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Eosinophils are bone marrow-derived granulocytes that, under homeostatic

conditions, account for as much as 1-3% of peripheral blood leukocytes.

During inflammation, eosinophils can rapidly expand and infiltrate inflamed

tissues, guided by cytokines and alarmins (such as IL-33), adhesion molecules

and chemokines. Eosinophils play a prominent role in allergic asthma and

parasitic infections. Nonetheless, they participate in the immune response

against respiratory viruses such as respiratory syncytial virus and influenza.

Notably, respiratory viruses are associated with asthma exacerbation.

Eosinophils release several molecules endowed with antiviral activity, including

cationic proteins, RNases and reactive oxygen and nitrogen species. On the other

hand, eosinophils release several cytokines involved in homeostasis maintenance

and Th2-related inflammation. In the context of SARS-CoV-2 infection,

emerging evidence indicates that eosinophils can represent possible blood-

based biomarkers for diagnosis, prognosis, and severity prediction of disease. In

particular, eosinopenia seems to be an indicator of severity among patients with

COVID-19, whereas an increased eosinophil count is associated with a better

prognosis, including a lower incidence of complications and mortality. In the

present review, we provide an overview of the role and plasticity of eosinophils

focusing on various respiratory viral infections and in the context of viral and

allergic disease comorbidities. We will discuss the potential utility of eosinophils

as prognostic/predictive immune biomarkers in emerging respiratory viral

diseases, particularly COVID-19. Finally, we will revisit some of the relevant

methods and tools that have contributed to the advances in the dissection of

various eosinophil subsets in different pathological settings for future

biomarker definition.
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1 Introduction

Eosinophils are a rare subset of granulocytes first observed in the

peripheral blood by Wharton Jones in 1846 and subsequently named

by Paul Ehrlich in 1879, based on their intracellular granules intensely

stained by the acidophilic dye eosin. The role of eosinophils in the

pathogenic processes was discovered only in 1922 (1), and it is

currently recognized that these cells are involved in host defense,

playing multiple roles in both innate and adaptive immunity (2), as

well as in tissue damage and airway remodeling (3).

Eosinophils have been traditionally associated with allergic

diseases, such as asthma, and parasitic infections (4–6), where these

cells are able, respectively, to modulate the immune response and

contribute to parasite destruction through the release of their granule-

derived content (7). However, in recent years, this concept has been

revised, and eosinophils are known to play a role in a wide variety of

important biological processes, including regulationof homeostasis (8,

9), immune maintenance (10), glucose metabolism in adipose tissue

(11), tissue regeneration (12, 13), autoimmunity (14), host defense

against bacterial and viral infections (15–17), immune regulation

through T helper 1 (Th1)/T helper 2 (Th2) balance modulation (18,

19) and cancer (20). Eosinophils may have, otherwise, active

participation in several physiopathological mechanisms, such as

exacerbation of inflammation and tissue damage, such as in some

endotypes of asthma, chronic rhinosinusitis with nasal polyps,

eosinophilic gastrointestinal disorders, and hypereosinophilic

syndromes (14, 21, 22). Additionally, eosinophils express MHC

Class II and co-stimulatory molecules and can act as antigen

presenting cells (APCs) stimulating T cell responses in various

compartments (23–26).

Given the sharing of target organs between respiratory allergies

and respiratory viral infection diseases, in the present review we will

also discuss the role of eosinophils in comorbidity conditions. In

particular, we will focus on emerging or re-emerging respiratory

viral infections such as severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2), the cause of the COVID-19

pandemic, and influenza viruses that continue to pose significant

global public health threats, highlighting the relevance of using

eosinophil counts as immune/clinical biomarkers.
2 General biology of eosinophils:
development, effector mechanisms
and heterogeneity

Eosinophils originate in the bone marrow through a series of

progenitors and mature to the final stage driven by transcription

factors (i.e., GATA-1, C/EBPa, PU.1, and XBP1) and by the action

of cytokines (i.e., IL-3, IL-5 and GM-CSF), which enable their

maturation and migration in the bloodstream. The migration is also

sustained by IL-5 secretion produced by type 2 innate lymphoid

cells (ILC2s), where both ILC2s and eosinophils are activated by

epithelial-derived alarmins, such as IL-33 (27). Once released into

the peripheral blood, eosinophils have a limited life span (∼18
hours) and only a low number of circulating eosinophils can be
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detected (< 450–500 eosinophils/µL) (28). Under homeostatic

conditions, eosinophils rapidly migrate into the adipose tissue,

thymus, lungs, uterus, mammary glands, and particularly into the

gastrointestinal tract, where they are predominantly involved in the

specific physiology of each tissue or organ (29–32). In response to

inflammatory stimuli to the chemokines CCL11 (eotaxin-1), CCL24

(eotaxin-2), and CCL5 (RANTES), eosinophils migrate to inflamed

tissues or to sites of infection where their survival is prolonged (33).

Eosinophil granules contain cationic proteins, such as major

basic protein (MBP), eosinophil cationic protein (ECP), eosinophil

peroxidase (EPO), and eosinophil-derived neurotoxin (EDN)

endowed with cytotoxic antiparasitic and antibacterial functions.

In addition, eosinophils may release a variety of mediators,

including cytokines, chemokines, enzymes and lipid mediators

either soluble or stored in vesicles, including exosomes, that are

released in the extracellular space in response to a variety of stimuli

(7). Even though eosinophils are frequently associated with Th2

responses, their granules contain preformed IL-2, IL-12, and IFN-g
(34, 35) which are typical Th1 cytokines. Thus, besides exerting a

well-established role in fighting parasites, eosinophils are also

involved in the host defense against fungi, bacteria and viruses (36).

Emerging evidences indicate that the functional plasticity of

eosinophils may reflect the existence of different eosinophil subsets,

supporting the hypothesis that the microenvironment can modulate

the activity of eosinophils (37). In fact, the local microenvironment is

capable of inducing changes in eosinophil phenotype depending on

specific functions of the tissue. Twomain subtypes of eosinophils have

been described based on phenotype, morphology, functions, response

to IL-5 and organ location: resident eosinophils with homeostatic

function (rEos) and inflammatory eosinophils (iEos). In mice, the

normal lung contains rEos described as IL-5-independent

parenchymal Siglec-FintCD62L+CD101lo cells with a ring-shaped

nucleus. During house dust mite (HDM)–induced airway allergy, the

lung contained both rEos and recruited inflammatory eosinophils

(iEos), defined as IL-5-dependent peribronchial Siglec-FhiCD62L–

CD101hi cells with a segmented nucleus (38). The first subset usually

expresses CCR3, Siglec-F, and CD125 (39) while iEos exhibit high

levels of CD11b, F4/80, CD69, and CD44 (40). Therefore, the

heterogeneity of eosinophils in phenotype and function depends on

maturation, location and microenvironment. Similarly, rEos found in

the human lung of non-asthmatic subjects (Siglec-8+CD62L+IL-3Rlo

cells) were phenotypically distinct from the iEos isolated from the

sputum of eosinophilic asthmatic patients (Siglec-8+CD62LloIL-3Rhi

cells) (38). Human circulating eosinophil characterization is described

more in detail below.
3 Eosinophils in respiratory allergies

Respiratory allergies include several syndromes, in which

characteristic acute symptoms represented by asthma and/or

rhinitis are rapidly induced by inhalation of apparently innocuous

airborne substances called allergens. Main pathophysiological

mechanism of respiratory allergy, is represented by upper and/or

lower airways inflammation due to a dysregulated immune response

toward the allergens, based on Th2 lymphocytes (41, 42). Asthma
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phenotype is characterized by bronchial hyperactivity, airflow

