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The human leukocyte antigen (HLA) locus plays a central role in adaptive immune

function and has significant clinical implications for tissue transplant compatibility

and allelic disease associations. Studies using bulk-cell RNA sequencing have

demonstrated that HLA transcriptionmay be regulated in an allele-specificmanner

and single-cell RNA sequencing (scRNA-seq) has the potential to better

characterize these expression patterns. However, quantification of allele-specific

expression (ASE) for HLA loci requires sample-specific reference genotyping due

to extensive polymorphism.While genotype prediction from bulk RNA sequencing

is well described, the feasibility of predicting HLA genotypes directly from single-

cell data is unknown. Here we evaluate and expand upon several computational

HLA genotyping tools by comparing predictions from human single-cell data to

gold-standard, molecular genotyping. The highest 2-field accuracy averaged

across all loci was 76% by arcasHLA and increased to 86% using a composite

model of multiple genotyping tools. We also developed a highly accurate model

(AUC 0.93) for predicting HLA-DRB345 copy number in order to improve

genotyping accuracy of the HLA-DRB locus. Genotyping accuracy improved

with read depth and was reproducible at repeat sampling. Using a metanalytic

approach, we also show that HLA genotypes from PHLAT and OptiType can

generate ASE ratios that are highly correlated (R2 = 0.8 and 0.94, respectively) with

those derived from gold-standard genotyping.

KEYWORDS

HLA typing algorithm, next-generation sequencing data (NGS), HLA genotype, single-
cell sequencing (scRNA-seq), human leukocyte antigen (HLA), major histocompatibility
(MHC), allele specific expression
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Highlights
Fron
• Benchmarking of HLA genotype prediction accuracy from

5’- and 3’- based single-cell RNA-seq data compared to

molecular HLA genotyping

• Quantification of transcript coverage by 5’- and 3’-based

single cell sequencing methods

• Accurate prediction of complex HLA-DRB345 copy

numbers using supervised learning

• Balancing accuracy and performance through composite

HLA genotyping

• Meta-analytic approach to summarizing allele-specific

expression of HLA genotypes at single-cell level
Introduction

The human leukocyte antigen (HLA) locus is the most

polymorphic region of the human genome. It encodes a wide

range of important immune proteins, including the class I

(HLA-A, -B, -C) and class II (HLA-DP, -DQ, -DR) major

histocompatibility complex (MHC) proteins responsible for

antigen presentation. The allelic diversity of the HLA locus

contributes to the ability of MHC proteins to present a large

range of possible peptides to lymphocytes and underlies the

association of HLA genotypes with transplant compatibility and

disease susceptibility (1).

HLA alleles are identified by four fields of increasing specificity,

each with two or more digits. Together, the first two “low-

resolution” fields define unique protein coding sequences, while

the final two “high-resolution” fields denote synonymous -exonic

and -intronic nucleic acid variation, respectively. The earliest HLA

typing methods relied on low-resolution serologic assays that have

largely been replaced by high-resolution molecular genotyping

based on a variety of sequencing techniques. Clinical HLA

genotyping typically utilizes site-specific amplicon sequencing of

HLA loci, while research applications have increasingly focused on

next generation sequencing (NGS) (2, 3).

HLA transcription is dynamically regulated throughout an

inflammatory process and also represents a common immune

escape mechanism. For example, reduced expression of MHC

class 2 genes on monocytes correlates with mortality in septic

shock (4) and multiple viral infections (5). Regulation of HLA

expression also extends to the level of individual alleles (6).

Temporal patterns in allele-specific expression (ASE) of certain

HLA-DQB1 alleles can discriminate their relative association with

type 1 diabetes (7) and increased ASE imbalance of MHC class I

genes was observed in colorectal (8) and other cancers (9). Single-

cell sequencing allows for fine resolution of ASE and such studies

have demonstrated much of the transcriptome is mono-allelically

expressed at a given point in time (10–12). However, while methods

for assessing single-cell ASE for HLA loci are available (13), they

require high-resolution reference genotypes for accurate read

mapping due to extensive HLA polymorphism, limiting their
tiers in Immunology 02
broader application to the increasingly large amount of publicly-

available sequencing data.

