
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Junji Xing,
Houston Methodist Research Institute,
United States

REVIEWED BY

Juli Bai,
The University of Texas Health Science
Center at San Antonio, United States
Jin Young Huh,
Seoul National University,
Republic of Korea

*CORRESPONDENCE

Dan Gao

dangao@xjtu.edu.cn

†These authors have contributed equally to
this work

SPECIALTY SECTION

This article was submitted to
Molecular Innate Immunity,
a section of the journal
Frontiers in Immunology

RECEIVED 30 January 2023
ACCEPTED 04 April 2023

PUBLISHED 19 April 2023

CITATION

Li X, Ren Y, Chang K, Wu W, Griffiths HR,
Lu S and Gao D (2023) Adipose tissue
macrophages as potential targets for
obesity and metabolic diseases.
Front. Immunol. 14:1153915.
doi: 10.3389/fimmu.2023.1153915

COPYRIGHT

© 2023 Li, Ren, Chang, Wu, Griffiths, Lu and
Gao. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 19 April 2023

DOI 10.3389/fimmu.2023.1153915
Adipose tissue macrophages as
potential targets for obesity and
metabolic diseases

Xirong Li1†, Yakun Ren1†, Kewei Chang1,2,3, Wenlong Wu1,
Helen R. Griffiths4, Shemin Lu1,2,5 and Dan Gao1,2,3*

1Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong
University Health Science Center, Xi’an, China, 2Key Laboratory of Environment and Genes Related to
Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China, 3Department of Human Anatomy,
Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Center,
Xi’an, China, 4Swansea University Medical School, Swansea University, Swansea, United Kingdom,
5Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong
University Health Science Center, Xi’an, China
Macrophage infiltration into adipose tissue is a key pathological factor inducing

adipose tissue dysfunction and contributing to obesity-induced inflammation

and metabolic disorders. In this review, we aim to present the most recent

research on macrophage heterogeneity in adipose tissue, with a focus on the

molecular targets applied to macrophages as potential therapeutics for

metabolic diseases. We begin by discussing the recruitment of macrophages

and their roles in adipose tissue. While resident adipose tissue macrophages

display an anti-inflammatory phenotype and promote the development of

metabolically favorable beige adipose tissue, an increase in pro-inflammatory

macrophages in adipose tissue has negative effects on adipose tissue function,

including inhibition of adipogenesis, promotion of inflammation, insulin

resistance, and fibrosis. Then, we presented the identities of the newly

discovered adipose tissue macrophage subtypes (e.g. metabolically activated

macrophages, CD9+ macrophages, lipid-associated macrophages, DARC+

macrophages, and MFehi macrophages), the majority of which are located in

crown-like structures within adipose tissue during obesity. Finally, we discussed

macrophage-targeting strategies to ameliorate obesity-related inflammation

and metabolic abnormalities, with a focus on transcriptional factors such as

PPARg, KLF4, NFATc3, and HoxA5, which promote macrophage anti-

inflammatory M2 polarization, as well as TLR4/NF-kB-mediated inflammatory

pathways that activate pro-inflammatory M1macrophages. In addition, a number

of intracellular metabolic pathways closely associated with glucose metabolism,

oxidative stress, nutrient sensing, and circadian clock regulation were examined.

Understanding the complexities of macrophage plasticity and functionality may

open up new avenues for the development of macrophage-based treatments for

obesity and other metabolic diseases.
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1 Introduction

Obesity has become a global pandemic, and its prevalence is

increasing at an alarming rate (1). The rise in the prevalence of

obesity significantly increases the risk of chronic metabolic diseases,

such as cardiovascular disease, diabetes, hypertension, and cancer,

and have a detrimental impact on both health and quality of life.

Clarifying the pathogenesis of obesity is crucial for the prevention,

treatment, and management of chronic metabolic diseases

associated with obesity.

Obesity is characterized by an increase in the accumulation of

macrophages in adipose tissue, which is accompanied by adipose

tissue dysfunction, such as reduced adipogenesis and lipid storage

capacity, adipocyte necrosis, inflammation, insulin resistance, and

fibrosis (2). Adipose tissue stores excess energy in two ways:

adipocyte hypertrophy and proliferation. Adipocyte proliferation

is the healthy development of adipose tissue driven by preadipocyte

proliferation and differentiation, whereas adipocyte hypertrophy is

a pathological expansion of existing adipocytes with increased lipid

storage and is closely related to adipocyte dysfunction (3).

Hypertrophic adipocytes secrete a large number of chemokines,

recruit immune cells, particularly macrophages, and cause chronic

low-grade inflammation, insulin resistance, and the release of a

large amount of free fatty acids into the circulation, eventually

leading to obesity-related metabolic disorders (4).

A growing body of studies have indicated that innate immune

cells play an important role in modulating adipose tissue activities

during obesity (5). Among these cells, macrophages were the first and

most important immune cells discovered infiltrating adipose tissue

during obesity (6, 7). Macrophage infiltration has a significant impact

on adipose tissue function and is a major cause of obesity-related

metabolic diseases. Therefore, understanding the molecular

mechanisms governing adipose tissue macrophages is critical for

the prevention and treatment of obesity and other related metabolic

diseases. Here, we review the current literature on adipose tissue

macrophages with a particular emphasis on the heterogeneity and

polarization of these cells during obesity in adipose tissue. We discuss

the fundamental roles of macrophages in adipose tissue, highlighting

macrophage-targeting strategies and assessing their therapeutic

potential for treating obesity and related metabolic diseases.
2 Adipose tissue macrophages

2.1 Increased macrophage recruitment to
adipose tissue in obesity

The primary sources of adipose tissue macrophages are tissue-

resident macrophages and monocyte-derived recruited

macrophages. Unlike most tissue-resident macrophages, which

are derived from yolk sac primitive precursors and function to

regulate tissue remodeling and maintain tissue homeostasis (8), a

recent fate mapping study revealed that adipose tissue resident

macrophages are derived from definitive embryonic hematopoietic

precursors (9). These resident ATMs are phenotypically F4/

80hiCD11b+CD169+ cells that can be further subdivided into
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three subtypes: MHCIIlow, MHCII+CD11c-, and MHCII+CD11c+.

In response to HFD, the MHCII+CD11c+ ATMs were rapidly

increased in adipose tissue and replenished by bone marrow-

derived monocytes, implying that recruited monocytes are the

major cells contributing to increased ATMs in obesity.