obstruction, and airway remodeling, although not all of these clinical

hallmarks of allergic asthma are present with similar frequency and

intensity in all patients. In fact, in the last years, the classification of

asthmaphenotypeshas evolved into several asthmaendotypes, defined

by underlying pathophysiological mechanisms, which might lead to

direct differences in responsiveness to common therapies, such as

inhaled corticosteroids or specific biologicals (43). For example, an

anti-eosinophilicmedication (anti-IL-5monoclonal antibody) did not

meet its primary or secondary endpoints in all-comers trials, but

clinical efficacy became apparent when targeted to patients with

increased blood and sputum eosinophil counts (43). As such, the

type2-highallergic asthmaendotype is orchestratedbyTh2-associated

cytokines such as IL-4, IL-5 and IL-13, into different sub-endotypes

ranging from mild to very severe form of the diseases (44).

One ofmost relevantmarkers both for allergic asthma and allergic

rhinitis is blood eosinophilia. Importantly, both blood and airways

eosinophilia is considered a relevant marker for endotype-driven

treatment of allergic asthma according to a recently developed

patient-tailored therapy approach (45). All secreted Th2 cytokines

are involved in eosinophil recruitment, migration or survival and are

responsible for the increased eosinophil numbers in bronchoalveolar

lavage fluid (46). Moreover, lipids such as leukotriene E4, Platelet

activating factor (PAF) and prostaglandin D2, or specific chemokines

called eotaxins (CCL11, CCL24 andCCL26) are able to directly recruit

eosinophils to the airways. Of note, not only adaptive mechanisms

induce eosinophil-chemoattractive substances, but also innate

immune mechanisms, mainly mediated by epithelial-derived

cytokines (IL-33, IL-25, TSLP), are involved in airways eosinophil

recruitment (47).When activated, eosinophils can promote their own

survival in the tissue by autocrine secretion of IL-5, which inhibits

eosinophil apoptosis (48), andofGM-CSF and IL-3upon adherence to

fibronectin (49), allowing for long term persistence of eosinophils at

inflammatory sites.

Eosinophils play a prominent role in the development of clinical

allergic asthma hallmarks. First, they damage airways epithelium by

releasing reactive oxygen species and hazardous molecules such as

MBP, EPO and ECP (50) which, in turn, promote bronchial

hyperesponsiveness (51). Then, eosinophils promote epithelial to

mesenchymal transition of bronchial epithelial cells by secreting

TGF-b (52), smooth muscle cells proliferation and collagen

deposition (53) also by delivery of exosomes to structural lung

cells (54).

Airways remodeling is a process that can occur physiologically as a

tissue reparative mechanism, where eosinophils have a critical

homeostatic role (55). However, depending on chronic

inflammation and/or genetic alteration of respiratory epithelium, the

remodeling process may induce fibrosis, a process that represents the

most important pathological component of severe asthma (56).
4 Role of eosinophils in respiratory
viral diseases

Eosinophils are present in the airways and under homeostatic

conditions contribute to the maintenance of lung immune
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homeostasis. During viral infections, eosinophils may participate

directly or indirectly to antiviral immune responses through

production of various soluble mediators (Figure 1) and can exert

beneficial effects against respiratory viruses as long as they do not

induce a detrimental inflammatory response in the airways, such as

during allergic asthma.

Eosinophils contain molecules in their granules endowed with

potential antiviral activity, including ribonucleases (e.g. eosinophil-

derived neurotoxins and eosinophil cationic proteins), nitric oxide

(NO) and several cytokines, which promote antigen presentation

and enhance CD8+ T cell response (21, 57). Eosinophils express

toll-like receptors that are engaged during viral recognition, such as

TLR-3 (58, 59) TLR-7, and TLR-9 (60). In particular TLR-7, which

recognizes single-stranded RNA (ssRNA) (61), is expressed at

higher levels than in neutrophils, and signaling through the

receptor increases the expression of adhesion molecules in

eosinophils such as L-selectin and CD11b, induces the generation

of superoxide anions, and promotes survival after activation by

IFN-g (59, 61, 62). Moreover, eosinophils express receptors for viral

pathogen sensing. Thus, expression of Retinoic acid-inducible gene

I (RIG-I) by eosinophils enables the recognition of RNA sequences

marked with 5′ triphosphorylated ends that could trigger the

immune response (63). Moreover, eosinophils can recognize

products of cell necrosis, such as High Mobility Group Box 1

(HMGB1), through its specific receptor (i.e., RAGE), resulting in

eosinophil degranulation, oxidative burst and amplification of the

inflammatory response (27, 64, 65).

In response to viruses, eosinophils can secrete IFN regulatory

factor 7 (IRF7), NOS-2, IFN-b, ribonucleases (i.e., EAR-1 and EAR-
2), and several interleukins and chemokines (i.e., IL-6, IP10, CCL2,

and CCL3), all of which have variable effects on viral clearance (59,

66, 67). ECP, for instance, not only exhibits antibacterial and

antiparasitic activities, but it is also a member of the ribonuclease

A family along with EDN (68). It has been demonstrated that both

proteins have an RNase activity (69, 70), so they could play a role

against ssRNA viruses. Eosinophils are also capable of producing

oxidizing species through EPO and to produce NO by inducible NO

synthase, a molecule that inhibits viral replication by multiple

mechanisms and which is effective against several viruses (71).

Similar to neutrophils, eosinophils are able to produce

extracellular traps (ETs) (72). While neutrophil ETs have been

reported to exert antiviral effects (73), it is currently unknown

whether this is the case also for eosinophil ETs. Finally, in response

to different antigens including viral antigens, eosinophils can act as

APC, expressing CD80, CD86, CD28, and CD40 (74–76) and are

able to migrate to lymph nodes where they can stimulate T cell

immunity (74, 77).

