, while the Bacteroidetes phylum

was entertained as an unfavorable predictive indicator for the

response of most melanoma cohorts. In addition, based on the

bacterial signatures of five cancer cohorts, including melanoma,

NSCLC, and renal cell carcinoma, treated with ICB, Shaikh et al.

(59) constructed a non-responder “Integrated Microbiome

Prediction Index” (calculated by assigning a weighted coefficient

for the microbial species enriched in non-responders, including

Bacteroides coprocola , Bacteroides fragilis , Bacteroides

thetaiotaomicron, Bacteroides uniformis, Clostridium hathewayi,

Clostr idium hylemonae , Clostr idium methylpentosum ,

Megasphaera micronuciformis, Oribacterium sinus, Parasutterella

excrementihominis, Scardovia wiggsiae, and Veillonella parvula),

rather than responder, that displayed the strongest and most
TABLE 1 Continued

Patients Studies ICB agents Main findings

GI cancer
Peng et al.
(48)

Anti-PD-1, n = 48, 64.9%;
anti-PD-L1, n = 12, 16.2%;
anti-PD-1 + anti-CTLA-4, n = 14, 18.9%

Responders: an elevation of the Prevotella/Bacteroides ratio; moreover, gut bacteria
with the ability of SCFA production, including Eubacterium, Lactobacillus, and
Streptococcus, were positively associated with anti-PD-1/PD-L1 response across
different GI cancer types (colorectal cancer, n = 19; esophageal cancer, n = 14; gastric
cancer, n = 23; Others, n = 18).

RCC
Salgia et al.
(49)

Nivolumab, n = 24, 77.4%; nivolumab plus
ipilimumab, n = 7, 22.6%

Clinical benefits: a higher gut microbial alpha diversity according to the Shannon
index; enrichment of Bifidobacterium adolescentis, Barnesiella intestinihominis,
Odoribacter splanchnicus, and Bacteroides eggerthii.

Thoracic
carcinoma※

Yin et al.
(50)

A total of 42 patients receiving nivolumab or
other anti-PD-1 inhibitors

Responders: enrichment of the Akkermansiaceae, Enterococcaceae, Enterobacteriaceae,
Carnobacteriaceae and Clostridiales Family XI bacterial families.

Solid
cancer
tumors#

Cheng
et al. (51)

A total of 72 patients receiving nivolumab,
pembrolizumab, sintilimab, camrelizumab, and
toripalimab

Responders: enrichment of Archaea, Lentisphaerae, Victivallaceae, Victivallales,
Lentisphaeria, Methanobacteriaceae, Methanobacteria, Euryarchaeota,
Methanobrevibacter, and Methanobacteriales before immunotherapy;
Non-responders: increased in the abundance of Clostridiaceae before immunotherapy.
ICB, immune checkpoint blockade; NSCLC, non-small cell lung cancer; HCC, hepatocellular carcinoma; HBC, hepatobiliary cancer; CRC, colorectal cancer; GC, gastric cancer; GI,
gastrointestinal; RCC, renal cell carcinoma; PD-1, programmed cell death protein 1; PD-L1, programmed cell death ligand 1; CTLA-4, cytotoxic T lymphocyte-associated antigen-4; OS, overall
survival; PFS, progression-free survival. ※: included 23 lung squamous carcinomas, 15 lung adenocarcinomas, 1 SCLC, 1 NSCLC, 1 thymic squamous carcinoma, and 1 large cell neuroendocrine
carcinoma; #: included 18 non-squamous NSCLC, 14 lung squamous cell carcinoma, 7 HCC, 5 GC, 5 CRC, 5 melanoma, 4 nasopharyngeal carcinoma, 3 cervical cancer, 2 small-cell lung cancer,
and other cancers (1 case of laryngeal cancer, 1 case of osteosarcoma, 1 case of renal pelvic carcinoma, 1 case of bladder cancer, 1 case of pancreatic cancer, 1 case of esophageal cancer, 1 case of
ureteral cancer, 1 case of mediastinal carcinoma, and 1 case of cholangiocarcinoma).
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consistent signal using a random effects model, which highlighted a

novel avenue to recognize specific patients that probably benefit

from microbiota-derived interventions to improve the outcomes of

ICB therapy.
Gut microbiota-derived metabolites
mediate the responses of ICB therapy

The gut microbial metabolites, a vast array of small molecules

produced or transformed by intestinal microorganisms, represent

one of the primary patterns by which the gut microbiota regulate

antitumor immunity response, which are capable of conferring both

local and systemic effects by spreading from their original location

in the gastrointestinal tract to circulatory system (10, 60).