Infiltration of monocyte-derived macrophages into adipose

tissue during obesity was firstly reported in mouse models obesity

and humans in 2003 (6, 7). The infiltrated macrophages were

derived from bone marrow (7) and were contributed by increased

diapedesis of blood monocytes (10). In contrast, weight loss by

surgery reduced macrophage infiltration in adipose tissue of

patients with obesity (11). Chemokine and its receptor interaction

play crucial roles in the recruitment of circulating monocytes into

adipose tissue during obesity. For example, monocyte

chemoattractant protein (MCP-1 or CCL2), a chemokine

produced in both adipocytes and the stromal vascular (SV)

portion of adipose tissue, is significantly elevated in both blood

and adipose tissue in obesity (12–17). Mice lacking CCL2 (18) or its

receptor, CC chemokine receptor 2 (CCR2) (19) or using CCR2

inhibitor (20, 21), have lower adipose tissue macrophage infiltration

and improved metabolic function in db/db and HFD-induced obese

mice. Conversely, mice overexpressing CCL2 in adipose tissue have

enhanced macrophage infiltration into adipose tissue and an

unfavorable metabolic profile (18, 22). Moreover, mice with

CCR2 deficiency in bone marrow cells or macrophages had lower

macrophage numbers in adipose tissue after high-fat diet (HFD)

feeding, indicating that CCR2 plays a crucial role in macrophage

recruitment into adipose tissue during obesity (23, 24).

In addition to CCL2/CCR2, other chemokines and their

receptors may play a role in the increased macrophage

accumulation in adipose tissue in obesity. For instance, CCL

chemokines (such as CCL3, CCL4, CCL5, CCL7, CCL8, CCL11,

CCL18) and its receptors (such as CCR1, CCR3 and CCR5) have

been linked to increased adipose tissue in obese (25) and human

individuals (26, 27). Indeed, a dual CCR2/5 antagonist significantly

reduces M1 macrophage infiltration into adipose tissue in HFD-

induced obese mice, as well as improving adipose tissue

inflammation and insulin resistance (IR) (28). Furthermore,

CXCL12 produced by adipocytes interacts with its receptor

CXCR4 to mediate macrophage recruitment into adipose tissue

during HFD-induced obesity (29). In addition, other chemokines

such as haptoglobin and C3a have also been reported to mediate

macrophage recruitment into adipose tissue during obesity (30, 31).

These studies taken together have demonstrated the therapeutic

potential of focusing on macrophage recruitment into

adipose tissue.
2.2 Adipose tissue macrophages polarized
to pro-inflammatory phenotype in obesity

Increased macrophage infiltration into adipose tissue forms a

crown-like structure (CLS) around necrotic adipocytes (32, 33). The

number of CLS is strongly correlated with the expression of

inflammatory cytokines like TNF-a (32), indicating that

infiltrating macrophages have a pro-inflammatory effect on
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adipose tissue in obesity. Lumeng et al. used PKH26 dye to label

resident macrophages in adipose tissue and found that newly

recruited adipose tissue macrophages (ATMs) in HFD-induced

obese mice had a pro-inflammatory M1 phenotype (F4/

80+CD11c+), whereas resident macrophages had an alternative

activated M2 phenotype (F4/80+CD206+) (34–36).

Further examination of CD11c+ ATMs from epididymal WAT

(eWAT) revealed a mixed M1/M2 profile that was divided into

three subtypes: resident ATMs as MGL1+CD11c- expressing cells,

CLS-associated MGL1-/CD11c+ ATMs, and MGL1med/CD11c+

ATMs (37). Similar to this work, resident ATMs in human

adipose tissue have been shown to display M2 markers like

CD206 and CD163, but they are also able to produce

inflammatory cytokines (38, 39), indicating that these ATMs are

mixed M1- and M2-polarized. Additionally, the number of ATMs

in subcutaneous and omental adipose tissue of patients with obesity

is higher than in lean subjects (40, 41). These findings collectively

indicate that adipose tissue remodeling in obesity is connected to

both an M1 and M2 progression.

Moreover, macrophage infiltration into adipose tissue during

obesity is preferentially located in visceral adipose tissue in humans

(42–44) and mice (33, 45), implying that visceral adipose tissue is

the major adipose depot harboring the pro-inflammatory

macrophages in obesity. The pro-inflammatory ATMs are one of

the key cell types responsible to produce pro-inflammatory

cytokines such as TNF-a, IL-1b, and IL-6, which contribute to

obesity-related adipose tissue inflammation. In addition to the

recruitment of circulating monocytes into adipose tissue, a local

proliferation of macrophages in CLS also contributes to the

increased ATMs in adipose tissue during obesity (46–48). These

proliferating macrophages express M2 macrophage markers

including CD206 and CD301 and form resident ATMs in the

interstitial space (49). Even though these proliferating

macrophages are M2 phenotype, their presence maintained

adipose tissue inflammation in obese mice even after weight

loss (50).

The accumulation of macrophages in adipose tissue is not only

a defining feature of obesity, but also a major cause of obesity-

related metabolic diseases such as liver steatosis and IR (51–57). As

a result, reducing the number of macrophages in adipose tissue

slows the onset of obesity and improves insulin sensitivity and

glucose metabolism (58, 59), indicating that macrophages in

adipose tissue play crucial roles in the development of obesity and

metabolic disorders.
3 Adipose tissue macrophage
subtypes and functions in
adipose tissue

3.1 Newly identified macrophage subtypes
in adipose tissue

In addition to previously classified pro-inflammatory and

alternatively activated macrophages using F4/80 and CD11c or
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CD206 markers, a new class of ATMs known as M3 ATMs

(CD11c-CD206-MGL1-) that also localize to the CLS and

uniquely express chemokine receptor Ccr7 has been reported

(60). The presence of M3-like ATM suggests that different

pathways may contribute to macrophage inflammation in the

context of obesity. Additionally, another new type of ATM

known as metabolically activated macrophages (MMe) were

reported, which is produced when exposed to high levels of

glucose, insulin, and palmitate. Rather than expressing classical

M1 markers, MMe overexpress ATP binding cassette transporter

(ABCA1), cluster of differentiation 36 (CD36), and perilipin 2

(PLIN2), which are regulated by peroxisome proliferator activated

receptor gamma (PPARg) (61). Moreover, MMe macrophages

accumulated in CLS showed both beneficial and detrimental

effects in response to high-fed diet feeding (62). For example,

during the early stages of HFD-induced obesity, MMe

macrophages increased adipose tissue inflammation by

upregulating inflammatory markers such as TNF-a, IL-6, and IL-

1b, as well as genes involved in lipid metabolism. In contrast,

despite strong expression of pro-inflammatory and lipid

metabolism genes in MMe macrophages, they are more active in

the clearance of dead adipocytes via lysosomal exocytosis, hence

inhibiting ectopic fat accumulation and IR in late-onset HFD-

induced obesity. Mechanistically, TLR2, NOX2 and MyD88 have

been proposed to modulate the positive and negative impact of

MMe macrophages in HFD-induced obesity. Subsequent research

suggested that MMe aggregation in breast adipose tissue may play a

role in the development of triple-negative breast cancer (63).

Recent research using single-cell sequencing has revealed a

much broader range of ATM phenotypes (Figure 1; Table 1). For

example, CD9+ATM, which also localizes in CLS in both mice and

humans, was discovered to contain large amounts of intracellular

lipids in lysosomal-like structures and to express genes associated

with lysosome-dependent lipid metabolism, may have the same

capacity as MMe to clear dead adipocytes via the lysosomal

pathway. However, CD9+ATM is distinct from MMe because it

contains traditional M1/M2 markers like CD206 and CD11b (64).