Eosinophils are known to function as a versatile coordinator

that actively regulates or interacts with various immune cells

including T lymphocytes and dendritic cells (2). As an example,

in the context of viral infections, eosinophils pulsed with influenza

peptides are able to activate antigen-specific T CD8+ cells, inducing

the release of IFN-g and TNF-a. Human rhinovirus binds to

eosinophil ICAM-1 and induces antigen-specific T CD4+

proliferation and IFN-g release; otherwise, human influenza virus

and parainfluenza virus replication in eosinophils is abortive (78).
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In settings other than viral infections, eosinophils can play a role in

in the T-cell selection (79). Furthermore, eosinophils-mediated

antigen priming of B cells triggers antigen-specific IgM

production and eosinophils can suppress Th17 differentiation via

IL-1R release (in the intestine). Eosinophil-derived CXCL5 can

directly activate neutrophils, while eosinophils IL-13 and IL-14

secretion can influence macrophages in adipose tissues by inhibiting

inflammation. CpG DNA-stimulated eosinophils can release EDN

and induce DC maturation. Locally, intestinal eosinophils release

EPO to activate DCs and trigger their migration to draining lymph

nodes. Also, EPO is positively involved in the regulation of

macrophage phagocytosis (80).
4.1 Respiratory Syncytial Virus

Respiratory Syncytial Virus (RSV) is one of the most important

pathogens that causes airway infections during childhood (81).

Approximately 50% of pneumonia cases in adult and elderly

patients (82) and up to 90% of bronchiolitis cases during

childhood are caused by this virus (83). RSV is an enveloped

virus that contains a non-segmented, negative-sense ssRNA. The

role of eosinophils in the antiviral response to this virus was initially

controversial but the fact that ssRNA is able to induce EPO release

and degranulation suggested the possible participation of these

granulocytes to RSV response (59). In vitro studies demonstrated

that exposure of eosinophils to RSV infected epithelial cells or TLR7

ligands up-regulates the activation marker CD11b on eosinophils

and triggers ECP release. In turn, ECP and EDN exerted an antiviral
Frontiers in Immunology 04
effect due to their RNAse activity (59, 62). In addition, production

of NO has been postulated as one of the most important elements in

the antiviral mechanisms by which eosinophils lower the viral titer,

with these effects probably depending on TLR-7 engagement and

MyD88 adaptor protein–dependent signaling (84, 85).

Dyer and co-Workers reported that human and mouse bone

marrow-derived eosinophils can be infected by RSV and the closely

related mouse pneumonia virus (PVM), respectively, inducing the

release of IL-6 and, in mice, also the release of CXCL10, CCL2, and

CCL3 related to monocyte chemoattraction and macrophage

activation under inflammatory conditions. In addition,

eosinophils from MyD88 deficient mice displayed reduced release

of IL-6 and an accelerated PVM replication indicating that the

antiviral effect could depend on MyD88 signaling (67).

Studies on transgenic (Tg) models infected with RSV found an

accelerated viral clearance in hypereosinophilic (IL-5 Tg) mice

while eosinophil-deficient mice showed a reduced viral clearance.

Interestingly adoptive transfer of MyD88-sufficient, but not

MyD88-deficient eosinophils into RSV-infected wild-type (WT)

mice demonstrated that eosinophils accelerated viral clearance via

MyD88-dependent pathways (59). Moreover, hypereosinophilic

eotaxin-2/IL-5 double Tg mice infected with PVM presented a

reduction in the virus recovered from lungs compared with the

control strain, and were protected from a lethal inoculum of

PVM (86).

Contradictory results have been reported related to the role of

eosinophils in murine models of vaccine enhanced disease (VED) or

immunopotentiation associated with RSV. Different vaccine

formulations against RSV showed the presence of eosinophils to
FIGURE 1

Release of soluble mediators by eosinophils. Eosinophils respond to stimuli released in the context of viral or allergic sensitization, by producing
various soluble mediators involved in: inflammation (IFN-g, IL-8, IL-12, IL-2, IL-6), Th2 response (IL-4, IL-5, IL-13), immune regulation (TGF-b, IL-10)
and antiviral response, including antiviral factors (IRF-7, NOS-2, IFN-b, and the ribonucleases EAR-1 and EAR-2), chemokines attracting T cell
effectors (CXCL10., CCL3, CCL5) and granule-derived cationic proteins (EDN, ECP, MBP).
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be an important element of inflammatory status and linked to

poorer disease progression, findings which are typical in VED

associated with RSV. Pennings and co-Workers performed blood

mRNA transcriptome analysis during VED in RSV vaccinated mice

and observed an increase in expression of EAR-1/2/3/6, which are

associated with eosinophils (87). In contrast, some authors reported

that eosinophils could play a dual or even protective role in RSV

infection by avoiding the VED. For instance, Su and co-Workers

(88) using eotaxin and IL-5 double-knockout (EotIL5-/-) mice,

devoid of eosinophils in blood and lungs, demonstrated that EotIL-

5-/- mice immunized or not with a RSV vaccine (virus-like

nanoparticles carrying RSV fusion proteins: FIRSV), presented

higher viral titers after RSV challenge compared with controls.

Adoptive transfer of eosinophils from IL-5 Tg to FIRSV-immunized

and RSV-infected EotIL-5-/- mice led to a reduced viral titer and an

increment in IFN-b production, compared to animals not receiving

eosinophils. In contrast, two studies suggested that eosinophils are

not necessarily a critical immune component associated with

immunopotentiation linked to RSV vaccine administration that

seems primarily to be mediated by CD4+ T cells instead (89, 90).
4.2 Human influenza virus

Influenza viruses are enveloped, negative-sense single-stranded

segmented RNA viruses, that are common causes of human

respiratory infections, whose severity ranges from mild to lethal

(91). Eosinophils are not regarded as the main effector cells in the

antiviral immune response; despite this, epidemiological data

collected during the 2009 H1N1 pandemic suggested that patients

with asthma, probably owing to pulmonary eosinophilia, had less

severe outcomes associated with viral infection compared with non-

asthmatics individuals (92–95).

In a combined murine model of acute allergy and influenza

infection, Samarasinghe and co-Workers showed that mice

displayed higher numbers of eosinophils in the airways and an

accelerated virus clearance compared with infected mice with

chronic asthma. Moreover, mice with acute asthma also presented

higher numbers of CD8+ T cells and minor epithelial damage

suggesting that eosinophils confer protection from Influenza A

virus (IAV)-induced airway damage (96, 97). The same group

demonstrated that adoptive transfer of eosinophils from asthma

allergic mice into the airways of IAV-infected mice reduced viral

burden and increased CD8+ T cell numbers in the airways. In vitro,

mouse eosinophils were susceptible to IAV infection, inducing

piecemeal degranulation (producing several cytokines and soluble

mediators, such as NO) and an overexpression of MHC-I and

CD86. Furthermore, virus-pulsed eosinophils were able to induce

CD8+ T cell responses (77). These findings suggest that eosinophils

have the capacity to stimulate virus-specific CD8+ T cell responses

by serving as APCs and as a source of cytokines in the lung

microenvironment thus protecting from IAV infection. Notably,

IAV infection could be abortive in eosinophils and this constitutes a

passive mechanism exerted by these cells to limit viral expansion

(36, 77). The above mentioned studies support the evidence that
Frontiers in Immunology 05
eosinophils could be important mediators in immunity to

influenza virus.
4.3 Human parainfluenza virus

Human parainfluenza virus (PIV) is an enveloped, negative-

sense single-stranded non-segmented RNA virus that gives rise to

lower respiratory infections in infants, elderly people and

immunocompromised patients, and have been detected in

children with acute asthmatic exacerbations (98, 99). In a similar

fashion, as for the other respiratory viruses, eosinophils seem to

exert their antiviral action through the TLR-MyD88 pathway

involvement (59). Adamko and co-Workers reported that

eosinophils could play an antiviral role during PIV infection by

reducing viral content in the lungs, which was reverted by using

anti-IL-5 antibodies, suggesting that the observed effect originated

by the recruitment of eosinophils to the lungs (100).