Accordingly, it is necessary to dissect the underlying mechanistic

pathways through which the specific bacterial metabolites impact

on antitumor immunity and immunotherapeutic responses

(Figure 2). Most notably, short−chain fatty acids (SCFAs, mainly

including acetate, propionate, and butyrate), synthetized by the

bacterial fermentation of dietary fiber, play a central role in the

complicated gut microbial immune and metabolic networks (61).

Of them, the gut microbial metabolite butyrate has been reported to

engage in the enhanced anti-PD-1 therapeutic efficacy through
Frontiers in Immunology 06
increasing the CD4+ and CD8+ T cell infiltration in the TME in

the tumor-bearing mice humanized with the intestinal microbes

from colorectal cancer (CRC) patients (62). Moreover, replenishing

butyrate prior to anti-PD-1 treatment was sufficient to recover the

therapeutic efficacy in the non-responders. Similarly, He and

colleagues indicated that the SCFAs butyrate could directly

potentiate the antitumor CD8+ T cell response via ID2-

dependent IL-12 signaling (63), suggesting the potential beneficial

roles of butyrate supplementation in anticancer immunity therapy.

However, the roles of SCFAs in ICB therapy might be ambiguous.

In a study conducted by Coutzac and colleagues in both mice and

melanoma patients treated with anti-CTLA-4 monoclonal

antibody, the authors found that SCFAs limited the efficacy of

anti-CTLA-4 treatment. Namely, high levels of blood butyrate and

propionate were involved in the resistance to CTLA-4 blockade and

higher frequency of Treg cells, and butyrate could impede the

accumulation of tumor-specific T cells and memory T cells (64).

Therefore, further evaluations are warranted to reveal a more

nuanced illustration for the effects of SCFAs on antitumor

immune and the responses to ICB therapy.

In addition to SCFAs, other gut microbial metabolites also

exhibit profound effects on the treatment of ICB. Strikingly, the

bacterial metabolite inosine has been demonstrated to modulate

enhanced ICB therapy response in mouse models of intestinal and
FIGURE 2

The underlying molecular mechanisms on the gut microbiota-derived metabolites that mediated the responses of ICB therapy. SCFAs, short−chain
fatty acids; TMAO, trimethylamine N-oxide; IECs, intestinal epithelial cells; ICB, immune checkpoint blockade; TAM, tumor-associated macrophage;
TME, tumor microenvironment. (By Figdraw).
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epithelial tumors, which was dependent on T cell expression of the

adenosine A2A receptor to promote Th1 cell activation (65).

Furthermore, as a substitute carbon source for the metabolism of

T lymphocyte in glucose-restricted environments such as TME,

inosine can assist T cell proliferation and differentiation while

fueling sensitivity to ICB therapy (66). Another gut microbiota-

derived metabolite trimethylamine N-oxide, identified as a driver of

antitumor immunity, exhibited the ability to boost the response to

ICB therapy in pancreatic cancer-bearing mouse model (67). Of

them, the administration of trimethylamine N-oxide was related to

an immunostimulatory tumor-associated macrophage phenotype,

and activated effector T cell response in the TME in a type I IFN-

dependent manner. Interestingly, Kawanabe-Matsuda et al. (68)

illustrated that oral consumption of Lactobacillus-derived

exopolysaccharide could bolster the efficacy of ICB therapy

against CCL20-expressing tumors via inducing CCR6+ CD8+ T

cells in Peyer’s patches and improving the TME in experimental

mouse tumor models, which provided compelling evidence on the

dietary ingestion of exopolysaccharide for further clinical trials.