Adoptive transfer of CD9+ ATM to lean mice leads to the up-

regulation of genes related with obesity, suggesting that CD9+ ATM

may promote the development obesity and metabolic diseases (64).

Triggering receptor expressed on myeloid cells 2 (TREM2), a

pathologically induced immune signaling in Alzheimer’s disease,

metabolic diseases, and cancer, has been found to express in ATMs

(69). A new subtype of macrophages termed as lipid-associated

macrophages (LAM) was discovered in both mouse and human

adipose tissue characterized by TREM2 expression (65). Despite the

fact that mice with TREM2 deficiency had fewer LAMmacrophages

in CLS, they exhibited accelerated obesity with massive adipocyte

hypertrophy, insulin resistance, and hyperlipidemia upon HFD

feeding (65). In addition, single-cell sequencing studies have

shown that CD9+TREM2+ ATMs have more specific surface

markers CD45+CD11b+CD11c+CD9+TREM2+ for better

identification (70). In addition, a new subset of ATMs expressing

Duffy antigen receptors for chemokines (DARC+ ATMs) was also

discovered to be recruited to CLS in eWAT under obesity

conditions (66). DARC+ATMs were generated in response to IL-
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22 stimulation and exhibited high levels of IL-22 receptor and M2-

like anti-inflammatory properties to reduce adipose tissue

inflammation in obesity (66).

Other than CLS, several distinct ATM phenotypes in adipose

tissue have been reported. For instance, in the intercellular space of

adipose tissue, a distinct ATMs population known as “MFehi” with

higher cellular iron content and an iron-recycling gene expression

profile was found (67). These “MFehi” ATMs displayed M2-like

alternatively activation markers such as CD163 and MGL1/2 and

decreased M1 markers (67). As a result, MFehi ATMs can manage

high iron loads by storing iron, regulating iron-handling genes, and

protecting adipocytes from iron overload (68). More research is

needed to characterized these newly discovered macrophage
Frontiers in Immunology 04
subtypes and to determine the potential mechanisms that link

these cells to obesity and related metabolic disorders.
3.2 Role of ATMs in adipose tissue function

The interactions between recruited pro-inflammatory

macrophages and adipocytes are often harmful to the functions of

adipocytes, including adipogenesis and lipid metabolism,

inflammation, and related metabolic dysfunctions (Figure 2). In

contrast, the resident macrophages in non-obese state are

considered metabolically ‘favorable’ ATMs, which play important

role in maintaining adipose tissue homeostasis via clearance of dead
TABLE 1 Newly identified adipose tissue subtypes.

Macrophages
phenotype

Category Location Marker Function Reference

MMe (metabolically
activated macrophages)

Recruited
macrophages

CLS ABCA1, CD36, PLIN2 Removing dead adipocytes through
lysosomal exocytosis

(61)
(62)
(63)

CD9+ macrophages Recruited
macrophages

CLS CD9, LPL, PLIN2, CD63, LAMP2, CD16,
CD206

Promotion of obesity (64)

LAM (lipid-associated
macrophages)

Recruited
macrophages

CLS TREM2, LIPA, LPL, CTSB, CTSL, FABP4,
FABP5, LGALS1, LGALS3, CD9, CD36

Preventing metabolic disorders when
adipocyte homeostasis is lost

(65)

DARC+ macrophages Recruited
macrophages

CLS DARC, Ly6C(low), M2-related marker(high) Anti-inflammation and reducing
immune cell infiltration.

(66)

MFehi macrophages Resident
macrophages

Intercellular
space;
CLS (a small
number)

CD163, TFRC, HO-1, FTL1, FTH1, CP,
SLC40A1, F4/80, CD11c(high), CD206(low)

Coping with iron metabolic disorders (67)
(68)
f

FIGURE 1

ATMs plasticity in adipose tissue. In lean adipose tissue, anti-inflammatory M2-like macrophages are predominant and maintain homeostasis. In
obese adipose tissue, an increase in pro-inflammatory M1 ATMs forms a crown-like structure (CLS) surrounding dead adipocytes. Recent research
has uncovered new macrophage subtypes, particularly in CLS.
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adipocytes. They are also critical for beige adipogenesis and

thermogenesis, which lead to improved metabolic functions

(Figure 2). Here we focus on reviewing the recent literature on

ATMs and major adipose tissue functions.

3.2.1 Role of ATMs in adipogenesis and
lipid metabolism

The differentiation of preadipocytes to adipocytes is essential

for the growth of adipose tissue in obesity. The expansion of

white adipose tissue can dramatically enhance metabolic function

and health. However, when immune cells, particularly pro-

inflammatory macrophages, infiltrate adipose tissue, its potential

to expand is inhibited. In vitro culture of preadipocytes with

macrophage-conditioned medium elicits a pro-inflammatory

response in both murine and human preadipocytes and impairs

their differentiation to adipocytes (71–75), suggesting that

macrophage-secreted factors contribute to its inhibitory effect on

adipogenesis. Among the pro-inflammatory cytokines produced by

macrophages, TNF-a and IL-1b have shown a direct inhibition on

preadipocyte differentiation, however, neither TNF-a nor IL-1b
neutralization reverses the anti-adipogenic effect of macrophage-

conditioned medium (72, 76, 77), suggesting that other soluble

factors could play a role. Wnt5a has been demonstrated to be

expressed in human ATMs and circulating monocytes, and

inhibition of Wnt5a activity in J774A.1 macrophage-conditioned

medium improved mesenchymal precursor cells differentiation into
Frontiers in Immunology 05
adipocytes (78), suggesting that Wnt5a is a possible factor secreted

by macrophages to suppress adipogenesis. Mechanistically, pro-

inflammatory macrophages suppressed PPARg activity in

adipocytes by S-nitrosylation at cysteine 168, resulting in

proteasome-dependent degradation of PPAR and decreased

adipogenesis (79).