Several computational tools exist to predict HLA genotypes

from bulk RNA sequencing data and the accuracy of these methods

have been robustly characterized (14). However, it is unclear if these

methods can be applied to data from single-cell RNA sequencing

(scRNA-seq) experiments due to differences in sequencing

chemistry and transcriptome coverage. One attempt to obtain

genotypes from single cells observed that very few cells express

HLA genes at a high enough level to generate genotype predictions

for individual HLA loci (15).

Here, we show that data from commonly used scRNA-seq

platforms can be condensed into subject-specific “pseudobulk”

sequence files that can be used to predict HLA genotypes. Using

five in silico HLA genotyping tools, we compare the accuracy of

genotypes derived from scRNA-seq to gold standard molecular

HLA genotyping obtained from the same individuals. We further

expand on these methods to better predict complex HLA-DRB345

genotypes and obtain maximal accuracy using a composite of the

tested genotyping tools. We also show that even inaccurate

genotypes from several tools can result in an accurate assessment

of ASE in downstream use.
Methods

HLA multiple sequence alignment
and variation

HLA-allele sequences were obtained from IMGT/HLA

version 3.42.0. All sequences without atypical expression suffixes

(e.g. –N, -L, etc.) were included in multiple sequence alignment

performed by DECIPHER/2.18.1 in R/4.0.4. Sequence variability

was determined using 2-bit Shannon entropy based on nucleotide

identity at each sequence position. Gap nucleotides were not

factored into entropy calculations, as published HLA reference

alleles often include only partial exon sequences
Samples, sequencing, and gold standard
HLA genotyping

Samples used for 5’ scRNA-seq have been described previously

(16) as part of the ISB-Swedish INCOV study and include

peripheral blood samples obtained from 157 patients at one or

two time points. Samples were processed using 10X Genomics 5’

Chromium Single Cell Kits and sequenced using the Illumina

Novaseq platform. Samples used for 3’ scRNA-seq and bulk

RNA-seq have been previously described (17) as part of the NIH-

HBM cohort and include bone marrow samples from 20 healthy

patients. Samples were processed with using 10X Genomics Single

Cell 3′ Solution Kits, TruSeq Stranded Total (bulk) RNA Sample

Preparation Kits, or both. Libraries were sequenced on Illumina

HiSeq 3000. For both sample cohorts, 3-field molecular HLA

genotyping was performed by Scisco Genetics on peripheral blood

aliquots or gDNA. As described by the manufacturer, Scisco HLA
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genotyping utilizes 2-stage, amplicon-based PCR amplification of

genomic DNA. Four multiplex primer sets provide complete

amplification of HLA-A, B, and C at exons 1 through 8; DRB1,

DRB3/B4/B5, DQA1, and DQB1 at exons 1 through 6; DPB1 at

exons 1 through 5; and DPA1 at exons 1 through 4. This represents

complete coverage of all exons. Primers also include sufficient

intron sequences to detect all known intron encoded null alleles.

Sequencing is performed on the Illumina MiSeq platform using 500

cycles. The minimal read depth criteria for genotyping calling is 50

reads per amplicon.
FASTQ file preparation

For scRNA-seq samples, raw FASTQ files were demultiplexed

into subject-specific FASTQ files utilizing UMI-tools/1.1.1. Quality

control was performed with TrimGalore/0.6.5. Files were then

mapped to the GRCh38 human reference genome with HISAT2/

2.2.1 and indexed with SAMTOOLS/1.9. The `extract` function of

arcasHLA/0.2.0 was used to isolate chromosome 6 and unmapped

reads to be used for downstream HLA mapping and genotyping.
HLA genotype prediction

Genotyping by arcasHLA was performed with the `genotype`

function. The `parameters.p` file in arcasHLA was modified to allow

for genotyping of the HLA-DRB4 locus. Genotyping by PHLAT/1.1,

OptiType/1.3.3, and HLAMiner/1.4 and scHLAcount/DEV were

performed using default settings. When able to specify a user-defined

HLA reference, IMGT/HLA version 3.42.0 was used.
Prediction validity

For a given genotyper, success compares only those loci that a

genotyper generated a prediction for to the gold standard and is

represented by:

Success =
# Correct alleles

# Correct alleles  +  # Incorrect alleles

In contrast, accuracy reflects the validity of a given genotyper

across all alleles in the gold standard, even those that the genotyper

failed to generate a prediction for. This is analogous to Bray-Curtis

similarity and is represented by:

Accuracy =
# Correct alleles

# Correct alleles  +  Incorrect alleles  + # Absent alleles

“Correct allele” indicates an allele prediction that matches the

ground truth allele. Agreement between two predicted genotypes is

a case of accuracy where “correct allele” indicates the two predicted

genotypes are identical. Genotype accuracy and success were

assessed independently at each HLA locus and thus only take

values of 0.0, 0.5, or 1.0, reflecting 0, 1, or 2 correct alleles out of

2 possible alleles. All assessments of accuracy, success, or agreement

at each field includes the full genotype up to that field. For example,
Frontiers in Immunology 03
in the case of a ground-truth genotype of HLA-A*02:01 and a

genotyping algorithm prediction of HLA-A*01:01, field 2 accuracy

represents the comparison of 02:01 and 01:01, not xx:01 vs. xx:01.
Read depth analysis

For read subsampling, FASTQ files generated by arcasHLA

extract were subsampled to 10%, 1%, and 0.1% of their original read

count using seqtk/1.3. For cell subsampling, cellular barcodes were

subsampled to 10%, 1%, and 0.5% of total sample barcodes. All

reads corresponding to subsampled barcodes were isolated from

FASTQ files generated by arcasHLA extract using BBMAP/38.90.

Subsampled files were genotyped as described above. Linear

modeling of genotyping accuracy/success by read/cell depth

was performed with ordinary least squares regression on log-

transformed read counts using base R/4.0.4.
Statistical modeling

HLA-DRB345 allele copy numbers were predicted from a K-

nearest neighbor classifier using the ratio of HLA-DRB3, -DRB4, or

-DRB5 mapped reads to HLA-DRB1 mapped reads as feature and

the number of HLA-DRB3, -DRB4, -DRB5 alleles identified by

molecular genotyping as ground truth. Multi-class AUC was

determined using the Hand & Till method (18). Manhattan

distance was used to quantify similarity between the allele count

vectors {-DRB3, -DRB4, -DRB5} obtained from the kNN model and

molecular genotyping. This distance was standardized to the

maximum possible distance of 6, representing complete

dissimilarity of the two alleles at each of the three loci. This value

was then inverted to create an index where 1 represents complete

similarity of all allele counts and 0 represents complete

dissimilarity. Decision trees for composite HLA genotypes

included presence/absence of a valid genotype from each

genotyper, locus, and field level as input features and the identity

of the highest accuracy genotyper for a given sample as ground

truth. Both models were trained on 70% of the 5’ scRNA-seq

samples with 10-fold cross validation and tested on the 30% hold-

out set using Tidymodels/0.1.3 in R/4.0.4.
Analysis of single-cell RNA-seq data

Gene expression analysis of 5’ scRNA-seq samples including

pre-processing, integration, and cellular annotation was published

previously (5). Allele specific expression was determined by

scHLAcount/DEV (commit 5ce7b2d) and incorporated into single

cell data using Seurat.
Allele-specific expression effect size

To prevent lower-confidence ASE ratios from cells with low

read counts from biasing the overall sample ASE, we determined a
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summary effect size using the log-odds of each cell’s HLA

expression ratio. For an individual cell, expected allele counts

were calculated by summing the total number of reads between

the two alleles, then distributing them equally between the two

alleles. An odds ratio was obtained from the observed counts and

this expected count, with the highest expressed allele as reference.

To obtain a summary effect size across all cells, this odds ratio was

converted to log-odds then weighted by the inverse variance of the

log-odds. These weighted odds were summed in a random-effects

model to find the effect size. Computation was performed using the

R-package meta/4.19.0.
Data and code availability

All datasets, software, and algorithms used in this study are

publicly available and appropriately cited as they are introduced.

