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Hepatocellular carcinoma (HCC) is the most common primary liver cancer, and

the third leading cause of cancer-related deaths worldwide. HCC is

characterized by insidious onset, and most patients are diagnosed at an

advanced stage with a poor prognosis. Identification of biomarkers for HCC

onset and progression is imperative to development of effective diagnostic and

therapeutic strategies. CD147 is a glycoprotein that is involved in tumor cell

invasion, metastasis and angiogenesis through multiple mechanisms. In this

review, we describe the molecular structure of CD147 and its role in regulating

HCC invasion, metastasis and angiogenesis. We highlight its potential as a

diagnostic and therapeutic target for HCC.
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Introduction

Liver cancer, one of the most common malignant tumors in humans, is mainly divided

into primary and secondary subgroups. Primary liver cancer is ranked seventh and second

with regards to incidence and mortalities, respectively worldwide (1). Hepatocellular

carcinoma (HCC), the leading type of primary liver cancer, is the third leading cause of

cancer-related deaths worldwide, killing 745,500 patients each year (2, 3). In Asia, chronic

hepatitis B virus (HBV) infection is the leading cause of HCC (4), whereas chronic hepatitis

C virus (HCV), alcoholic cirrhosis and steatohepatitis are the main causes across Western

countries (5). Other risk factors for HCC include heavy alcohol consumption, aflatoxin

ingestion, obesity, type 2 diabetes and smoking (6, 7). Despite advances in diagnosis and

treatment strategies, prognosis of HCC patients remains unsatisfactory, with a 5-year

survival rate of only 15-20%, a rate that has changed little in the past 30 years (8, 9). These

minute changes have been attributed to lack of reliable early biomarkers and the high

economic challenge of effective treatment in countries with high risk factors (10). Current

treatment modalities for HCC mainly involve surgical interventions, such as ablation,
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resection and organ transplantation (11, 12). However, these

treatment approaches are often limited by late diagnosis, coupled

with lack of transplantable organs or disease that progress beyond

the Milan criteria (13). Therefore, urgent identification of novel

molecular mechanisms and diagnostic markers is imperative to

development of strategies for effective treatment of HCC.

Cluster of differentiation 147 (CD147), a glycoprotein originally

known as a regulator of Matrix metalloproteinase (MMP), serves as

a potential target for cancer therapy through cell-matrix and cell-

cell interactions (14, 15). Studies have shown that CD147 is not only

overexpressed in cancer cells, but also regulates cell proliferation,

drug resistance and cell stromal adhesion properties (16–18).

Earlier reports indicated that apart from regulating MMP, CD147

also plays a role in several other functions, and can also bind

different molecular partners to regulate multiple signaling pathways

(19, 20). In addition, CD147 is involved in angiogenesis by

regulating production of vascular endothelial growth factor

(VEGF) in tumor and stromal cells (21). In addition, CD147 acts

on cancer-associated fibroblasts to promote tumorigenesis and

development. It was found that CD147 is expressed on melanoma

cells and induces tumor cell invasion by stimulating fibroblast

production of matrix metalloproteinases (22). Xu et al. (23)found

that CD147 transformed breast cancer static fibroblasts into cancer-

associated fibroblasts.

Prospecting for novel mechanisms regulating HCC

development, coupled with early HCC detection, can greatly

improve chances of effective treatment. Studies have described the

role of new diagnostic biomarkers in clinical and therapeutic

management of HCC (24). Notably, numerous evidence indicates

that CD147 is a promising diagnostic and therapeutic biomarker for

HCC (25).
CD147 structure

CD147 which plays numerous functions, was given different

names by different researchers during early days, including gp42,

BSG, and EMMPRIN, among others (26–28). The Human Genome

Project uses the name BSG, while its corresponding gene and

protein name is basigin (Ok blood group) (20). Apart from

detection in all vertebrates. This gene is also homologous in

Drosophila melanogaster and Schistosoma (29). The gene

encoding CD147 is located on chromosome 19, p13.3, and

comprises 10 exons on a ~12 kb fragment (30). A 30 bp element,

located at the -142 to -112bp 5’ end of the gene, contains binding

sites for specificity protein 1 (Sp1), activator protein 1 (AP1),

transcription factor II (TFII) and early growth response factor-2,

which are important for CD147 transcription (31, 32). The 3’

flanking region also has two hypoxia-inducible factor (HIF)

binding sites (33, 34). Human Protein Database shows that four

variants of CD147 has been encoded through an alternative

promoter and splicing (35, 36) (Figure 1). The Ig-like structural

domain is divided into four types, namely type V, C1, C2, and I.