Beige adipose tissue is an inducible thermogenic type of adipose

tissue that resides within white subcutaneous adipose tissue in mice

and humans (80). Beige adipocytes can be induced by cold exposure,

b3-adrenergic receptor (b3-AR) agonist, and PPAR ligands (81) via

beige adipogenesis and white adipocytes conversion. Several studies

have found that macrophages are critical players in the formation

and activation of beige adipocytes (82–84). For instance, it has been

demonstrated that pro-inflammatory macrophages directly interact

with beige adipocytes via a4 integrin and VCAM-1, triggering a

persistent inflammatory cycle in adipose tissue and inhibiting beige

adipogenesis in obesity (85). In contrast, cold stimulation results in

the production of the type 2 cytokines IL-4 and IL-13 by eosinophils,

which activate macrophages and promotes the biogenesis of beige

adipocytes (86). Furthermore, a recent study discovered the cytokine

Slit3 secreted from anti-inflammatory macrophages promotesWAT

beiging in response to cold via the sympathetic neuron-adipocyte

signaling axis (87). In line with this discovery, subcutaneous WAT

browning was significantly induced by injecting anti-inflammatory

macrophages in obese mice induced by the HFD (88). However, a

recent study found that conditionally and partially depleting
FIGURE 2

Role of ATMs in adipose tissue. In obese conditions, pro-inflammatory macrophages show detrimental effects on adipose tissue function such as
inhibition of adipogenesis, promoting inflammation, insulin resistance, and fibrosis. The pro-inflammatory cytokines TNF-a and IL-1b and the protein
factor Wnt5a inhibit preadipocyte differentiation when released by pro-inflammatory macrophages. In addition, TNF-a and IL-1b reduce the insulin
sensitivity of adipocytes. Through LPS-TLR4 the LPS-induced CB ligands-CB1 signaling pathways, pro-inflammatory macrophages also aggravate
adipose tissue inflammation. Moreover, macrophages secrete the enzyme DPP4, which causes both hyperglycemia and inflammation. In addition to
inducing preadipocytes to produce abundant ECM, pro-inflammatory macrophages overproduce NO, which increases HIF-1a accumulation and
promotes profibrogenic responses in preadipocytes, resulting in adipose tissue fibrosis. In lean conditions, ATMs are anti-inflammatory and play an
important role in the formation and activation of beige adipocytes. In response to cold stimulation, ATMs polarize to an alternative activation state
and promote the biogenesis of beige adipocytes via macrophage-secreted cytokine Slit3 and a sympathetic neuron-adipocyte signaling axis. Similar
to cold stimulation, b3-AR agonists enhance the conversion of existing white adipocytes into beige adipocytes. Furthermore, b3-AR agonists induce
alternative activation of macrophages to release osteopontin and the PPARg ligands 9-HODE and 13-HODE, which stimulates beige adipocyte
development.
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adipose tissue CD206+ macrophages increased proliferation and

differentiation of beige progenitors in normal and cold stimulated

conditions (89, 90), suggesting that CD206+ ATMs inhibit beige

adipogenesis. This might be as a result of mixed populations of

CD206+CD11c+ and CD206+CD11c- ATMs present in CD206+

macrophages. More research is needed to determine which

subtype has the inhibitory effect on beige adipogenesis. Similar

to cold stimulation, b3-AR agonist is a potent inducer

of the conversion of existing white adipocytes into beige

adipocytes (91). Recent data also point to a role for resident

macrophages in promoting beige differentiation in response to b3-
AR activation through the clearance of dead adipocytes,

the secretion of the chemokine osteopontin to recruit

PDGFRa+CD44+ beige progenitors into subcutaneous adipose

depot, and the production of the PPARg ligands 9-HODE and 13-

HODE via ALOX15 activity (92, 93). Overall, resident ATMs

support beige adipogenesis and offer a potential therapeutic

strategy to enhance metabolic health in obesity. More research is

necessary to test these findings in human settings.

The classical function of adipose tissue is to store surplus energy

as triglyceride during food intake and release free fatty acids during

fasting. Several early in vitro studies reported that LPS-stimulated

macrophages activate the lipolysis of 3T3-L1 adipocytes (94), which

is accompanied by an inhibition of lipoprotein lipase (95) and a

decrease in fatty acids synthesis (96). Moreover, LPS/IFNg-activated
macrophages are related to increased mitochondrial activity in

human adipocytes, indicating that macrophage activation state

may influence adipocyte bioenergetics (97). A recent study

discovered that adipose tissue resident macrophages, rather than

recruited CCR2+ macrophages, have an evolutionarily conserved

role in lipid storage in adipocytes (98). In response to HFD feeding,

these resident macrophages produce higher levels of PDGFcc,

which promotes white adipocyte hypertrophy and hence prevents

ectopic fat deposition in the liver and other tissues. Blocking

PDGFcc reduces lipid accumulation in white adipocytes while

increasing thermogenesis in brown adipocytes, indicating a vital

role of PDGFcc in regulating lipid metabolism. Further study is

needed to evaluate whether pharmacological inhibition of PDGFcc

has therapeutic promise for obesity treatment.

3.2.2 Role of ATMs in inflammation and related
metabolic disorders

Increased ATM accumulation in obesity is one of the key

contributors contributing to obesity-induced inflammation both

locally and systemically. Newly recruited pro-inflammatory

macrophages release a considerable amount of pro-inflammatory

cytokines such as TNF-a, IL-6 and IL-1b and impede insulin

signaling transduction in adipocytes (99–101). Consistently, the

infiltration of pro-inflammatory macrophages precedes the IR in

obese mice in vivo (6, 102), suggesting a causal role for

inflammation in the development of IR in obesity. Insulin-

resistant adipocytes release more free fatty acids and activate

ATMs, resulting in a vicious loop that exacerbates inflammation

via TLR4 (103). Moreover, TLR2 and TLR9 deficiency promotes

HFD-induced adiposity, visceral adipose inflammatory responses,

and IR in mice (104, 105), indicating that TLRs play a significant
Frontiers in Immunology 06
role in adipose tissue inflammation and IR in obesity. LPS derived

from gut microbiota is another potential factor for inducing

inflammatory responses in adipose tissue. On the one hand, LPS

activates ATMs via TLR4 and amplifies inflammation by adipocyte-

macrophage interactions (106). On the other hand, LPS causes

robust productions of endogenous ligands for cannabinoid (CB)

receptors in ATMs (107), which contributes to chronic

inflammation in visceral adipose tissue, hyperglycemia, and IR

(108). Furthermore, CB1 receptor blockage reduced LPS-induced

pro-inflammatory responses in macrophages, alleviated adipose

tissue inflammation and glucose intolerance (108, 109). In

addition, other inflammatory mediators or proteins also

contribute to adipose inflammation in obesity. DPP4, an enzyme

that effectively increases blood glucose levels by degrading incretin

peptides, was found to be more abundant in F4/80+ macrophages in

CLS in adipose tissue than in adipocytes (110, 111). DPP4

inhibition dramatically reduced pro-inflammatory macrophage

migration while producing an anti-inflammatory phenotype shift

in adipose tissue macrophages, reducing obesity-induced

inflammation and IR (112).

Additionally, pro-inflammatory macrophages play an

important role in the development of adipose tissue fibrosis in

obesity, which is another important pathogenic feature of obesity.

Adipose tissue fibrosis is characterized by an increase in the

expression and remodeling of extracellular matrix (ECM) proteins

in WAT (113). The fibrotic deposition in adipose tissue has been

observed as bundles of collagen fibers (Collagen I, III) in

subcutaneous fat and thin fibrous lobule-like bands (Collagen VI)

surrounding adipocytes in omental fat from subjects with obesity

(114, 115). Collagens and fibronectin are expressed more

abundantly in adipose tissue SV fractions than in adipocytes

(114), indicating that SV fractions may be the primary cell types

for fibrotic protein synthesis. Marcelin et al. have investigated the

cellular origins of WAT fibrosis and discovered that pro-fibrotic

cells originate from PDGFR+CD9high cells within adipose tissue SV

fractions (116). Human preadipocytes cultured in vitro with LPS-

activated macrophages had a pro-inflammatory phenotype and

produced abundant ECM consisting of collagen 1, tenascin-C,

and fibronectin (77, 117). Furthermore, macrophages dramatically

increased the levels of ECM breakdown enzymes such as matrix

metalloproteinases in both preadipocytes and adipocytes via the

pro-inflammatory cytokines TNF-a and IL-1b (118, 119). In

contrast to in vitro studies, anti-inflammatory macrophages have

been linked to increased adipose tissue fibrosis in individuals with

IR (115). Mechanistically, TGF-b has been shown to induce

myofibroblast-like cells from adipose tissue progenitor cells

(preadipocytes) treated with ATMs (120). Hypoxia is an

additional essential component contributing to adipose fibrosis.