Altogether, these studies lay the groundwork for the potential

cancer immunotherapeutic strategies by targeting gut microbiota-

derived metabolites.
Allogeneic hematopoietic stem
cell transplantation

Allo-HSCT remains a curative approach for a range of

hematological malignancies and might be recognized as one of the

earliest effective modalities for cancer immunotherapy, but it is still

hindered by high mortality rates, mainly because of graft-versus-host

disease (GVHD) (69). Notably, at present the interactions between

the intestinal microbiota and patient outcome after allo-HSCT have

been well established (70). Particularly, ample evidence indicates an

effect of gut microbial dysbiosis on GVHD. Furthermore, gut

microbiota modulation through FMT also exhibits a promising

revolution in the managements of allo-HSCT recipients, including

ameliorating treatment-associated complications and improving

patient outcomes.
Relationships between gut microbiota and
allo-HSCT

Holler et al. (71) conducted a prospective research to collect

stool specimens from 31 patients receiving allo-HSCT, and revealed

that the loss of bacterial diversity and predominance of enterococci

induced by systemic antibiotics might involve in the pronounced

gastrointestinal GVHD for the first time. The patterns of microbial

dysregulation during allo-HSCT were similar across diverse

transplantation centers and geographic locations, and the

depletion of gut diversity during allo-HSCT (accompanied by the

domination of single taxa such as the genera enterococcus and

streptococcus) has been observed to be linked with higher risks of

transplantation-associated death in a large multi-center study (72).
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Recently, Andrlová and colleagues (73) indicated that a diverse gut

microbiota early after allo-HSCT could produce more activating

ligands for innate-like mucosal-associated invariant T cells and Vd2
cells to maintain the immunological link between these populations,

which contributed to improved OS and less acute GVHD.

Furthermore, Enterococcal expansion after allo-HSCT as a

remarkable risk factor for the occurrence of acute GVHD and

reduced OS has been observed again in another multi-center study

including 1325 recipients, and further be demonstrated in mouse

models (74). Moreover, the researchers also found that

posttransplant enterococcal enrichment was accompanied by the

depletion of clostridia, with a significant reduction in fecal butyrate

in both pre-clinical models and patients with GVHD. This result

was consistent with a recent prospective single-center study that

included 201 patients undergoing allo-HSCT and 28 healthy donors

(75), indicating that butyrate-producing Clostridiales diminished

early in the course of allo-HSCT, which was involved in the

increased acute GVHD severity and transplantation associated

mortality. In addition, it has also been illustrated that patients

suffering chronic GVHD exhibited lower circulating concentrations

of the butyrate and propionate in day 100 plasma samples (76).

Most recently, Hino and colleagues (77) analyzed the gut microbial

signatures of 59 long-term survivors (1-21.7 years; median, 6.4

years) after allo-HSCT, and found that intestinal dysbiosis with

decreased abundance of the butyrate-producing bacteria was

present over a 10-year lifetime after discharge following allo-

HSCT. Of them, only limited chronic GVHD patients displayed

no depletion of butyrate-producing Faecalibacterium. Similarly, a

study including 541 patients admitted for allo-HSCT conducted by

Peled et al. (78) indicated that patients with the dominance of

another butyrate-producing Eubacterium limosum also displayed a

close association with the reduced risk of relapse or progression of

disease (hazard ratio [HR], 0.82 per 10-fold increase in abundance;

95% confidence interval (CI), 0.71 to 0.95; P = .009). Of note, as a

major energy source for intestinal epithelial cells (IECs), evidence

indicated that butyrate could improve IECs junctional integrity,

decrease apoptosis and mitigate GVHD in mice, and the loss of

butyrate led to reduced degree of histone acetylation in IECs (79).

Apart from the associations with GVHD, gut microbiota also

has potential implications for a variety of other toxic effects,

including g-proteobacteria domination predicting pulmonary

complications after engraftment (80), and gram-negative

intestinal domination predicting subsequent bloodstream

infection (81), while a more stable gut microbial configuration

protecting febrile neutropenia (82), and three distinct bacterial taxa

(Bacteroidetes, Lachnospiraceae, and Ruminococcaceae) protecting

post-engraftment Clostridium difficile infection (83). In addition, it

has to be noted the critical roles of intestinal microorganisms

beyond bacteria played in allo-HSCT. Of them, Legoff and

colleagues (84), characterizing the dynamic evolution of gut

virome in 44 recipients during allo-HSCT by metagenomics,

found that the overall proportion of vertebrate viral sequences in

the guts of all recipients increased progressively during the weeks

following transplantation, and the RNA viral reads from

picobirnaviruses were predictive of later occurrence of severe

enteric GVHD of stage 2 or higher (HR = 2.66; 95% CI = 1.46-
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4.86; P = 0.001) through a time-dependent Cox proportional-

hazards model. In addition, Rolling et al. (85) reported the fungal

dysbiosis in a cohort of 156 patients during allo-HSCT by both

longitudinal amplicon-based and culture-dependent analyses in

1279 fecal samples. Notably, Candida parapsilosis complex

species, including C. parapsilosis, C. orthopsilosis, and C.