All code necessary to reproduce our analyses and to implement our

models is available at https://github.com/BenSolomon/

hla_benchmark. Any gold standard HLA genotyping not

previously published is included in this code repository. For

convenience, compiled HLA genotypes from all samples and

genotyping methods are also included as supplementary data files.
Results

Single cell sequencing methods can
produce sufficient sequence coverage
to assess HLA sequence diversity

Compared to paired-end bulk RNA-seq methods, most high

throughput scRNA-seq methods generate cDNA libraries that are

enriched for either the 3’ or 5’ ends of transcripts. Given the

extensive polymorphism of the HLA locus, incomplete sequence
Frontiers in Immunology 04
coverage could impair genotyping accuracy by excluding sequence

variations outside of these enriched regions. This is particularly true

for 3’-based protocols, as HLA diversity is concentrated in the 5’

region of each gene (Figure 1A).

To quantify the relationship between HLA-sequence diversity

and the positional bias of sequencing platforms, we compared the

HLA loci coverage of 3’- and 5’-based scRNA-seq data, as well as

bulk RNA-seq data. We selected two RNA-seq data sets with

matched molecular HLA genotyping for this comparison and all

downstream analyses. The first dataset, referred to as INCOV,

included 5’-based scRNA-seq data from blood samples of 157

individuals taken at multiple time points (16). The second

dataset, referred to as NIH-HBM, included both 3’-based scRNA-

seq and bulk RNA-seq data from healthy bone marrow donors (17).

Interestingly, while both 3’ and 5’ coverage bias was evident in

the respective sequencing methods, both resulted in reads that could

be mapped across the full extent of HLA loci (Figure 1B).

In particular, coverage from 5’ based scRNA-seq data was

comparable or better than that of bulk RNA-seq across the full

extent of most HLA loci. This was further reflected in the overall

mapping efficiency of reads in each HLA loci, as the median number

of reads aligned to HLA loci from 5’-based scRNA-seq methods

were an order of magnitude greater than both bulk RNA-seq and

3’-base RNA-seq data (Figure 1C).
ScRNA-seq pseudobulk data results in few
HLA genotyping failures

Darby et al. previously demonstrated that individual cells do not

express HLA transcripts at a sufficient level for reliable and

complete genotyping at the single cell level (15). Therefore, we

sought to achieve sufficient read coverage at HLA loci by pooling

reads from all cells of an individual sample into a “pseudobulk” data

set. As most single-cell methods generate single-end reads, we
A

B

C

FIGURE 1

Sequencing coverage of HLA allelic diversity (A) Rolling (100bp) mean Shannon entropy for published allele sequences of indicated HLA loci. (B) HLA
coverage of reads mapped from bulk RNA-seq, 3’ (3p-based) scRNA-seq, and 5’ (5p)-based scRNA-seq. Grey lines represent individual samples, blue lines
represent loess regression. (C) HLA-mapped reads per million total reads from bulk RNA-seq, 3’ (3p)-based scRNA-seq, and 5’ (5p)-based scRNA-seq.
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identified 4 compatible HLA genotyping tools: arcasHLA (19),

HLAminer (20), PHLAT (21), and OptiType (22). Though

primarily used to quantify ASE at HLA loci, we also compared

predictions from the genotyping function of scHLAcount (13). To

control and minimize the variability resulting from the different

global alignment strategies incorporated into each of these tools, we

first performed common global alignment with HISAT2 then

isolated chromosome 6 reads (containing the HLA locus) and

unmapped reads to use as a starting point for each genotyper.

Overall, most tools generated two allele predictions for the first two

HLA fields, while predictions at field 3 had a higher rate of failure

(Figure 2A). Notably, arcasHLA and PHLAT made complete 2-allele

predictions across all loci, with the exception of HLA-DPA1 and HLA-

DPB1 which PHLAT does not assess. scHLAcount was a notable

exception, typically producing only a single allele prediction.
Genotyping accuracy varies by loci,
genotyper, and sequencing direction

We compared predicted HLA genotypes to ground-truth

sample-matched molecular genotyping using two metrics

previously utilized by Bauer et al. (14). “Success” describes the

proportional match of a predicted genotype with the ground truth

genotype but ignores missing predictions. Conversely, “accuracy”

assesses how likely a genotyper is to predict the complete, correct

genotype by penalizing failed genotype predictions.