The expansion of adipose tissue in obesity is associated with adipose

tissue hypoxia, as has been demonstrated in adipose tissue of several

obese mouse models (ob/ob, KKAy, diet-induced) (121–123) and

human subjects with obesity (124). Mechanistically, adipose tissue

hypoxia increases HIF-1a expression and stability, which triggers

profibrogenic transcription in preadipocytes (125). Furthermore,

pro-inflammatory macrophages overproduced NO, which elevated

HIF-1a accumulation and promoted profibrogenic responses in
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preadipocytes, resulting in adipose tissue fibrosis (126). Collectively,

these findings suggest to the possibility of targeting pro-

inflammatory macrophage-mediated inflammatory pathways to

diminish obesity-induced inflammation, IR and fibrosis.
4 Targeting macrophages to improve
metabolic health

Given that ATMs play critical roles in both the onset and

progression of obesity-related metabolic disorders, strategies that

target the phenotypic flexibility of macrophages to fulfill tissue

environment needs have demonstrated great therapeutic promise.

The following is a summary of the prospective treatment targets for

obesity and related metabolic diseases that can be delivered to

macrophages (Table 2; Figure 3).
4.1 Targeting macrophage polarization

ATMs have been shown to negatively modulate insulin action via

CD11c+ pro-inflammatory macrophages (157), indicating that pro-

inflammatory macrophages are a target for the treatment of obesity-

related insulin resistance. Fatty acids are one of the major factors

controlling the activation of ATMs.For example, saturated free fatty

acids/TLR signalling, TNF/TNF receptor signalling induce the

classically activation of macrophages (158–163), while unsaturated

fatty acids like oleic acid, linoleic acid, DHA, and n-3 PUFA induce

alternatively activated phenotype. Furthermore, omega-3 PUFA can

increase lipolysis and fatty acid re-esterification in alternatively

activated macrophages (164). These findings indicate that

consuming unsaturated fatty acids may polarize ATMs to

alternatively activated phenotype, thereby regulating lipid

metabolism or alleviating the symptoms of obesity-related diseases.

Rosiglitazone, a PPARg activator, also encourages alternatively

activated macrophage infiltration into adipose tissue in mice

receiving HFD (165–168). PPARg deficiency in macrophages

promotes the predominance of pro-inflammatory macrophages

and the decrease of alternatively activated macrophages in

adipose tissue in obesity (148, 169), indicating that PPARg is

essential in controlling macrophage alternative activation.

Moreover, an intact IL-4 and IL-13 signaling is required for

maturation of alternatively activated ATMs and reducing diet-

induced obesity and IR in mice (170, 171). However, myeloid

cell-specific knockout of IL4R alpha decreased insulin sensitivity

in lean mice while improving parameters of glucose homeostasis

and partially protecting against adipose tissue inflammation in

obese mice (172), indicating IL-4R signaling likely plays a

significant role in maintaining the alternative activation of

macrophage in lean conditions but not in obesity.

A number of transcription factors have been found to influence

ATMs polarization. For instance, Krüppel-like factor 4 (KLF4) has

been demonstrated to promote monocyte differentiation in vivo

(173). Moreover, KLF4 is strongly induced in alternatively activated

macrophages by STAT6 while being reduced in pro-inflammatory

macrophages by NF-kB inhibition (150). Consistently, KLF4-
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cytokine expression, and myeloid-specific KLF4 deficiency

predisposed mice to diet-induced obesity, glucose intolerance, and

IR (150), indicating a crucial role for KLF4 in regulating

macrophage polarization and maintenance of adipose tissue

homeostasis. Similar metabolic problems were brought on by the

knockdown of the protein known as glucocorticoid receptor-

interacting protein 1 (GRIP1), which acts as a coactivator for

KLF4 (151). Contrarily, nuclear factors of activated T cells

(NFATc3) play a different role in controlling the transcription of

various genes in immune cells. Nfatc3-/- mice showed adipose

tissue macrophage polarization toward alternative activation, which

significantly reduced hepatic steatosis and inflammation in HFD

mice, indicating the potential role of NFATc3 in promoting adipose

tissue inflammation (136). Homeobox A5 (HoxA5), a

developmental transcription factor, has been demonstrated to

support adipocyte differentiation by inhibiting the PKA/HSL

pathway (174). HoxA5 has also been shown to reduce

endoplasmic reticulum stress and inflammatory responses in

adipocytes by blocking the eIF2/PERK signaling pathway (137).

Additionally, Hoxa5 transcriptionally activated the PPARg pathway
to promote alternative activation of macrophage and WAT

browning (137), which in turn alleviated obesity-induced chronic

inflammation. These findings imply that Hoxa5 may represent a

promising therapeutic target for the management of obesity.

Notably, some therapeutic options and drugs have been

developed to treat obesity-related metabolic diseases by regulating

macrophage polarization. For obese patients who have failed to

respond to exercise and dietary changes, bariatric surgery is an

option. Studies have shown that after bariatric surgery, ATMs is

biased toward the alternative activation with an increase of CD163

expression (40). However, subsequent research expressed concern

on this notion, claiming that modifications in CD163-positive cells

do not precisely reflect metabolic improvements following weight

loss (175). Further research into the mechanism of bariatric surgery

is required. Metformin, the most popular anti-diabetic medication,

is crucial for macrophage polarization. Metformin was shown to

decrease pro-inflammatory markers like CD11c and MCP-1 in the

adipose tissue of HFD mice (176). Additionally, in vitro metformin

treatment to pro-inflammatory macrophages improved metabolic

disorders in brown adipocytes (177). Dipeptidyl peptidase-4

(DDP4) inhibitors Linagliptin and Sitagliptin are both used

primarily to control blood glucose levels in patients with type 2

diabetes. These two drugs have been shown to decrease obesity-

induced inflammation and IR by inhibiting pro-inflammatory and

promoting alternative activated macrophages because DDP4 is

largely expressed in pro-inflammatory macrophages and its

expression was significantly increased in obese mice (112, 178).

Similar mechanisms are shared by a number of sodium-glucose

cotransporter 2 inhibitors, including empagliflozin. Through the

phenotypic switch of macrophages to alternative activation in the

liver and WAT, empagliflozin can reduce body weight by inducing

WAT browning and reducing inflammation associated with obesity

(179, 180). In conclusion, targeting macrophage polarization is a

feasible and worthwhile direction that may benefit the vast majority

of patients suffering from metabolic diseases.
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4.2 Targeting macrophage inflammatory
pathways

Adipose tissue inflammation is a major contributor to obesity-

related metabolic diseases such as IR and hepatic steatosis. In

adipose tissue, ATMs play dominant role in producing pro-

inflammatory cytokines, which cause inflammation in obesity.