metapsilosis, were the most common cultured fungi. Compared

with those without pre-engraftment domination by C. parapsilosis

complex species, patients with C. parapsilosis complex domination

pre-engraftment exhibited a higher transplant-related mortality and

worse OS.
Effects of the gut microbial modulation on
allo-HSCT recipients

On the basis of these findings, there has been tremendous

interests in gut microbial modulation with the aim to improve the

outcome of patients undergoing allo-HSCT (86–88), including

antibiotics, diets, prebiotics, probiotics, and FMT.

Antibiotics
Recently, Severyn and colleagues (89) found that gut

decontamination, by oral vancomycin-polymyxin B in patients

undergoing allo-HSCT, might protect recipients against gut-derived

bloodstream infection by reducing the prevalence of gut pathogens.

Additionally, previous research has suggested that occurrence of

GVHD after allo-HSCT in obesity mice could be mitigated by

prophylactic antibiotic treatment (90). Despite this, great caution

should be exercised when delineating the effects of antibiotics on allo-

HSCT as increasing evidence has illustrated the detrimental roles of

antibiotic administration in recipients. A retrospective research

examined 857 allo-HSCT recipients from Shono and colleagues

(91) reported that the use of antibiotics such as imipenem-cilastatin

and piperacillin-tazobactam were linked with elevated GVHD-related

mortality at 5 years. Through GVHDmice model, the authors further

illustrated that imipenem-cilastatin treatment led to the loss of the

protective mucus lining of the colon and intestinal barrier

impairment, which might be explained by the enrichment of

mucus-degrading Akkermansia muciniphila. Furthermore, an

increased risk of patients occurring acute and intestinal GVHD by

gut decontamination and prophylaxis has also been revealed in a

meta-analysis of 18 references (92). Of note, the conflicting clinical

results regarding the influence of antibiotics on the outcome of allo-

HSCT might be explained by the different types of antibiotics and

timing of treatment (87).

Diets, prebiotics, and probiotics
Dietary elements and nutritional strategies have been

increasingly evaluated regarding the impact on allo-HSCT

outcomes through modulating intestinal microorganisms (93). It

has been revealed that mice with diet-induced obesity exhibited

reduced survival associated with acute and severe gut GVHD, which

was consistent with the inferior survival of allo-HSCT recipients

with a high body mass index (BMI, >30) that presented decreased
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gut diversity and Clostridiaceae abundance (90). In addition, Li and

colleagues (94) demonstrated the roles of tyrosine in acute GVHD

murine models. Specifically, additional tyrosine supplementation

could significantly prolong OS, alleviate symptoms at the early stage

of acute GVHD by regulating the microbial composition and fecal

metabolic phenotype. Likewise, prebiotic intake has also been

observed to be an effective strategy for preventing acute GVHD in

allo-HSCT in a prospective study (95). Namely, from pre-

transplantation conditioning to day 28 after allo-HSCT, the

combined administration of resistant starch and a commercially

available prebiotics mixture (including glutamine, fiber, and

oligosaccharide) decreased the incidence of all acute GVHD

grades combined and of acute GVHD grades 2 to 4, and

maintained the intestinal diversity and butyrate-producing

bacterial population.