Other studies used an in vivo model and in vitro human

eosinophils to evaluate the antiviral role of eosinophils against

PIV. PIV infected NJ.1726 IL-5 transgenic mice, which are

characterized by the accumulation of bronchial eosinophils,

presented a viral RNA reduction compared with controls strains

(101). Drake and co-Workers demonstrated that human

eosinophils had antiviral activity versus PIV in vitro, and this

activity increased when eosinophils were pre-incubated with IFN-

g. This antiviral effect was mostly mediated by NO generation

through TLR-7, while eosinophilic RNases did not seem to play a

role (102). The same group stated that human peripheral blood

eosinophils from healthy volunteers were susceptible to PIV

infection, but the viral progeny was not infectious, suggesting that

abortive infection, as with influenza virus, constitutes one of the

mechanisms by which these leukocytes restrain viral expansion.
4.4 Human rhinovirus

Human rhinovirus (HRV) is a positive-sense, ssRNA virus

frequently identified in upper respiratory tract infections and it is

associated to acute asthmatic exacerbations, mainly in childhood,

severe bronchiolitis in infants as well as in fatal pneumonia in

elderly and immunocompromised adults (103). The antiviral

activity generated by eosinophils in this context seems to be

mediated by their binding to HRV-16 through ICAM-1 and their

behavior as APCs inducing CD4+ T-cell proliferation and IFN-g
production. The latter might then increase the expression of TLR-7

and TLR-8 on eosinophils suggesting a cooperation between

eosinophils and T cells (104).

Of note, in asthmatic patients, eosinophils exhibit a reduced

capacity to bind to viruses, and HRV induces a perturbation in

asthma control strongly correlated with a diminished CD69

expression on the surface of these granulocytes (105). However,

depletion of eosinophils (although incomplete) as a consequence of

treatment with mepolizumab (a humanized monoclonal antibody

anti-IL-5) followed by challenge with HRV-16, resulted in an
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enhanced viral titer, thus proving the relevance of eosinophils to

counteract the viral respiratory infection (106). These contrasting

results suggest that eosinophils could be regarded as a double-edged

sword, leading to an excessive immune response in the attempt to

eliminate the virus that causes damage to the host (107). More in-

depth knowledge of the role and mechanisms of eosinophils in

different contexts is still required.
5 Eosinophils and COVID-19:
recent insights

5.1 Eosinophils as potential biomarkers
associated with COVID-19 severity

Since the discovery of the Coronavirus Disease 2019 (COVID-

19), caused by the SARS-CoV-2, many key questions were raised on

the potential relationship between eosinophil count and the clinical

course and severity of disease (16). SARS-CoV-2 infected patients

present diverse clinical profiles, ranging from asymptomatic to

severe respiratory failure and death. Early detection of high-risk

patients is therefore fundamental to tailor therapeutic interventions

that anticipate disease progression and prevent poor outcomes. For

this reason, the identification of biomarkers, such as cellular and

molecular mediators of immune response, could contribute to the

prognosis and management of COVID-19 patients (36). The

immune patterns of COVID-19 include lymphopenia, lymphocyte

activation and dysfunction, increased production of cytokines,

especially of IL-1b, IL-6, and IL-10, increased IgG antibodies as

well as elevated levels of C-reactive protein (CRP). Additionally,

eosinopenia correlates with biomarkers of coagulation disorder and

those of tissue damage in kidney, liver, and other tissues (108).

Namely, neutrophil levels are significantly higher in severe patients,

while the percentage of eosinophils, basophils, and monocytes are

reduced (109).

The current literature shows that the peripheral blood eosinophil

count (EC) could be regarded as a possible predictive and prognostic

biomarker for clinical outcome (110–112). The EC in the body is

normally tightly regulated and accounts for only a small minority of

peripheral blood leukocytes (1-3%). Normal EC ranges from 200 x

103/mL to 520 x 103/mL. Peripheral blood eosinophilia (≥500 x 103/

mL) may be caused by numerous conditions, including allergic,

infectious, inflammatory, and neoplastic disorders whereas

eosinopenia is defined as a reduction of circulating eosinophils <

10 eosinophils/mL and may be somewhat more difficult to recognize.

Of note, eosinopenia is not pathognomonic for any disorder or

clinical state. Many clinical conditions have been associated with

eosinopenia, including a wide variety of virus infections, such as

SARS-CoV-2 (113).

Variable EC have been reported during SARS-CoV-2 infection.

However, whether these changes are related to the primary disease

process or due to immunomodulation by the used treatment is not

clear (114). Notably, a profound and persistent eosinopenia has

been related to SARS-CoV-2 infection and associated with clinical

worsening and increased risk of mortality (18, 111). Blood

eosinopenia has been identified as one of the earliest indicators of
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severity among patients with COVID-19 (36) and severe

eosinopenia in hospitalized COVID-19 adult patients may reflect

the magnitude of immune hyperactivation during severe-to-critical

COVID-19 (115). Persistent eosinopenia and lymphopenia were

associated with the cytokine storm, which appeared in patients with

pulmonary involvement and severe disease (116). When combined

with neutrophil to lymphocyte ratio (NLR), the dramatic decrease

in eosinophil levels has a higher predictive value and could help in

COVID-19 diagnostic and risk stratification (117). Conversely, an

increasing EC during COVID-19 disease is associated with a milder

clinical course and better disease outcomes, including a lower

incidence of complications and mortality (118).

EC have been included in several algorithms used to predict

disease severity (119), such as the “COVID-19-REAL” risk

stratification score used to identify patients who are likely to be

presenting with COVID-19 (120) and the “PARIS” score, in which

presenting EC < 60/µL were among several hematologic parameters

used to predict the likelihood of a SARS-CoV-2 diagnosis (121). Of

note, co-infection with SARS-CoV-2 and other viral respiratory

pathogens including influenza and RSV is not rare and increases

disease severity and mortality risk compared to SARS-CoV-2

mono-infection. Since early symptoms of COVID-19 overlap with

these common conditions, several groups have explored the value of

peripheral blood EC at patient presentation for distinguishing

between COVID-19 and influenza virus infection. In addition,

several algorithms have been developed to assist clinicians to

discriminate between these two respiratory virus infections (122).