Notably, the latter type lies between types V and C. Moreover,

CD147-1 has three Ig-like structural domains and is a retina-

specific type (37, 38). CD147-2, a common classical isoform that
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is widely distributed, has two Ig-like structural domains and three

asparagine-glycosylated aspartate sequence sites (39, 40).

Structurally, one monomer of CD147 is composed of two

domains, D1 corresponding to N-terminal domain and a C-

terminal domain called D2 (Figure 1). On the other hand,

CD147-3 and CD147-4 are less common and contain only 1

extracellular structural domain (Ig I). Studies have shown that

CD147-3 can act as an endogenous inhibitor of CD147-2 by

forming a heterodimer with it (35). Notably, the transmembrane

region of BSG proteins comprises 23 amino acids that are highly

conserved in the CD147 family as well as across species (41, 42). A

fully conserved Glu in the middle of the transmembrane region is of

particular interest, owing to the fact that it may not only mediate

CD147 interactions with other adjacent proteins in the membrane

but also regulate important CD147 functions. Moreover, the

transmembrane region contains a typical leucine zipper structural

domain that is involved in both membrane-protein interactions and

multiple intracellular signaling pathways (41, 43).

Studies have shown that CD147 interacts with numerous

partners, such as caveolin-1 (44), monocarboxylate transporter

(45), CD98 and b1 integrin (46), to promote various processed

including cell metabolism, proliferation, migration and invasion

(47). In addition, the soluble form of CD147 was found to

internalize and promote cell proliferation and migration through

surface CD147 binding (48, 49). Another study demonstrated that

CD147 overexpression mimics VEGF production through the

PI3K/AKT signaling pathway, thereby directly promoting tumor

angiogenesis (50). Moreover, Chen et al. (51) reported that CD147

was overexpressed in human umbilical vein endothelial cells, while

its upregulation by specific siRNAs markedly suppressed

angiogenesis in multiple ways, including proliferation, migration,

secretion of MMPs, and activation of the PI3K/Akt pathway. It has

been shown that CD147 is associated with the development of

various solid tumors such as esophageal cancer, head and neck
FIGURE 1

Structural characteristics of CD147. CD147’s extracellular segments
differed significantly. D0: retina-specific structural domain; D1: Ig C2
structural domain; D2: Ig I structural domain.
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squamous cell carcinoma, oral squamous cell carcinoma, gastric

cancer, colorectal cancer, and breast cancer (52–72). The biological

roles of CD147 in different cancers are shown in Table 1.
CD147 promotes HCC invasion
and metastasis

Tumor invasion relies on a complex mechanism that includes

cell adhesion, migration, and stromal degradation. CD147

enrichment on the surface of tumor cells is an important

regulator of tumor mesenchymal interactions, as it stimulates the

neighboring mesenchyme to promote synthesis of several MMPs

(mainly MMP-2,9). These enzymes degrade the extracellular matrix

composed of collagen, elastin, adhesion proteins and proteoglycans,

thereby providing conducive conditions for cell metastatic

movement (73–75). Previous studies have shown that CD147’s

extracellular N-terminal region is critical for MMP induction (73,

76). The epithelial-mesenchymal transition (EMT) is a key

developmental program that is often activated during cancer

invasion and metastasis. Ru et al. (77) demonstrated that

CD147 plays an important role in invasion by promoting EMT of

hepatocytes through the TGF-b signaling pathway (Figure 2).

Cell motility plays a crucial role in tumor invasion andmetastasis.