We focused primarily on 5’-based scRNA-seq INCOV data due

to its greater transcript coverage. For class 1 genes, OptiType had
Frontiers in Immunology 05
the highest success at fields 1 and 2, though lower accuracy

compared to PHLAT due to occasional prediction failures of

OptiType (Figures 2B, C; Tables S1; S2). aracasHLA had

moderate success and accuracy for class 1 genes (55% - 64% at

field 2), but had substantially higher accuracy for class 2 genes (75%

- 93% at field 2). Its accuracy for class 2 genes and was only

surpassed by PHLAT at HLA-DQB1. Notably, HLAMiner had the

lowest success and accuracy compared to the other genotyping

tools, with an average field 2 accuracy of less than 50% across all

HLA loci. The genotyping function of scHLAcount also had poor

accuracy. We excluded scHLAcount from further analysis due to its

low accuracy and high rate of incomplete genotype predictions.

This variation in accuracy did not result from bias of particular

genotypes for specific alleles or samples (Figures S2A, B).

3’-based scRNA-seq NIH-HBM data resulted in lower accuracy

than 5’-based data. The average 2-field MHC class 2 accuracy for

arcasHLA ranged from 32% - 95% (Figure S1A; Table S3).

Interestingly, MHC class 1 accuracy appeared less affected by the

reduced sequence coverage compared to MHC class 2 accuracy. By

comparison, bulk RNA-sequencing frequently resulted in excellent

accuracy (Figure S1B; Table S4) such as average 2-field ranging

from 88%-100% across all HLA loci for arcasHLA.
Increasing accuracy of HLA-DRB345
predictions

The HLA-DRB1 gene can occur alone or in close linkage

disequilibrium with one of three functional paralogs, HLA-DRB3,
A B

C

FIGURE 2

Accuracy of HLA genotype predictions (A) Relative proportion of samples with 0, 1, or 2 allele predictions. (B) Mean success and (C) mean accuracy
of predicted genotypes compared to molecular genotyping. Empty heatmap tiles represent genotype parameters not assessed by a given genotyper.
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-DRB4, or -DRB5, and pairing of HLA-DRB1 and HLA-DRB345 on

each homologous chromosome occurs independently (23). While

arcasHLA and HLAminer can predict HLA-DRB345 identity,

neither accounts for copy number, frequently resulting in

biologically invalid HLA-DRB345 predictions. While tools such as

CaSpER (24) are capable of predicting copy number variants, the

significant linkage disequilibrium and high sequence homology

between genes of the HLA-DRB345 locus prevents the application

of conventional methods.

To address this, we sought to predict the number of HLA-DRB3

-DRB4, and -DRB5 copies prior to assessing allele accuracy. Zhang

et al. previously showed that copy numbers could be predicted from

targeted sequencing using the ratio of HLA-DRB345 reads to HLA-

DRB1 reads (25). Using a similar approach, we trained a K-nearest

neighbor (kNN) classifier to predict the number of HLA-DBR3,

-DRB4, and –DRB5 alleles based on their relative read abundance

(Figure S3A). We chose kNN for its low complexity and minimal

assumptions when applied to multiclass modeling. We used 70% of

the 5’-based scRNA-seq INCOV data to train the kNN-based

classifier. The model was highly accurate when applied to a

holdout subset (AUROC = 0.97; Figure 3A). This model

generalized well to 3’-based scRNA-seq and bulk RNA-seq data
Frontiers in Immunology 06
from NIH-HBM, with an AUC of 0.79 and 1.0, respectively (Figures

S3D, F).

Prior to application of the kNN classifier, copy numbers

associated with genotype predictions were notably discordant from

those reflected in ground truth genotypes. In samples with no HLA-

DRB3 copies per molecular genotyping, arcasHLA and HLAminer

correctly predicted an HLA-DRB3 copy number of zero in only 30%

and 3% of these samples, respectively (Figure 3B). By comparison, the

kNN classifier correctly identified 93% of these zero HLA-DRB3 copy

number samples. When similarity to ground truth copy numbers was

summarized across all HLA-DRB345 loci, the kNN classifier had a

mean standardized similarity of 0.97, compared to 0.64 and 0.74 for

arcasHLA and HLAminer, respectively (Figure 3C).