Finally, although vaccine-associated aberrant inflammatory

responses, including eosinophil accumulation in the respiratory

tract, were observed in preclinical immunization studies targeting

the related SARS-CoV and MERS-CoV pathogens, there are no

reports on Th2-mediated pulmonary immunopathology associated

with any of the currently used encapsulated mRNA-based COVID-

19 vaccines (112). However, concern might be heightened when

these vaccines become available to young children (123). A

summary of the principal findings on the roles of eosinophils in

respiratory viral infections is illustrated in Table 1.
5.2 Long COVID and eosinophils

Individuals infected with SARS-CoV-2 often experience severe

respiratory complications and other prolonged symptoms post-

infection (sequelae), referred to as “Long-COVID” or “Post-Acute

Sequelae of COVID-19” (PASC) (128). According to the World

Health Organization, Long-COVID is defined as the continuation

or development of new symptoms 3 months after the initial SARS-

CoV-2 infection, and occurs in at least 10% of SARS-CoV-2

infections (129). Furthermore, PASC is defined by the persistence

of disease greater than 28 days following the onset of symptoms

(128). Symptoms include fatigue, dyspnea, arthralgia, myalgia, heart

palpitations, and memory issues sometimes affecting between 30%

and 75% of recovering COVID-19 patients (130).

So far, little is known about the etiology of chronic sequelae

following acute SARS-CoV-2 infection, although several hypotheses

have been suggested, including persisting reservoirs of SARS-CoV-2
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TABLE 1 Role of eosinophils in respiratory viral infections.

Virus Model Major findings Mechanism of action References

RSV Human: In vitro: peripheral blood
eosinophils.

RSV can infect human eosinophils.
Eosinophils internalize and inactivate
RSV, and are activated by the virus.

Release of IL-6, IL-1a, IL-13, IL-15, G-CSF, and
GM-CSF.
Upregulation of CD69 and CD11b expression.

(66)
(104)
(59)

Mouse: In vitro: bone marrow-derived
eosinophils. In vivo: Intranasal
injection of RSV in mice.

↓ Viral load; ↑ Eosinophils
accumulation;
↑ CD11b; ECP release; production of
NO; antiviral immunity.

TLR-7, CD11b, ECP, NO.
Antiviral immunity through NO production,
clearance of RSV via MyD88-dependent pathways,
reduction of RSV-induced mucus hypersecretion.

(59)
85)

IAV Mouse: In vitro: peripheral blood and
bone marrow-derived eosinophils
In vivo: Transfer of eosinophils from
the lungs of allergen-sensitized and
challenged mice into IAV-infected
mice.

Acute asthma infected mice: ↑
numbers of eosinophils in the
airways, faster virus clearance, ↑
CD8+ T cells and lower epithelial
damage.
Adoptive transfer of eosinophils: ↓ viral
burden and ↑ CD8+ T cell numbers in
the airways of recipient mice.

In vitro: Piecemeal degranulation, NO release, ↑
MHC-I and CD86, induction of CD8+ T cell
responses by virus pulsed eosinophils.

(95)
(76)

PIV Human: In vitro: IFN-g preincubated
human eosinophils.

Eosinophils significantly decreased
PIV titers.

TLR-MyD88 pathway. In vitro: NO generation
through TLR-7, PIV human eosinophils infection
is abortive.

(101)

Mouse: IL5 transgenic mice, PIV
infection, anti-IL5 antibodies
treatment. Guinea pig: sensitization
to a non-viral antigen, infection, anti-
IL5 antibodies.

↑ Eosinophils in the lungs; ↓ viral
content in the lungs; sensitization to a
non-viral antigen leads to an
eosinophil-mediated ↓ viral content in
the lungs.

TLR-7 involvement and NO production (100)
(99)

HRV Human: In vitro: peripheral blood
eosinophils.

Eosinophils as APCs: induction of
CD4+ T-cell proliferation and IFN-g
production.

Viral binding through ICAM-1, cooperation
between T cells and eosinophils: T cells secreted
IFN-g leads to ↑expression of TLR-7 and TLR-8
on eosinophils.

(103)

Human: anti-IL5 antibody treatment,
HRV infection.

Eosinophils depletion leads to
increased viral loads in nasal swabs.

↑ CD69 expression (104)
(105)

SARS-CoV-2 Human ↓ Eosinophils absolute count (EC)
associated with higher mortality.

Unclear, likely multifactorial. (18)
(114)
(110)
(36)

↑ EC correlate with immune recovery
↑ EC correlate with milder clinical
course and better disease outcomes

Th2-specific pathways
Lower level of C-reactive protein, role in
mitigating the severity of inflammatory response.

(117)
(113)

Protective role of eosinophils against
severe COVID-19 illness even if
associated to allergic asthma.

Possible protective mechanisms of asthma and
type 2 inflammation on COVID-19 infection,
expression of SARS-CoV-2 entry receptors,
antiviral activity of eosinophils and cross-reactive
T-cell epitopes.

(111)
(109)
(124)

Subset of eosinophils related to
clinical deterioration
Immune exhaustion of eosinophils
and
inhibition of Th2-mediated immune
response

IFN-g-mediated upregulation of CD62L on
eosinophils precedes lung hyperinflammation.
↑ expression of the programmed death receptor
ligand 1 (PD-L1) checkpoint and ↓ expression of
CRTH2 (CD294).

(124)
(125)

Algorithms using eosinophil counts to
predict disease severity and to make a
differential diagnosis.

“COVID-19-REAL” risk stratification score used to
identify patients who are likely to be presenting
with COVID-19
“PARIS” score categorizes the pre-test probability
of SARS-CoV-2 infection (eosinophil counts < 60 /
µL)
Blood eosinophil counts (< 0.01 × 109/L)
distinguishes between COVID-19 and influenza
virus infection.

(119)
(120)
(121)

Dysregulation of immune responses
in Long-COVID patients.

Persistently activated eosinophils
↓ counts, activation and hyper-responsiveness up
to 6 months after active disease

(126)
(127)
F
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in tissues, immune dysregulation, autoimmunity and molecular

mimicry (126, 129). As described above, an increased EC during

COVID-19 disease is associated with a milder clinical course and

better disease outcomes, and, conversely, the extent of eosinopenia

is found to be a marker for severe disease. However, there are few

data in the literature indicating the role of eosinophils in long

COVID. Longitudinal studies have revealed sustained dysregulation

of immune responses in PASC, involving a reduction in naïve T-

and B-cells, a decrease in the numbers of conventional dendritic

cells, highly activated myeloid cells and T cells, elevated pro-

inflammatory cytokine levels as well as persistently activated

monocytes, mast cells, and eosinophils (109, 127, 129, 131).