NF-kB is one of the main masters of inflammatory responses.

IKK is a crucial enzyme that activates NF-kB in myeloid cells.

Mice with myeloid cell-specific IKKb deletion preserved insulin

sensitivity when fed with HFD (127). Furthermore, mice with

hematopoietic cell-specific deletion of TLR4 demonstrated an
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improvement in peripheral insulin sensitivity after HFD feeding,

which is associated with to a notable decrease in macrophage

infiltration and inflammatory cytokines in both adipose tissue and

the liver (128). MyD88, a TLR4 downstream signaling protein, is

crucial in triggering inflammatory response. MyD88 deficiency in

myeloid cells reduced macrophage infiltration to adipose tissue and

their polarization to pro-inflammatory phenotype (130). Along

with this, there is a considerable reduction in atherosclerosis,

insulin resistance, and systemic inflammation induced by HFD

feeding. Another typical intracellular signaling protein for TLRs is

TNF receptor-associated factor 3 (TRAF3), which is anti-

inflammatory in lean but pro-inflammatory in obese conditions.
TABLE 2 Targeting macrophages for improving metabolic health.

Molecular targets Approach Phenotype

IKKb Myeloid cell specific IKKb deletion (127) ↓ IR after HFD.

TLR4 Hematopoietic cell specific TLR4 deletion (128) ↓ IR, ↓adipose and liver inflammation

Fas Myeloid/hematopoietic cell-specific Fas deletion (129) ↓ skeletal muscle IR, no effect on inflammation in liver and AT.

MyD88 Myeloid cell-specific MyD88 deletion (130) ↓ atherosclerosis, IR, and systemic inflammation after HFD.

TRAF3 Myeloid cell-specific TRAF3 deletion (131) ↓inflammation and IR in HFD-obese mice; ↑ inflammation in liver and
adipose in lean mice.

ERV1 Myeloid cell-specific overexpression (132) ↓adiposity and inflammation after HFD.

NOX2 Myeloid cell-specific NOX2 deletion (133) ↓adiposity and adipose inflammation

HIF1a Myeloid cell-specific HIF1a deletion (134) ↓systemic IR and inflammation after HFD

HO-1 HO-1+/- mice (135) ↓adiposity, adipose inflammation, and IR after HFD

NFATc3 NFATc3-/- mice (136) ↓hepatic steatosis and inflammation after HFD

HoxA5 HoxA5 overexpressed mice (137) ↓adiposity and inflammation after HFD

Insulin receptor
(IR)

Mice with macrophage IR deletion (138) ↓IR after HFD

PTPB1 Macrophage PTPB1 deletion (139) ↓IR, liver damage and chronic inflammation

IRS2 Mice with macrophage IRS2 deletion (140) ↓adiposity and glucose intolerance after HFD

mTORC1 Myeloid cell-specific TSC1 deletion to constitutively activate mTROC1
(141)

↓obesity, glucose intolerance, and AT inflammation after HFD

SIRT1 Myeloid cell-specific SIRT1 deletion (142–145) ↓glucose tolerance, ↑ liver steatosis and AT inflammation

TREM2 TREM2 overexpressed mice (146) ↑AT inflammation, adiposity, IR after HFD.

Catalase Global catalase deficiency (147) ↑oxidative stress, inflammation, and IR

PPARg Skeletal muscle and liver specific PPARg depletion (148, 149) ↑IR in muscle and liver.

KLF4 Myeloid cell-specific KLF4 deletion (150) ↑adiposity, glucose intolerance, and IR after HFD

GRIP1 Myeloid cell-specific GRIP1 deletion (151) ↑ adipose inflammation, hyperglycemia, and IR

ATG7 Myeloid cell-specific ATG7 deletion (152) ↑adipose inflammation and hyperglycemia.

PDK1/FoxO1 Pdk1 deletion in macrophages; constitutive activation of nuclear
Foxo1 (153)

↑ adipose inflammation and IR

Estrogen receptor a
(ERa)

Macrophage ERa deletion (154) ↑adiposity, IR and atherosclerotic lesion area

SIRT6 Myeloid cell specific SIRT6 deletion (155) ↑ adipose and liver inflammation and IR

PER1/PER2 Myeloid cell-specific deletion of core clock genes Period1 (PER1) and
Period2 (PER2) (156)

↑adipose inflammation and IR after HFD.
IR, insulin resistance; HFD, high-fat diet; ↑ increase; ↓ reduce.
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This is supported by research showing that myeloid cell-specific

TRAF3 deletion reduced the number of macrophages in eWAT, as

well as IR and the expression of pro-inflammatory cytokines in the

liver and adipose tissue of obese mice (131). In contrast, TRAF3

deletion increased the expression of pro-inflammatory cytokines in

the liver and adipose tissue of lean mice. Moreover, activation of the

Fas signaling pathway may also be a crucial element of the

inflammatory response. In HFD-induced obese mice, ob/ob mice,

and mice acutely treated LPS, myeloid/hematopoietic cell-specific

Fas-depletion preserved skeletal muscle insulin sensitivity, which

was contributed by the decreased TNF-a levels in circulation (129).

However, there was no difference in immune cell infiltration or local

cytokine expression in adipose, liver, or skeletal muscle, indicating

that the protective role of myeloid Fas depletion is more closely

linked to a reduction of systemic inflammation.

Contrary to the inflammatory triggers listed above, it has

been shown that TLR4 signaling from the triggering receptor

expressed on myeloid cells 2 (TREM2) negatively modulates the
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inflammatory response in macrophages (181). A recent study has

found that TREM2 may be involved in the inflammatory

response in adipose tissues. Following HFD feeding, mice with

TREM2 overexpression showed elevated macrophage and T cell

recruitment into adipose tissue as well as increased adiposity, IR,

and hepatic steatosis (146). These findings suggest that TREM2 acts

as a novel regulator of adipogenesis and that inhibiting TREM2

signaling may be a therapeutic target for obesity and IR. To fully

understand the underlying mechanisms of TREM2 in regulating the

inflammatory response in adipose tissues, additional research on

macrophage-specific deletion of TRME2 is required. Moreover,

endogenous lipids known as specialized pro-resolving mediators

(SPMs), which include resolvins, protectins, and maresins, mediate

the resolution of inflammation (182). Mice overexpressing the

human resolvin E1 receptor (ERV1) in myeloid cells displayed

reduced adiposity, hepatic and adipose inflammation, and

hyperglycemia induced by HFD (132). Resolvin E1, a natural

ERV1 agonist, administration replicated the pro-resolving effects
D
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FIGURE 3