Notably, CD147 promotes HCC invasion and metastasis through

several different pathways, including integrin-mediated FAK-paxillin,

FAK-PI3K-Ca2+, RhoA/ROCK, WAVE2, Rac1 and MAPK signaling

pathways (Figure 2). Studies have shown that CD147 co-localizes

with integrin a3b1 and a6b1 in hepatocellular carcinoma cells and

mediates FAK-paxillin as well as FAK-PI3K-Ca2+ signaling pathways

through their interaction to promote both invasive and metastatic

potential of HCC cells (75, 78). Binding of CD147 to the integrin b1
subunit competitively prevents its binding to the GRGDS peptide,

leading to cytoskeletal rearrangement (47). Conversely, CD147

inhibits the RhoA/ROCK signaling pathway and amoeboid motility

in HCC cells by attenuating annexin II phosphorylation. Moreover, it

also promotes localization of the Verprolin homolog 2 (WAVE2)

membrane and activation of Rac1 in HCC cells via the integrin-FAK-

PI3K/PIP3 signaling pathway, thereby contributing to formation of

amoeboid and mesenchymal motility (79). Cui et al. (80)

demonstrated that CD147 dimerization is essential for the
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induction of hepatocellular carcinoma MMPs and cell invasion via

the MAPK pathway. Additional evidence has shown that membrane-

linked protein II promotes HCC invasion and metastasis in vitro by

interacting with CD147 (81).
CD147 promotes HCC angiogenesis

Studies have shown that CD147 is also involved in tumor

angiogenesis, a key component of the tumor microenvironment.

CD147-induced MMP expression in tumor and stromal

compartments subsequently mediates release of biologically active

angiogenic growth factors from stromal binding complexes (82)

(Figure 3). Tang et al. (83) demonstrated that CD147 stimulated

tumor angiogenesis by upregulating VEGF and MMP expression in

tumor and mesenchymal compartments. Results from both in vitro

and in vivo tumor models indicated that tumor CD147 promoted

production of endothelial VEGF soluble isoforms (especially the

most angiogenic ones) and their major receptor VEGFR-2 via

transcription factor HIF-2a (84). In addition, CD147 promotes

capillary-like formation via VEGFR-2 and its ligand VEGF (21). A

disintegrin and metallo-proteinases (ADAM) family of protein

hydrolases is anchored to the cell membrane, is broadly

expressed, evolutionarily conserved, and is the main enzyme

involved in the extramembrane cleavage of molecules (85). It has

been reported that ADAM12 cleaved the extracellular segment of

CD147 and fully bound the free CD147 to the receptor cells, thus

regulating tumor angiogenesis (86). Wu et al. (87)found that

ADAM10 decomposes CD147 to produce cytoplasmic fragments

and promotes HCC development by promoting autophagy.

Remodeling of the tumor microenvironmental matrix by VEGF

and MMPs is essential for angiogenesis. Studies have shown that

CD147 expression is positively correlated with VEGF, MMP-2,

MMP-9 and microvessel density CD34 (MVD-CD34) expression in

HCC tissues (88, 89). Results from in vitro and in vivo experiments

showed that interfering with CD147 expression in mouse

hepatocel lular carcinoma cel ls not only significantly

downregulated MMP-11 and VEGF-A expression at both mRNA

and protein levels, but also suppressed invasiveness, adhesion and

metastasis to lymph nodes (90). Another study demonstrated that

Kaposi’s sarcoma-associated herpes virus (KSHV) promotes
TABLE 1 The biological roles of CD147 in different cancers.