Using these copy number predictions, we filtered the HLA-

DRB345 genotypes from arcasHLA and HLAminer to their top n

alleles, where n is the number of copies predicted by our kNN

classifier. This significantly improved HLA-DRB345 accuracy,

indicative of a high frequency of false positive predictions in

unfiltered genotypes. Accuracy ranges for 2-field arcasHLA

predictions increased from 35%-46% using unfiltered samples to

66%-88% with filtered samples. (Figures 3D, E; Table S5). As with

other loci, arcasHLA significantly outperformed HLAminer.
D

A B

EC

FIGURE 3

Prediction of HLA-DRB345 genotypes (A) ROC for HLA-DRB345 copy number classifier by kNN. Tuned on 70% test set with 10-fold cross validation.
AUC represents performance on 30% hold-out test set. (B) Relative proportion of samples with ground truth HLA-DRB3, -DRB4, and -DRB5 copy
numbers of 0, 1, or 2 with corresponding predicted copy numbers by arcasHLA, HLAminer, or the kNN classifier applied to all samples. (C) Similarity
between the set of ground truth and predicted HLA-DRB3, -DRB4, and -DRB5 copy numbers for each sample. Similarity represents 1 - maximum-
standardized Manhattan distance. Error bars represent standard error of the mean. (D) Mean accuracy of HLA-DRB345 genotype predictions when
unfiltered or filtered by kNN classifier. (E) Difference in filtered and unfiltered mean accuracy. (*) FDR-adjusted p-value ≤ 0.05 by Wilcoxon rank
sum test.
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Genotype predictions from scRNA data
are precise

While HLA genotypes are static, differences in HLA gene

expression levels might affect genotype predictions when based on

scRNA-seq data. The 5’-based scRNA-seq dataset contained

samples from individuals obtained at two time points, allowing us

to assess prediction reproducibility. Both time points had similar

prediction patterns, with no significant variation in accuracy when

compared to molecular HLA genotyping (Figure 4A; Table S6). In

the case of arcasHLA, the difference in average 2-field accuracy

between the two time points ranged from 0%-12%.

Next, we directly compared how well the genotypes from both

time points agreed with one another. An expected agreement

between time points was derived from the product of their

respective accuracy values. For arcasHLA and OptiType there was

no significant difference between expected and observed agreement

at the 2-field level with the exception of arcasHLA at HLA-DQA1,

which showed lower observed agreement (Figure 4B). Alternatively,

observed 2-field agreement was either equivalent to or significantly

higher than expected agreement for HLAminer and PHLAT across

all HLA loci.
Increased read depth improves
genotyping accuracy

Previous studies have shown conflicting results regarding the effect

of read depth on the accuracy of HLA genotyping from NGS data (14)

(26). We evaluated this relationship by assessing genotype accuracy

from multiple levels of subsampled reads. Overall, accuracy increased

with read depth for most genotypers and loci (Figure 5). OptiType

accuracy was relatively constant over read depth due in part to

genotyping failures at higher read counts (Figure S4). Conversely, the

positive trend between read depth and accuracy was most prominent

with arcasHLA, accentuated by its minimum read parameter that

excludes genotype predictions for loci with a total number of mapped

reads below a specified threshold.
Frontiers in Immunology 07
Composite genotypes increase
overall accuracy

Since no single genotyper produced the most accurate

predictions across all samples and HLA loci, we sought to

determine if combing multiple predictions could increase

accuracy. The genotypers tested in our study have significant

variation in run time ranging from a median runtime of 1.6

minutes per sample for arcasHLA to a median runtime of 183

minutes per sample for HLAMiner (Figure 6A). As such, when

combining genotyper predictions, we also sought to balance any

gain in accuracy with the increased processing time needed to run

multiple tools.

Lee et al. previously demonstrated success with a consensus-

voting approach to determine the reliability of HLA genotyping

from genomic sequencing data (27). Using a related approach, we

trained a decision tree classifier to determine the most accurate

genotyper based on (1) the set of all genotypers with successful

predictions for an individual sample, (2) the HLA locus, and (3) the

field level. We trained two trees, one that incorporated arcasHLA,

OptiType, and PHALT (AOP) and one with only arcasHLA and

OptiType (AO) (Figures S6A, B). HLAminer was excluded entirely

due to its long run time and overall low accuracy. When tested on a

30% hold out dataset, both models were highly accurate at

identifying the optimal genotyper for a given sample (AOP AUC

0.84, AO AUC 0.93).