Compared wi th preb io t i c s , prob iot i c s are v iab le

microorganisms for healthy gut restoration. Importantly, the

protective roles of the butyrate-producing Clostridia have been

well demonstrated in preclinical allo-HSCT models (79, 96). Of

them, Mathewson and colleagues (79) indicated that altering the

indigenous microbiota, using the cocktail of 17 rationally selected

Clostridial strains with the ability to produce high amounts of

butyrate, could remarkably attenuate GVHD severity and improve

survival. Furthermore, the safety and feasibility of another

probiotic: Lactobacillus plantarum (LBP), have been also

evaluated in children and adolescents undergoing allo-HSCT (97),

and with no cases of LBP-bacteremia or LBP-associated severe

adverse events recorded. Nevertheless, the safety and efficacy of

probiotics in HSCT therapy remain elusive. For example,

Lactobacillus acidophilus sepsis secondary to the excessive

consumption of probiotic-enriched yogurt has been reported in a

case with mantle cell lymphoma receiving HSCT (98).
Fecal microbiota transplantation
FMT refers to the transfer of fecal microbial content from a

healthy donor to the intestine of a recipient (99), and represents a

promising approach for the management of allo-HSCT patients

(88), including alleviating infection of multidrug-resistant bacteria

and GVHD, as well as promoting gut microbiota reconstitution.

Bluestone and colleagues (100) reported that FMT displayed better

safety and tolerance in three children developing recurrent

Clostridium difficile infection after allo-HSCT, and one case did

obtain successful clearance of C. difficile at follow-up 1 year 10

months after the FMT. Moreover, the safety and efficacy of FMT in

the decolonization of multidrug-resistant bacteria, including

vancomycin-resistant enterococci (n=2) or carbapenemase-

producing bacteria (n=8), have also been presented in ten allo-

HSCT patients with hematologic malignancies (101). Of them,

seven of ten patients achieved decolonization and almost all

patients without severe infectious events occurred during the first

three months after FMT.

In a prospective, single-center, single-arm study enrolling 15

patients with steroid-refractory or steroid-dependent, acute or late-

onset acute intestinal GVHD suffering allo-HSCT, van Lier et al.

(102) found that ten of 15 subjects obtained a complete clinical
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response within 1 month after FMT, with a partial engraftment of

donor microbial species, increased gut microbial a-diversity, and
enrichment of butyrate-producing Clostridiales and Blautia species.

As mentioned above, loss of intestinal diversity involves unfavorable

allo-HSCT outcomes. Interestingly, FMT after allo-HSCT tends to be

related to the improvement of recipients’ gut diversity that could be

attributable to expansion of stool-donor taxa (103). In addition, it has

been reported that autologous FMT (feces were provided by

participants before the initiation of allo-HSCT), after microbiota-

depleting antibiotic treatment, had the ability to boost microbial

diversity and reestablished the commensal bacterial populations at

the critical early immune reconstitution stage after allo-HSCT (104).

Taken together, although FMT seemed safe and well-tolerated,

further larger prospective studies are urgently required to deal with

several safety concerns such as potential risks of infection upon FMT

in these immunocompromised patients.
Chimeric antigen receptor
T cell therapy

CAR-T cell therapy stands at the novel forefront of current

cancer therapy, which has demonstrated unprecedented responses

in patients with high-risk hematologic malignancies, including

lymphoma, leukemia, and multiple myeloma (105–108). CAR-T

cell therapy involves genetically modified T cells that express

specific CAR, followed by in vitro cell amplification and

reinfusion back into the patient to eradicate tumors (109). Given

the intimate interactions of gut microflora with human T cell

function and anti-tumor immunity (110, 111), it is not

unexpected that the interactions and potential mechanisms of gut

microbiota with CAR-T cell therapy have begun to be investigated

in recent years (112, 113). Of them, Uribe-Herranz et al. (114)

illustrated that gut microflora could modulate the anti-tumor

efficacy of adoptive T cell therapy, mediated by CD8a+ dendritic

cells and IL-12, in the tumor-bearing mice model.

Although the success of CAR-T cell therapy, several obstacles,

including CAR-mediated toxicities, CAR-T cell dysfunction,

antigen loss, tumor heterogeneity, and disease relapse, have

impeded the utility of CAR-T cell therapy. Therefore, biomarkers

for the favorable prognostic identification of patients receiving

CAR-T cells are urgently needed. Inspiringly, in a multi-center

retrospective study including patients with B-cell lymphoma and

leukemia, Smith et al. (115) found that exposure to antibiotics prior

to CD19 CAR-T cell infusion was involved in significantly inferior

survival and increased immune effector cell-associated

neurotoxicity syndrome. Moreover, enrichment of certain

members within the class Clostridia, including Faecalibacterium,

Ruminococcus, and Bacteroides, were linked with day 100 complete

response to CAR-T cell therapy. Similarly, Hu and colleagues

(116) also revealed the significant differences in the abundance

of Bifidobacterium, Prevotella, Sutterella, and Collinsella

between multiple myeloma patients in complete remission

and those in partial remission, and observed a higher abundance

of Bifidobacterium, Leuconostoc, Stenotrophomonas, and Staphylococcus
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in patients with severe cytokine release syndrome. Altogether,