Cancer type Biological role References

Esophageal Squamous Cell Carcinoma Inhibits proliferation, invasion, and angiogenesis; prognostic predictors; potentially therapeutic target (52–55)

Esophageal Adenocarcinoma Potential biomarkers (56)

Head and Neck Squamous Cell Carcinoma Promote proliferation and metastasis; potential prognostic and treatment biomarker (57, 58)

Oral Squamous Cells Carcinoma Promote proliferation, invasion, angiogenesis; (59–61)

Pancreatic Induced pancreatic cancer cell invasiveness; mediated cellular resistance (62–64)

Gastric cancer Indicator of tumor recurrence and prognosis; promote invasion, angiogenesis (60, 65–67)

Colorectal cancer Promote Invasion; Biomarker (68–70)

Breast cancer Inhibits proliferation, invasion; mediates chemoresistance; predicted prognosis (71, 72)
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invasiveness of fibroblasts and endothelial cells by upregulating

CD147 (91), while enhanced invasiveness of KSHV-infected

endothelial cells was attributed to activation of VEGF through

CD147-dependent PI3K/AKT and MAPK (92). Collectively, these

data indicate that CD147 promotes angiogenesis by directly

regulating secretion of MMP and VEGF on the one hand, and

inducing HCC invasion by activating VEGF through the CD147-

dependent PI3K/AKT and MAPK signaling pathways on the other.
CD147 as a diagnostic biomarker
for HCC

Numerous studies have highlighted the significance of CD147

in tumor progression, thus affirming its role in tumor diagnosis.
Frontiers in Immunology 04
CD147 is overexpressed in a variety of cancers, such as lung, breast,

prostate, stomach, and genitourinary cancers (93–97). Another

study suggested that CD147 may be an important independent

predictor of poor survival in HCC patients, owing to its role in

tumor growth, invasion and angiogenesis (98). The results showed

that the expression of CD147 was positively correlated with

metalloproteinase-2, vascular endothelial growth factor and

microvascular density CD34 in hepatocellular carcinoma patients.

Patients with high CD147 expression had poor survival (98). Given

the important role played by CD147 in tumor cell growth, survival

and invasive metastasis, coupled with its widespread expression in

human malignancies, researchers have employed proteomics

techniques to analyze differential expression of proteins in liver

cancer plasma/serum. Results indicate that CD147 antigen is

specifically highly expressed in the plasma of liver cancer patients.
FIGURE 3

CD147 promotes hepatocellular carcinoma angiogenesis. CD147 enhances production of MMPs and VEGF thereby promoting HCC angiogenesis.
FIGURE 2

CD147 promotes hepatocellular carcinoma invasion and metastasis. CD147 promotes HCC invasion and metastasis mainly through FAK-PI3K-Ca2+,
RhoA/ROCK, FAK-PI3K/PIP3,TGF-b and MAPK signaling pathways.
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Zhu et al. (99) suggested that the higher the expression of CD147 or

the better the degree of tumor differentiation, the longer the survival

of patients with liver cancer, thus an effective therapeutic target for

interfering with or reversing HCC progression. On the other hand,

Wu et al. (100) found that serum soluble CD147 levels were not

only significantly higher in HCC patients than healthy subjects, but

were also associated with tumor size and Child-Pugh classification.

that the authors concluded that detection of soluble CD 147 has

some value in HCC diagnosis. In addition, CD147 expression is

strongly correlated with HCC prognosis. oliver et al. (101)

demonstrated that HCC patients with low CD147 expression had

longer survival. However, a meta-analysis by Peng et al. showed no

correlation between HCC survival and CD147 expression

(102).Taken together, these studies indicate that CD147 plays a

crucial role in HCC progression, and affirm its potential as a

diagnostic biomarker.
CD147 as a therapeutic target
for HCC

The role of CD147 in tumorigenesis has made it a new target for

development of tumor therapies. The basic approach for targeted

therapy entails down-regulating expression of CD147 protein via

RNAi technology (103), small molecule compounds (104), anti-

CD147 monoclonal antibodies (105, 106) or polyclonal antibodies

(107) with the aim of blocking CD147 function. Multiple antigenic

peptide vaccines have also been employed (108). To target CD147,

the therapeutic agent Licartin (generic name (I131) metuximab

injection) was developed as an anti-CD147 monoclonal antibody

HAb18 coupled to the radioisotope I131. Results of a Phase I/II

trials demonstrated that Licartin is safe, thus it was officially

approved for clinical use by the Chinese State Food and Drug

Administration (SFDA, registration number S20050039) (109).