Targeting macrophages for improving metabolic health. (A) Targeting macrophage polarization. In HFD-induced obesity, transcription factors NFATc3,
KLF4 and its coactivator GIRP1 enhance M1 macrophage polarization and infiltration into adipose tissue, inflammation, and insulin resistance. HoxA5
and PPAR, on the other hand, increase M2 macrophage polarization and thereby ameliorate obesity-induced inflammation and insulin resistance.
(B) Targeting macrophage inflammatory pathways. TLR4-MyD88-IKK signaling and TRAF3 activation enhance adipose tissue M1 macrophage infiltration,
inflammation, and IR in obesity via NF-B. On contrary, overexpression of ERV1 in macrophages reduces adiposity, hepatic and adipose inflammation, and
hyperglycemia caused by HFD. (C) Targeting macrophage ROS modulating pathways. NOX2, HIF-1a, and HO-1 in macrophages increase obesity-
induced adiposity, inflammation, and insulin resistance, whereas catalase inhibits inflammation via increasing M2 macrophage polarization. (D) Targeting
macrophage metabolic pathways. The stimulation of macrophage insulin pathways such as IR-IRS2 and PDK1-FoxO1 signaling promotes HFD-induced
obesity and insulin resistance. PTP1B, an insulin signaling negative regulator, induces IR by lowering IL-10. In contrast, mTORC1 activation improves M2
macrophage polarization and protects mice from HFD-induced obesity, inflammation, and insulin resistance. In addition, the ATG7-mediated autophagy
pathway reduces CLS numbers and adipose tissue inflammation in obesity. Furthermore, other metabolic pathways regulated by ERa, SIRT1 and SIRT6
enhance M2 macrophage polarization, reducing inflammation and IR in obesity.
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obtained from ERV1 overexpression. This protective metabolic

impact is in part explained by systemic activation of resolution

programs leading to increased synthesis of specialized pro-resolving

mediators. Taking together, targeting inflammatory pathways in

macrophages offers a great potential for controlling adipose tissue

inflammation and the ensuing metabolic disorders induced

by obesity.
4.3 Targeting reactive oxygen species
modulating pathways in macrophages

Oxidative stress and chronic inflammation are the important

underlying factors for obesity-associated metabolic diseases. The

imbalance between the oxidative and anti-oxidant systems of the

cells and tissues results in the overproduction of oxygen free

radicals and reactive oxygen species (ROS). Oxidative stress

increases lipid peroxidation products, protein carbonylation

which leads to cellular dysfunction. As the NADPH oxidase

catalytic subunit, NOX2 has been demonstrated to be involved in

obesity-induced IR, hyperlipidemia, and liver steatosis (183). Mice

lacking myeloid-NOX2 showed reduced adiposity, adipose

inflammation, and macrophage infiltration compared to controls

when given a 16-week HFD diet (133). These results support the

idea that NOX2 signaling in macrophages plays a role in the

pathogenesis of obesity-induced metabolic disorders. Potentially,

obesity may be reduced by targeted suppression of monocyte/

macrophage NADPH oxidase in adipose tissue to maintain

metabolic function.

Hypoxia is also a factor in the increased oxidative stress

associated with obesity. The transcription factor hypoxia

inducible factor-1 (HIF-1) regulates the expression of numerous

hypoxic responsive genes by nuclear translocation and mediates

adaptive responses to oxidative stress. HIF-1a has been

demonstrated to contribute to oxidative stress and fibrosis in

obese people (184). Additionally, macrophages in CLS and

adipocytes are both hypoxic and inflammatory (185). In fact,

mice with myeloid-specific HIF-1a deletion had enhanced

adipose tissue vasculature development, which mitigated systemic

IR and HFD-induced inflammation (134). Furthermore, a recent

study identified interleukin-1 receptor-associated kinase M as the

mechanism underlying HIF-1a-induced adipose tissue dysfunction

in obesity (186), supporting the notion that HIF-1a in myeloid cells

is crucial to obesity-related pathological growth of adipose tissue

and systemic IR.

Additionally, heme oxygenase-1 (HO-1) is a stress-inducible

enzyme that is crucial in several pathophysiological conditions,

particularly inflammation and oxidative damage. Heme oxygenase

(HO-1) expression was highly induced in the visceral adipose tissue,

especially the SV fraction of HFD-fed mice. Myeloid HO-1

haploinsufficiency attenuated HFD-induced adiposity, adipose

inflammation, and IR, due to impaired macrophage migration

toward adipose tissue and reduced angiogenesis (135).

Mechanistically, HO-1+/- macrophages displayed decreased

chemoattractant-induced p38 phosphorylation and focal adhesion
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kinase expression (135). These findings point to a unique role of the

myeloid cell HO-1 in adipose macrophage infiltration and IR

development during obesity.

In contrast to the preceding factors, catalase, an important

oxidative stress regulator, has been shown to control ATM

polarization under both resting and metabolic stress conditions.

Global catalase deficiency or use of the catalase inhibitor 3-

aminotriazole causes oxidative stress, increased inflammation and

IR in both lean and HFD-induced obese mice (147). Catalase

inhibition increased pro-inflammatory macrophage accumulation

but decreased alternatively activated macrophage accumulation in

eWAT, indicating that endogenous catalase may be a critical

regulator of obesity-related inflammation and IR.
4.4 Targeting macrophage metabolic
pathways

Obesity-associated metabolic problems appear to be caused by a

combination of metabolic endotoxemia and metabolic stress

induced by chronic exposure to excessive amounts of nutrients.

Because immune cell metabolism and function are inextricably

connected, addressing the different metabolic pathways of

macrophages could provide a unique opportunity to modify its

phenotype and subsequent biological roles in obesity.

4.4.1 Insulin pathway as a target
Despite previous research, the main impact of macrophage

insulin action on obesity and related metabolic disorders is still

debated. Mice lacking macrophage insulin receptor were protected

from the onset of obesity-related IR after HFD feeding (138). This

protection was accompanied by lower macrophage counts in WAT

and serum tumor TNF-a levels, which reflect a marked decrease in

the local and systemic inflammation linked to obesity. These findings

suggest that insulin action in myeloid cells plays an unexpectedly

important role in regulating macrophage invasion into WAT and the

development of obesity-associated IR. In line with this study, mice

with macrophage insulin receptor substrate 2 (IRS2) deletion

demonstrated protection from HFD-induced obesity and glucose

intolerance due to increased energy expenditure via enhanced BAT

activity and WAT beiging (140). Additionally, IRS2-deficient

macrophages exhibited a transcriptional profile that was anti-

inflammatory (140), indicating a crucial role for macrophage IRS2

signaling in ATM polarization and energy homeostasis. These

findings may open therapeutic opportunities for the treatment of

obesity. However, protein tyrosine phosphatase-1B (PTP1B), an

intracellular protein that inhibits insulin and leptin signaling, has

been shown to promote inflammation caused by obesity. Mice

deficient in macrophage PTP1B displayed improved glucose and

insulin tolerance, reduced liver damage and chronic inflammation

after HFD feeding (139). The beneficial effect of PTP1B deletion in

macrophages is due to increased IL-10 levels, which are inversely

related to serum insulin and alanine transferase levels. These findings

suggest that inhibiting myeloid PTP1B could be used to treat obesity-

related inflammation and diabetes.
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4.4.2 Nutrient sensing pathways as a target
Many studies have been conducted on the function of mTORC1

in obesity and associated inflammation. These studies have

demonstrated the link between mTORC1 activation and obesity.