despite the research on the role of intestinal microbiota in CAR-T

cell therapy is still at the very earliest stages, these findings suggest

the tremendous potential of gut microbiota as a non-invasive

prognostic marker for CAR-T cell therapy, and provide a novel

reference to alleviate CAR-T cell therapy-induced toxic effects

and to improve therapeutic outcome by modulating the

gut microbiota.
Future perspectives and
current challenges

Although major strides have been made toward the treatment of

cancers, there remain many patients succumb to their disease (117).

However, different from the stability of human genome, the

modifiable nature of gut microbiota renders it a promising

opportunity for cancer therapy (118). And meanwhile, there are

emerging lines of evidence suggest the therapeutic potential of

microbiotherapy by targeting the microbial flora. Among these,

FMT appears central in the intervention options to restore

microbial richness, as well as amend microbial dysbiosis and

altered host-microbiota symbiosis related to cancer genesis and

treatment (70). Moreover, utilizing bacteria strains or its proteins

and peptides substances, including bacteriocins and toxins, as the

anticancer agents on various cancers, termed bacteriotherapy, has

also attracted salient attention, which can be employed alone or in

conjunction with traditional therapies as an enhancer (119). Of

interest, Montalban-Arques et al. (120) reported that oral

supplementations of a mix of four Clostridiales species, namely

Roseburia intestinalis, Eubacterium hallii, Faecalibacterium

prausnitzii, and Anaerostipes caccae, outperformed anti-PD-1

therapy in mouse models of CRC and melanoma, which provided

a strong preclinical foundation for exploring gut flora as novel

stand-alone therapy against solid tumors. Additionally, despite the

safety of probiotics in the management of cancer patients remains

largely undefined, several gut next-generation probiotics such as

Faecalibacterium prausnitzii, Akkermansia muciniphila, and

Bacteroides fragilis exhibit their beneficial roles in supporting

cancer therapy (121).

Most importantly, with mounting evidence of microorganisms

colonizing tumors, synthetic biology approaches are being

leveraged to improve the effectiveness of bacteriotherapy agents

by repurposing bacteria. As an intelligent medicine, engineering

bacteria are able to demonstrate autonomous control, sensing and

responding to the internalization process, and subsequently

releasing cargo (122). Furthermore, combinations of engineering

bacteria with drug-loaded nanoparticles, monoclonal antibodies,

oncolytic virus, and even CAR-T cells will also open charming

options in oncology (123, 124).

Following the tremendous advances of cultivation-independent

technologies and microbial analysis tools, the profiles of gut

microbiota have been extensively revealed. While much attention

has been given to gut bacteria, the contributions of other intestinal

microorganisms such as viruses and fungi to cancer genesis and
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treatment also deserve further scrutiny. Furthermore, given the

overlapped alterations of gut species across cancers (125, 126),

future work is warranted to clarify the roles of gut microbiota-

derived strategies, using machine learning algorithms, in precise

risk stratification, prognostication, and therapeutic decision-

making of cancer patients.

Although we believe that modulation of gut microflora will

probably be the next vanguard in the management of cancer

patients, however, several potential challenges should be

mentioned. First, the exact mechanisms of action between gut

dysbiosis and cancer genesis and therapy remain poorly

characterized, and proofs of causation between them are still

lacking. Therefore, continual efforts should be made to rationally

select intestinal probiotics. On top of that, as a living body, the

complexity of bacteria determines the hardships and risks such as

biocontainment and safety concerns of transforming them into

weapons to fight against cancers. Finally, considering the complex

physiological conditions such as gastric acid and diverse enzymes that

might digest or deactivate bacteriotherapy agents before they reach

the action site, appropriate delivery route and dose of administration

are also need to be investigated during clinical translations.