Results from a randomized trial showed that Licartin prevents

HCC recurrence after liver transplantation (110). Despite

Licartin’s efficacy in HCC, its clinical application has been limited

by radioactive I131 component. Wang et al. (111) experimentally

tested four anti-CD147 antibodies in HCC, and found that while 1B

3 and 3B 3 effectively inhibited MMP-2 secretion and cell invasion,

HAb 18 Gedomab 1 and HAb18 Gedomab 2 exhibited opposite

effects. Wang et al. developed an anti-CD147 antibody- HAb 18.

The chimeric antibody cHAb 18 contains variable heavy and light

chains of HAb 18 antibody and a constant region of human IgG 1

g1. The authors found that cHAb 18 treatment not only effectively

suppressed liver tumor metastasis but also prolonged survival in an

in situ HCC mouse model (112). Apart from the anti-CD 147

antibody strategy, researchers have demonstrated that small

molecule (AC-73) inhibitors of CD147 dimerization can suppress

MMP-2 production in hepatocellular carcinoma via the CD147-

ERK-STAT 3-MMP-2 signaling pathway (104). Tseng et al (113).

used chimeric antigen receptor therapy with CAR-transduced T

and NK cells that recognize the surface marker CD147 to effectively
Frontiers in Immunology 05
kill various malignant HCC cell lines in vitro, as well as HCC

tumors in xenograft and patient-derived xenograft mouse models.

These findings support the therapeutic potential of CD147-CAR-

modified immune cells for HCC patients.
Discussion

CD147 is a cell adhesion molecule involved in intercellular and

extracellular matrix interactions. Functionally, it stimulates

secretion of MMP without affecting production of tissue

inhibitors of metalloproteinases (physiological inhibitors of

MMP), thereby altering the collagenolytic balance to activate

MMP (114). Members of the CD147 family widely differ in

molecular weights, depending on the species, tissues and cells

(115–117). Studies have shown that CD147 is not only highly

expressed in HCC, but is also closely associated with its

development (100). Notably, CD147 promotes HCC invasion and

metastasis through integrin-mediated FAK-paxillin, FAK-PI3K-

Ca2+, RhoA/ROCK, WAVE2 and Rac1 signaling pathways. In

addition, CD147 can induce VEGF and MMPs formation to

promote HCC angiogenesis. In this review, we have described the

CD147 structure and its underlying molecular mechanism in HCC

invasion, metastasis and angiogenesis. In addition, we have

highlighted its potential as a diagnostic marker for HCC. HCC

develops due to accumulation of multiple factors and interaction of

multiple mechanisms. In addition, CD147 plays a role in the

immune infi l trat ion or immune escape of the tumor

microenvironment. Chen et al (118). showed that CD147

regulates anti-tumor CD8 T cell responses to promote tumor

immune escape. In recent years, extracellular vesicles (EVs) have

been extensively studied. Study finds CD14-positive EVs are a novel

biomarker of HCC and cholangiocarcinoma liquid biopsy that

permit a non-invasive assessment of the presence and possible

extent of these cancers in patients with advanced liver diseases

(119). Yang et al (120). noted that immune cells- derived EVs

containing integrin aMb2 or CD147 may facilitate HCCmetastasis.

Currently, there is no effective therapy available to treat HCC.

Sorafenib is a widely used first-line standard agent for the treatment

of advancedHCC, but has been shown to have low efficacy and severe

side effects (121). Opdivo, a PD-1 blocker, has been approved by the

U.S. Food and Drug Administration as a second-line treatment

strategy for HCC patients previously treated with Sorafenib (122).

CD147 is being investigated as a new target for HCC treatment. Anti-

CD147 monoclonal antibody-targeted therapy for HCC is a

promising strategy. Cost of use and security is a major challenge.

Overcoming these problems will make CD147 prominent in the

treatment of HCC. Notably, prognosis of HCC patients has seen little

improvement in the last two decades, possibly due to limited

information on the molecular mechanisms underlying its

progression. Urgent elucidation of these mechanisms is imperative

to future development of novel and effective therapeutic strategies

and reliable diagnostic biomarkers for HCC patients.
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