We then created a composite HLA genotype for each individual

based on the genotype prediction from the optimal genotyper at

each locus and allele field level. Composite accuracy was

consistently higher than accuracy from individual genotypers

(Figures 6B, C; Table S7). 2-field accuracy from the AOP

composite ranged from 84%-86% for MHC class 1 loci and 69%-

93% for MHC class 2 loci. Notably, the accuracy of predictions from

the AO composite were not significantly different from those

obtained by the AOP composite with the exception of HLA-

DQB1, suggesting that a near optimal prediction can be obtained

from the combination of only arcasHLA and OptiType. Moreover,

the addition of arcasHLA to OptiType had a negligible impact on
A B

FIGURE 4

Reproducibility of predicted HLA genotypes (A) Difference in mean accuracy between genotype predictions at time point 1 (T1) and time point 2 (T2).
(B) Mean difference between the expected agreement of T1 and T2 genotype predictions and their observed agreement. (*) FDR-adjusted p-value ≤

0.05 by Wilcoxon rank sum test.
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total pipeline runtime, increasing median runtime from 73.5

minutes to 75.0 minutes, while composite of arcasHLA,

OptiType, and PHLAT increased median total runtime to 154.5

minutes (Figure S6E).
Inaccurate genotype predictions can result
in accurate determination of HLA allele-
specific expression

Single-cell studies provide enhanced resolution of allele-specific

transcriptional regulation, though analysis of ASE at HLA loci is

complicated by the effect of HLA polymorphism on read mapping.

This can be overcome by supplying sample-specific HLA references

to tools like scHLAcount (13), though it is unclear how much allele-

mistyping affects downstream determination of ASE ratios. To

address this question, we evaluated how variation in accuracy

from different HLA genotypers affected ASE.

In a representative sample (Figure 7A), inaccurate genotypes

resulted in broadly different patterns of ASE (Figures 7B; S7A). To

quantify this apparent difference in ASE across cells, we used a

meta-analytic approach to summarize ASE ratios. When focusing

on CD14+ monocytes from a representative sample, this approach

demonstrated that the genotyping inaccuracy associated with

HLAminer resulted in a notable deviation in the ASE log-odds

ratio from that obtained using the ground truth genotype

(Figures 7C; S7B).

When comparing ground truth- and genotyper-derived ASE

log-odds ratios across all samples and cell types, PHLAT and

OptiType resulted in the greatest correlation with ground truth-

derived ASE, with R2 values of 0.8 and 0.94, respectively

(Figure 7D). Interestingly, this high level of correlation occurred
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even in samples where both allele predictions were incorrect,

though not when only a single allele prediction was correct

(Figure S7). This suggests that, even when inaccurate, these tools

predict genotypes with sufficient sequence similarity to the ground

truth genotype to allow for similar proportional mapping of reads to

the two reference alleles.
Discussion

In this study, we describe the feasibility and best practices for

obtaining HLA genotypes from scRNA-seq data. Using bulk RNA-
FIGURE 5

Effect of sequence sampling depth on HLA predictions 2-field
accuracy based on number of reads aligned to the indicated locus.
Raw sequencing data sampled to 100%, 10%, 1%, and 0.1% of
original sample read total. Points represent individual samples offset
from {0, 0.5, 1} to distinguish genotypers. Trend lines represent
linear regression using log transformed reads with ribbon
representing 95% CI.
A

B

C

FIGURE 6

Composite HLA prediction accuracy. (A) Runtime of major steps in
genotyping pipeline. Y-axis distributed along square root scale.
(B, C) Difference in mean accuracy between AOP composite and
indicated alternative genotyping methods across (B) individual loci
and (C) loci classes. (AOP) composite of arcasHLA, OptiType, PHLAT,
(AO) composite of arcasHLA, OptiType. (*) FDR-adjusted p-value ≤

0.05 by Wilcoxon rank sum test.
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seq data as a baseline, we found that our evaluation pipeline

generated similar accuracy results to those seen in other

benchmarking studies (14) (19). By comparison, sequencing from

5’-based single-end scRNA-seq data was moderately accurate with

average accuracy across all loci for arcasHLA of 76% and 74% for 2-

field and 3-field genotypes, respectively. This accuracy could be

increased by composite predictions assembled using a decision tree

model frommultiple genotypers, resulting in an average accuracy of

86% and 78% for 2-field and 3-field genotypes, respectively.