Conclusion

In recent years, overwhelming pre-clinical and patient-oriented

evidence supports a critical role of gut microbiota in cancer

immunotherapies such as improving efficacy and mitigating

toxicity, and the manipulation of gut microbiota confers a

promising therapeutic strategy for the clinical management of

malignancies as well. Currently, microbiotherapy for cancers is

still in its infancy. With the formidable challenges notwithstanding,

it deserves further mechanistic dissection by cellular and animal

studies as well as validation with larger longitudinal clinical cohorts.
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Marek-Trzonkowska N, Połom K. Next-generation probiotics - do they open new
therapeutic strategies for cancer patients? Gut Microbes (2022) 14(1):2035659. doi:
10.1080/19490976.2022.2035659

122. Gurbatri CR, Arpaia N, Danino T. Engineering bacteria as interactive cancer
therapies. Science (2022) 378(6622):858–64. doi: 10.1126/science.add9667

123. Huang X, Pan J, Xu F, Shao B, Wang Y, Guo X, et al. Bacteria-based cancer
immunotherapy. Adv Sci (Weinh) (2021) 8(7):2003572. doi: 10.1002/advs.202003572

124. Vincent RL, Gurbatri CR, Redenti A, Coker C, Arpaia N, Danino T. Probiotic-
guided CAR-T cells for universal solid tumor targeting. bioRxiv (2021) 2021:10. doi:
10.1101/2021.10.10.463366

125. Su Q, Liu Q, Lau RI, Zhang J, Xu Z, Yeoh YK, et al. Faecal microbiome-based
machine learning for multi-class disease diagnosis. Nat Commun (2022) 13(1):6818.
doi: 10.1038/s41467-022-34405-3

126. Shi Z, Hu G, Li MW, Zhang L, Li X, Li L, et al. Gut microbiota as non-invasive
diagnostic and prognostic biomarkers for natural killer/T-cell lymphoma. Gut (2022).
doi: 10.1136/gutjnl-2022-328256
frontiersin.org

https://doi.org/10.1126/scitranslmed.aap9489
https://doi.org/10.1126/scitranslmed.aap9489
https://doi.org/10.1056/NEJMoa1817226
https://doi.org/10.1016/S1470-2045(21)00591-X
https://doi.org/10.1056/NEJMoa2116133
https://doi.org/10.1182/blood-2011-04-348540
https://doi.org/10.1186/s12943-022-01663-0
https://doi.org/10.1038/s41586-019-0878-z
https://doi.org/10.1136/jitc-2021-004147
https://doi.org/10.1136/jitc-2021-004147
https://doi.org/10.1186/s40164-019-0155-8
https://doi.org/10.3389/fimmu.2021.670286
https://doi.org/10.1172/jci.insight.94952
https://doi.org/10.1038/s41591-022-01702-9
https://doi.org/10.1038/s41467-022-32960-3
https://doi.org/10.3322/caac.21708
https://doi.org/10.1038/s41575-021-00499-1
https://doi.org/10.1016/j.lfs.2020.117754
https://doi.org/10.1016/j.chom.2021.08.001
https://doi.org/10.1016/j.chom.2021.08.001
https://doi.org/10.1080/19490976.2022.2035659
https://doi.org/10.1126/science.add9667
https://doi.org/10.1002/advs.202003572
https://doi.org/10.1101/2021.10.10.463366
https://doi.org/10.1038/s41467-022-34405-3
https://doi.org/10.1136/gutjnl-2022-328256
https://doi.org/10.3389/fimmu.2023.1139821
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Emerging roles of the gut microbiota in cancer immunotherapy
	Introduction
	Immune checkpoint blockade therapy
	The effects of antibiotics on the response of ICB therapy
	Influence of gut microbiota on the effectiveness of ICB therapy
	Interactions of gut microbiota with the toxicities related to ICB therapy
	Prognostic utility of the gut microbiota-derived models for the outcome of ICB therapy
	Gut microbiota-derived metabolites mediate the responses of ICB therapy

	Allogeneic hematopoietic stem cell transplantation
	Relationships between gut microbiota and allo-HSCT
	Effects of the gut microbial modulation on allo-HSCT recipients
	Diets, prebiotics, and probiotics
	Fecal microbiota transplantation


	Chimeric antigen receptor T cell therapy
	Future perspectives and current challenges
	Conclusion
	Author contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