Despite having no impact on the HFD-induced obesity,

pharmacological mTORC1 inhibition by rapamycin worsened the

inflammation and glucose intolerance, as shown by the rise in adipose

tissue pro-inflammatory macrophages and elevated mRNA levels of

pro-inflammatory cytokines such as TNF-a, IL-6, and MCP-1 (187).

Additionally, macrophages derived from bone marrow exhibited pro-

inflammatory phenotype as a result of in vitro mTORC1 inhibition

(187). These results suggest that mTORC1 activity is a key regulator

of macrophage plasticity and inflammation in adipose tissue. To

further investigate the role of myeloid cell mTORC1 activation in

obesity-induced inflammation, mice with myeloid cell specific TSC1

deletion and thus constitutive mTORC1 activation were generated.

Mice lacking Tsc1 in macrophages exhibited protection from HFD-

induced obesity, glucose intolerance, and adipose tissue inflammation

(141). This protection was accompanied by mTORC1-dependent

alternative activation of macrophages, indicating a protective role for

mTORC1 activation in HFD-induced obesity and metabolic

disorders. Unlike mTORC1, myeloid cell deficiency of mTORC2

obtained by Rictor deletion had no impact on HFD-induced obesity,

adipose tissue inflammation, or systemic IR (188). However, mice

lacking Rictor showed increased susceptibility to LPS-induced septic

shock, indicating that mTORC2 is more important in diseases

associated with severe inflammation than obesity-induced chronic

low-grade inflammation.

Autophagy, a crucial cellular response pathway for sensing

nutrient levels, is essential for cell survival and metabolism. When

bred to ob/+mice to induce metabolic stress, mice with myeloid cell-

specific deletion of autophagy-related 7 (ATG7) displayed increased

CLS numbers, activated NLRP3 inflammasome and IL-1b
production in adipose tissue, as well as hyperglycemia (152). This

was attributed to mitochondrial dysfunction in autophagy-deficient

Macrophages, suggesting a critical role for macrophage autophagy in

regulating adipose inflammation and insulin sensitivity in obesity.

As one of the key pathways regulating glucose and energy

homeostasis, the 3-phosphoinositide-dependent protein kinase 1

(PDK1)/forkhead transcription factor (FoxO1) pathway has also

been investigated in adipose tissue macrophages. PDK1 deletion in

macrophages resulted in increased pro-inflammatory macrophages

in adipose tissue and IR, which was reversed by inactivating nuclear

FoxO1 (153). Furthermore, constitutively activating nuclear FoxO1

increased pro-inflammatory macrophages in adipose tissue via

CCR2 and IR on HFD (153). Accordingly, PDK1 inhibits FoxO1

to regulate macrophage infiltration, and the PDK1/FoxO1 pathway

in macrophages is essential for regulating macrophage polarization

and insulin sensitivity in obesity.

Additionally, estrogen receptor alpha (ERa) plays a significant
role in the control of glucose homeostasis (189). Even with a normal

diet, mice with myeloid-specific ERa deletion displayed increased

adiposity, IR, and atherosclerotic lesion area (154). Moreover, ERa
deficiency reduced the response of isolated macrophages to IL-4-

mediated alternative activation but promoted the inflammatory
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response to palmitate (154). This suggests that macrophage ER is

important for suppressing inflammation and maintaining insulin

sensitivity, making it a potential therapeutic target to combat

obesity and IR.

4.4.3 Sirtuins as a target
Myeloid cell Sirtuin 1 (SIRT1) has been shown to play a

protective role in studies of metabolic diseases caused by obesity.

When given an HFD, mice with myeloid cell Sirt1 deletion exhibited

pro-inflammatory macrophage polarization in adipose tissue and

increased adipose tissue macrophage hypoxia and inflammatory

response (142–144), which impaired glucose tolerance and

exacerbated liver steatosis (143, 145). In line with this, dietary

quercetin has been demonstrated to reduce macrophage infiltration,

control macrophage polarization, and regulate inflammation

through the AMPK1/SIRT1 pathway, resulting in a reduction in

HFD-induced IR and an increase in glucose uptake in adipose tissue

(190). Similar to SIRT1, myeloid cell-specific SIRT6 knockout mice

displayed increased pro-inflammatory macrophage infiltration in

adipose and liver, as well as decreased insulin sensitivity via the NF-

kB/STAT3 signaling pathway (155). These findings indicate that

SIRT1 or SIRT6 in macrophages may be potential targets for

combating obesity-induced tissue inflammation and IR.

4.4.4 Circadian pathways as a target
Numerous studies have linked metabolic disorders like obesity

to circadian clocks. Circadian clock dysregulation induces pro-

inflammatory macrophages and potentiates adipose tissue

inflammation in mice with Period1 (PER1) and Period2 (PER2)

deletion in macrophages, according to a previous study (156). High

MCP-1 levels in mice with myeloid cell-specific PER1/PER2

disruption attracted pro-inflammatory macrophage infiltration

and increased inflammation and IR in HFD-induced adipose

tissue (156). Mechanistically, PPARg2 levels were decreased in

PER1/2-disrupted macrophages and restoration of PPARg2 levels

reduced the infiltration of pro-inflammatory macrophages in

adipose tissue, suggesting that PPARg may link the molecular

clock genes and obesity-related inflammation.
5 Concluding remarks and
perspectives

Increased ATMs are the major contributor to adipose tissue

inflammation in obesity. Efforts have been made to target

macrophage recruitment to improve metabolic health and have

shown a great promise in obese mouse models. For instance,

blocking CCL2-CCR2 has been shown to reduce macrophage

recruitment in adipose tissue and mitigated the obesity-induced

inflammation and IR. Moreover, a dual CCR2/CCR5 antagonist

reduced macrophage-mediated inflammation and prevented IR,

providing a therapeutic potential for metabolic diseases linked to

obesity. Another promising strategy is to promote the polarization

of ATMs toward alternative activation. Several transcription factors,
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including PPARg, KLF4, and HoxA5, have been shown to promote

alternative activation of macrophages in adipose tissue and could be

potential pharmacological targets. Additionally, strategies at

targeting myeloid TLR4/NF-kB-mediated inflammatory pathways,

ROS generating enzyme NOX2 and hypoxia adaptation factor

HIF1a, and factors regulating glucose metabolism also appear to

have a positive impact (Table 2; Figure 3). Further research is

needed to validate the findings of mouse studies in humans.

The recent single cell RNA-sequencing studies have identified a

broad spectrum of ATM subtypes, suggesting a heterogeneity and

functional plasticity of ATMs in obesity. It remains to be determined

the differences in the development, phenotype, and function of these

newly discovered macrophages within adipose tissue. Also,

understanding the regulatory factors and intracellular pathways

that underpin functional differences between subtypes would

provide new molecular targets. Finally, the development of new

technologies that can target specific macrophage subtypes would

considerably boost the translational potential of the aforementioned

findings for the treatment of obesity and metabolic diseases.
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