A comprehensive study, comparing patients with acute

COVID-19 disease and 3 to 6 months after active disease, showed

specific neutrophil and eosinophil activation patterns, suggesting

that the neutrophil and eosinophil compartments are long-term

affected by COVID-19 and may be involved in the pathogenesis of

long COVID (132). In particular, although blood EC were lower

during the acute infection than 3 to 6 months after COVID-19, their

numbers did not fully normalize, and activation and hyper-

responsiveness persisted in the eosinophilic compartment up to 6

months after active disease (132). Another study found that patients

in the acute COVID-19 phase presented with eosinophilia, and EC

significantly increased up to 90 days of long COVID. Subsequently,

eosinophils counts decreased to basal levels after 3 months, without

any other changes after 6 and 12 months of observation (133).

Although patients with severe asthma are at an increased risk of

developing long COVID a protective role for eosinophils and type 2

cytokines has been hypothesized. In a study assessing the long

COVID outcomes after 6 to 12 months of an asthma population,

authors demonstrated that eosinophilic and type 2-asthma could

protect against complications of prolonged COVID, as compared to

patients with severe asthma who presented a worse prognosis (134).

It has also been reported that levels of circulating granulocyte

populations, including eosinophils, were not significantly different

among participants with long COVID relative to matched control

groups (135). Future studies must account for the long-term effects

of COVID-19 on granulocyte populations, in terms of different

counts and immune activation, to identify markers for patients at

risk for developing a more severe presentation of long COVID, and

for enabling better management of this condition”.
5.3 Mechanisms underlying eosinopenia
and eosinophil responses to COVID-19

The precise mechanisms underlying eosinopenia associated

with COVID-19 remain unclear at this time. Eosinopenia may

result from one or a combination of factors, including decreased

production and/or release of eosinophils from the bone marrow,

increased sequestration within the vasculature (i.e., margination),

increased migration to somatic tissues, and/or decreased survival in

peripheral circulation. Nevertheless, the precise mechanisms

underlying eosinopenia associated with COVID-19 remain

unclear at this time.
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Whether eosinophils may have an antiviral or deleterious role in

the immune response against SARS-CoV-2 infection is still an open

question (114). A number of clinical and pre-clinical studies have

suggested a role for eosinophils in antiviral immunity and

protection against the development of the uncontrolled

inflammatory response underlying the severe COVID-19 disease

(136). For example, eosinophilia in symptomatic COVID-19

patients has been linked to a lower level of inflammatory markers

such as high-sensitivity CRP, suggesting a protective role of

eosinophils in mitigating the severity of inflammatory diseases

through an inhibitory mechanism (114). Finally, as stated before,

eosinophils express a broad range of TLRs, such as TLR7, which has

been shown to enable eosinophils to recognize single-stranded RNA

viruses including coronaviruses (62).
6 IL-33 and eosinophils in
respiratory viral infections and
asthma co-morbidity

Epithelial-derived cytokines including IL-33, IL-25, and thymic

stromal lymphopoietin (TSLP) play an important role in the

development of viral-induced airway inflammation (137). IL-33 is

an alarmin released by epithelial cells upon stress or injury induced

by different environmental stimuli, such as airborne allergens and

viruses. At the pulmonary level, exposure to exogenous or

endogenous (i.e., epithelial-derived) IL-33 promotes the

recruitment of eosinophils via stimulation of group 2 innate

lymphoid cells (ILC2). Moreover, eosinophils respond directly to

IL-33 resulting in increased expression of activation markers (i.e.,

CD69, CD11b), degranulation and survival (138).

IL-33 can stimulate both Th1 and Th2-types of immune

responses in virtue of the pleiotropic expression of its specific

receptor ST2 by virtually all hematopoietic cells. In mice,

intranasal infection with RSV induced both the production of IL-

33 and the expression of ST2, which was accompanied with a

massive infiltration of ST2+CD45+ cells in the lungs, suggesting that

during the early phase of RSV infection, IL-33 targeting of ST2

expressing cells may play a critical role for the development of RSV-

induced airway inflammation. Blocking ST2 signaling diminished

RSV-induced eosinophil recruitment and Th2-associated cytokines

in the lungs of infected mice but did not affect the production of

Th1-type cytokines nor pulmonary viral growth and clearance.

These results indicate that IL-33/ST2 signaling is involved in

RSV-induced, Th2-associated airway inflammation but not in

protective immunity (139, 140).

The involvement of IL-33/ST2 axis in airway inflammation was

also demonstrated in human rhinovirus (RV) infection model. In

RV-infected mice, ST2 deficiency significantly reduced the levels of

proinflammatory cytokines, including IL-33, and neutrophil

mediated airway inflammation. By contrast, ST2 expression was

associated with increased viral loads in the BAL of mice and in

human epithelial cells infected in vitro. These data suggest that ST2

promotes proinflammatory responses to RV infection and

increasing of airway infection (141). Of note, IL-33 and
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eosinophils enhance RV-induced airway inflammation and

suppress IFN-b or IFN-l expression and antiviral immunity

(137). In particular, eosinophils directly suppress RV-induced

type I IFN production by plasmacytoid dendritic cells (pDC)

(142) and by epithelial cells (143) via release of TGF-b.
Accordingly, patients with eosinophilic asthma displayed

decreased levels of IFN-b (144).

Respiratory viral infections often require hospitalizations in

asthmatic individuals, and airway-secreted cytokines, particularly

IL-33, contribute to allergic exacerbations by amplifying type 2

inflammation. Viral infections caused by RSV in children (145) and

RV in adults (146), respectively, are among the major drivers of

asthma exacerbations. Many groups have attempted to identify

mechanisms of the underlying virus-induced asthma exacerbation.

In naïve mice, RV infection leads to neutrophilic lung inflammatory

response with no recruitment of pulmonary eosinophils. However,

in mice that had been previously sensitized with house dust mite

(HDM) allergen, exposure to RV led to eosinophilia and elevated

expression of several inflammatory factors associated with type 2

immunity, namely CCL17, CXCL1, CCL2, IL-33, and IL-13. Thus,

previous allergen exposure skews antiviral response toward type 2

immunity and leads to allergic-like symptoms and overall

exacerbated lung inflammation (147). Furthermore, in a model of

OVA-allergic mice infected with RSV, neutralization of IL-33

significantly reduced ILC2, eosinophils, and the prototypical

allergic proteins IL-5, IL-13, CCL17 and CCL22, further
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indicating the key role played by IL-33 in RSV-induced asthma

exacerbation (148). The possible roles of IL-33 and eosinophils

during concomitant allergen exposure and respiratory virus

infection are summarized in Figure 2.