In order to obtain accurate genotype predictions of highly

polymorphic regions like the HLA locus, full transcript coverage

is critical to ensure all underlying sequence diversity is incorporated

into predictions. We observed that 5’-based scRNA-seq methods

provides excellent read coverage across the entire length of HLA

transcripts compared to 3’-based scRNA-seq coverage, which is

more restricted and enriched for regions with lower HLA

polymorphism. Both protocols utilize a template switch reaction,

though the proportion of the poly-A tail binding region of reverse-

transcription primer used in the 5’-based protocol is nearly double

that of the primer in the 3’-based protocol, possibly contributing to

the difference in coverage we observe. The observations that

transcript coverage from 5’-based scRNA-seq is sufficient to

genotype highly polymorphic HLA loci, suggests that this

platform could also reliably quantify other areas of small

sequence variation such as single nucleotide polymorphisms.

Our observation that genotyping accuracy improves with increased

locus coverage contrasts with that of Bauer et al. (14). Several

differences may account for this. First, the bulk RNA-seq data

analyzed previously is likely more robust to positional HLA sequence

variation than the single-end scRNA-seq data assessed here. As such,

more read depth may be necessary to overcome the relative loss of

allele-identifying sequence information in single-ended libraries
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compared to paired-end libraries. In addition, our subsampling

approach ensured that our analysis would test genotypers at the

lowest limits of starting material. Without subsampling, the more

limited distribution of coverage may fall well within the optimal range

of sensitivity for the genotyping tools tested.

At 86% 2-field accuracy, even optimized composite predictions

for 5’ scRNA-seq data are unlikely to be useful for clinical

genotyping. However, the primary novel application of HLA

typing to single-cell data is its research use in assessing ASE. For

instance, using bulk RNA-seq, Liu et al. demonstrated that

colorectal cancer samples were associated with greater skewing of

HLA ASE ratios. Similar to studies that demonstrated an

association between loss-of-HLA-heterozygosity with multiple

tumor types and failure of therapeutic checkpoint blockade (28),

this skewing away from equal biallelic HLA expression could

represent an immunological escape mechanism that functions to

reduce the diversity of possible tumor peptide-antigens displayed by

MHC molecules. Interestingly, in our study, we show that even

inaccurate genotype predictions from arcasHLA, PHLAT, and

OptiType can result in ASE ratios that correlate highly with those

derived from ground truth genotypes. This suggests that these

inaccurate predictions still identify alleles with sufficient sequence

similarity to the true alleles that proportional read mapping

between the homologous chromosomes is maintained, resulting

in relatively accurate assessments of ASE.

However, molecular HLA genotyping still represents the gold

standard for accuracy and is readily available through commercial

laboratories and kits. Yet, it is not always feasible to perform these

assays for single-cell experiments. As scRNA-seq methods are limited

by cost and cell number, building robust data sets often requires

integration of published data, for which prior HLA genotyping or

remaining biological samples may not be available. Moreover,
D

A B

C

FIGURE 7

Effect of prediction accuracy on analysis of allele-specific HLA-A expression (A-C) Representative sample from 5’ data set. (A) UMAP projection of
single-cell transcriptome data, annotated as previously described (4) (B) UMAP plots colored by cell-specific expression frequency of the most highly
expressed HLA allele determined by scHLAcount. The reference genotype from each genotyper used by scHLAcount is annotated. (C) Summary log-
odds ratios of dominant HLA-A allele from all cells in cDC cluster determined by random effects model. Error bars represent summary standard
error. (D) Correlation of ground truth- and genotyper-derived HLA-A allele log-odds ratio from all samples and cell types.
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particularly in the case of clinical studies, limited sample material may

preclude the use of multiple analytical platforms. Therefore, the ability

to obtain HLA genotypes directly from scRNA-seq data represents a

way to maximize the utility of these methods. We believe our study

demonstrates that such direct genotyping can achieve sufficient

accuracy for downstream applications unique to single-cell

experiments, such as precise evaluation of ASE.
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