A recent study showed that higher expression of Th2-related

genes and lower expression of type I IFN-related genes in upper

airways cells of asthmatic children with RV infection were

associated with a shorter time to exacerbation (149). Interestingly

Altman and co-Workers identified by scRNAsec analysis of

collected nasal cells a gene core associated with IL-33 and

epithelial cell repair. However, one caveat in this study is that

nasal epithelial cells were used as a proxy for lower-airways cells,

thus not fully recapitulating the lung mucosal environment (150). A

number of studies have demonstrated that lower levels of type I

IFNs are produced by bronchial epithelial cells (146, 151, 152) and

pDC (153) from asthmatic patients, compared to non-asthmatics,

during RV or RSV infections. The suppression of innate antiviral

response allows for virus spread and results in tissue damage, thus

contributing to asthma exacerbation.
7 Eosinophils, COVID-19 and
allergic asthma

Different from RV and RSV, pre-existing eosinophil-associated

disorders (e.g., asthma, eosinophilic gastrointestinal disorders and
FIGURE 2

Role of eosinophils and IL-33/ST2 in the context of virus and allergen exposure in the airways. Virus infection and allergen (e.g., HDM) exposure
induce damage in the lung epithelium. Both events result in the release of epithelial-derived alarmins, namely TSLP, IL-25 and IL-33. In particular, IL-
33 binds to its specific receptor ST2 expressed by many immune cell types present in the lung. DC respond to IL-33 and migrate to draining lymph
node where they prime naive Th cells inducing polarization of Th2 cells, which subsequently migrate to the lung and release IL-5. ST2-expressing
ILC2 cells respond to IL-33 producing IL-5 and IL-13. IL-5 stimulates the differentiation of eosinophils from bone marrow. Eosinophils then migrate
to the lung where they respond to IL-33, resulting in degranulation (orange dots) and release of different substances. These eosinophils, on the one
hand, support Th2 inflammation sustained by ST2-derived IL-13 and recruitment of basophils and mast cells and, on the other hand, may prevent
virus replication through the release of ribonucleases, reactive oxygen species (ROS) and nitric oxide synthase (NOS). Conversely, eosinophils may
reduce virus-induced type I IFN (IFN-I) production by pDC through release of TGF-b.
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allergic diseases) do not represent a relevant risk factor for COVID-

19 susceptibility nor a predictor of the worst clinical course of

disease (154). In fact, several recent studies suggest that a diagnosis

of asthma may be associated with some degree of protection (155)

with a lower hospitalization risk when compared with non-allergic

asthma (156). Interestingly asthma patients with pre-existing

eosinophilia (absolute eosinophils count, AEC >/= 150 cell/µl)

had lower risk for COVID-19 admission, and asthma patients

with eosinophilia during hospitalization due to COVID-19 had

lower mortality compared with those whose AEC remained < 150

cells/µl (157). The reported evidences suggest that eosinophils

might have a protective role against severe COVID-19 illness

even if associated to allergic asthma (158).

The real contribution of eosinophils to the overall risk may also

depend on the presence of environmental and behavioral factors

(i.e., smoking), type and severity of asthma (i.e., non-type 2 asthma

phenotypes), adherence to therapy, and comorbidities (159). The

antiviral activity of eosinophils may partly contribute to the lower

prevalence of allergic asthma in COVID-19 (160). In asthma

patients, eosinophil activation is likely a double-edged sword

causing both acute exacerbation of asthma and protection against

serious outcomes of viral infection such as SARS-CoV-2 (158). This

raises the opportunity to investigate the underlying mechanisms of

the interaction between an allergic background and SARS-CoV-

2 infection.

Possible protective mechanisms of asthma and type 2

inflammation on COVID-19 infection, such as the expression

of SARS-CoV-2 entry receptors, antiviral activity of eosinophils

and cross-reactive T-cell epitopes, have been reported (124).

Currently available asthma treatments such as inhaled and oral

corticosteroids, short- and long-acting b2 agonists, leukotriene

receptor antagonists and biologicals have an impact on the

outcome of COVID-19 patients. It has been proposed that

inhaled corticosteroids may confer some degree of protection

against SARS-CoV-2 infection and the development of severe

disease by reducing the expression of angiotensin-converting

enzyme-2 (ACE-2) and transmembrane protease serine in the

lung. On the other hand, other biologicals used in severe asthmatic

patients, namely IL-5 antagonists, anti-immunoglobulin E (anti-IgE),

and anti-IL-4/IL-13 are able to modulate, decrease or deplete

circulating eosinophils, and thus a detrimental effect in COVID-19

disease could be expected (159).

Rodriguez and co-Workers identified a unique subset of IFN-

induced CD62L (L-selectin)-positive eosinophils that emerged just

before clinical deterioration and lung hyperinflammation (125).

CD62L expression is a previously reported marker of lung

eosinophils (38) and it is possible that the IFN-g-mediated

upregulation of this marker on eosinophils leads to the influx of

these cells into the lung tissue. These results are somewhat

unexpected, as proinflammatory activation typically results in

CD62L downregulation in eosinophils. The clinical consequences

of this immunomodulatory response have not yet been defined.

Similarly, Vitte and co-Workers (161) described typical a COVID-

19 signature affecting first-line immune cells (neutrophils,

eosinophils, and basophils) characterized by immune exhaustion

evidenced by increased expression of the programmed death
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receptor ligand 1 (PD-L1) checkpoint in eosinophils and

basophils, decreased expression of integrin CD11b, and Th2-

related CRTH2 and increased counts of CD15+CD16+

neutrophils, correlating positively with disease severity (38).

These data suggest that phenotypic markers of circulating

granulocytes are strong discriminators between infected and

uninfected individuals as well as between severity stages.

Similarly to other known respiratory virus infections, exposure to

SARS-CoV-2 induces the expression of IL-33, correlating with T-cell

activation and lung disease severity (162). Although IL-33 may

participate in the pathogenesis of COVID-19 (163) this cytokine has

also been reported to promote antiviral cytotoxic T cell responses and

higher antibody production (164). Stanczak and co-Workers reported

that after recovery from COVID-19, individuals have persisting,

circulating peripheral blood mononuclear cells (PBMCs) that

produce IL-33 in response to virus-specific T cell activation, which

correlates with seropositivity (165). This finding suggests that persistent

production of IL-33 in COVID-19 convalescent individuals may confer

an advantage in the case of secondary exposure.
8 Currently used and novel tools for
the study of eosinophils.

Eosinophils can be retrieved in many biological districts, ranging

from peripheral blood to many tissues (mainly mucosal) and fluids,

such as bone marrow (166), sputum, bronchoalveolar lavage (167),

urine (168), tears (169), breast milk (170), cervicovaginal (171) as well

as cerebrospinal fluid (172). Tissue resident eosinophils are usually

studied bymeans of microscopy tools (IHC, IF, EM). Blood eosinophils

can be characterized by both enumeration and functional

characterization, represented by activation, degranulation, cytotoxic

and cytokine production. In this section, we will overview current and

innovative methods, models and tools that have contributed to the

advances in the dissection of various eosinophil subsets and their roles

in the peripheral blood (summarized in Figure 3).
8.1 Enumeration and isolation

Paul Ehrlich published the methods for staining blood films and

for differential blood cell counting using coal tar dyes and

mentioned the eosinophils for the first time in 1879. Eosin is a

bright red synthetic dye that stains basic proteins due to its acidic

nature (173). The simplest test to enumerate blood eosinophils is

the whole and differential blood cell count. Leukocytes can be

counted manually in Neubauer chambers or with automated

counters. To differentially count leukocyte subsets, a drop of

blood is thinly spread over a glass slide, air dried, and stained

with May-Grunewald-Giemsa technique, based on methylene blue

and eosin. Count is performed by visual examination of blood

smear by expert operators (174) and white cells are classified into

lymphocytes, monocytes and granulocytes, the latter distinguished

in neutrophils, eosinophils and basophils, named according to their

characteristic staining: basophils stain dark blue, eosinophils red,

and neutrophils stain pink. Machines have been developed to
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perform automated differential counts using multiple parameters

and methods (such as fluorescence flow cytometry and impedance)

(175–177). However, automated methods are less sensitive at

identifying abnormal or immature cells (178). Novel multicolor

flow cytometry approaches are also investigated to overcome

inconsistency between manual and automated hematology

analyzer count (179, 180).

Eosinophils can be enriched from peripheral blood by Percoll

density gradient method (181) or by Dextran stratification followed

by density centrifugation in Ficoll-Paque (182). Isolation of >90%

pure eosinophils can be achieved by immuno-magnetic (183) or

flow cytometry-based cell sorting (184). Since excessive

manipulation may induce eosinophil activation, negative sorting

protocols, which yield untouched cells, should be recommended.
8.2 Eosinophil characterization
by flow cytometry

Unstained human eosinophils exhibit unusually bright

autofluorescence, which could make flow cytometry analysis of
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eosinophils somewhat difficult, requiring careful evaluation of

actual positive staining when using fluorochrome-labelled

monoclonal antibodies. Conversely, this extraordinarily bright

autofluorescence pattern represents an instrumental tool for easy

identification of eosinophils, which allows to either include or

exclude them from flow cytometry or fluorescence microscopy

analysis. Indeed, eosinophil fluorescence is associated with the

cytoplasmic granules of the cells. Eosinophil granule extracts,

containing an as-yet-undefined eosinophil fluorescence factor,

exhibited excitation maxima at 370 nm and 450 nm, with

maximum emission at 520 nm. Eosinophils adhering to

opsonized parasites in vitro deposit fluorescent material onto the

parasite surface. Eosinophil fluorescence was of sufficient intensity

to allow the preparation of viable, highly enriched (greater than or

equal to 98%), eosinophil suspensions from peripheral blood of

normal and eosinophilic donors using a fluorescence- activated cell

sorter. Quantitative studies of eosinophil autofluorescence were

performed using flow microfluorometry. Fluorescence intensity of

blood eosinophils from normal volunteers and eosinophilic patients

varied inversely with the log of the donor’s absolute eosinophil

count regardless of clinical diagnosis (185).
FIGURE 3

Schematic representation for principal methods of isolation and study of eosinophils from peripheral blood. Whole blood samples can be either
directely stimulated in culture and stained with a multicolor panel to distinguish eosinophils from other leukocytes, such as neutrophils and
basophils, based on indicated surface markers. Alternatively, eosinophils can be isolated from whole blood by density gradient enrichment followed
by immunomagnetic or cell sorting purification. Eosinophils can be then assessed for phenotype (by expression of indicated activation markers) and
function, either ex vivo or following in vitro stimulation.
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In blood and other biological fluids, multiparameter flow

cytometry (MFC) enables fast high-throughput profiling and

classification of granulocyte subsets: neutrophils, basophils and

eosinophils (186) and further differentiation of eosinophil subsets

(187–190). Eosinophils express a variety of cell surface receptors

relevant to their identity, maturation, activation, apoptosis,

adhesion and rolling, homing, migration in tissues as well as their

interaction with chemokines and cytokines, as illustrated in Table 2

(191, 192).

Blood eosinophils can be defined as leukocytes (CD45 positive),

showing high side scatter and high auto-fluorescence, expressing

both CD294 and CD15, lacking CD3 (T cell marker), CD19 (B cell

marker), CD56 (NK cell marker), CD14 (monocyte marker) and

CD16 (FcgRIII receptor). In addition, human blood eosinophils are

reported to express high levels of CC-chemokine receptor-3 (CCR3)

which are highly expressed both on circulating basophils and

eosinophils where it is responsible for both migration and

degranulation (193–195).

CD294, also known as CRTH2, is a seven-transmembrane G-

protein-coupled receptor known as the chemoattractant receptor-

homologous molecule expressed on Th2 cells, while CD15, also

known as sialyl Lewis x, is involved in leukocyte rolling and missing

in basophils (196). CRTH2 binds to the ligand prostaglandin D2

(PGD2), constitutively expressed on circulating basophils (197)

Eosinophils can be distinguished from neutrophils by the lack of

CD16 expression and by the presence of CD49d (a costimulatory

receptor) (186). Another strategy is based on exclusion of CD14 and

CD16 and inclusion of the very specific marker Siglec-8, a late

differentiation marker (198), and CD66b among granulocytes

defined by high sideward scatter (199, 200). CD66b is a typical

activation marker for human granulocytes, but its biological

function is unknown in eosinophils. It was found that CD66b is

highly expressed on the surface of eosinophils isolated from healthy

individuals. Engagement of CD66b, but not CD66a, activated a Src

kinase family molecule, hemopoietic cell kinase (Hck), and induced

cellular adhesion, superoxide production, and degranulation of

eosinophils. Importantly, CD66b was constitutively and physically

associatedwith the beta2 integrin, CD11b (201). Binding of exogenous

or endogenous carbohydrate ligands(s) toCD66bmay be important in

the release of proinflammatorymediators byhumaneosinophils (202).

Regarding maturation determinants, eosinophilic promyelocytes

are CD11b– and CD62L–, eosinophilic myelocytes are CD11b+ and

CD62L–, eosinophilic metamyelocytes are CD11b+ and CD62Ldim

and mature eosinophils are CD11b+ and CD62L+. CD62L, an

adhesion molecule present in multiple blood cells, is shed from the

eosinophil membrane after passage through the endothelium

and its expression, coupled to other markers, can differentiate

inflammatory CD62Llo (iEOS) from resident CD62L+ eosinophils

(rEOS) (38, 203).
8.3 Eosinophil activation

Several biologically relevant eosinophil-surface proteins have

been proposed to assess eosinophil activation, including toll-like

receptors, Fc receptors, gangliosides and glycoproteins: CD69,
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CD63, L-selectin (CD62L), intercellular adhesion molecule-1

(ICAM-1, CD54), CD44, P-selectin glycoprotein ligand-1 (PSGL-

1, CD162), cytokine receptors, integrins including aM integrin

(CD11b), and activated conformations of Fc receptors and

integrins. Upon activation, some of these surface proteins are

decreased or shed, such as CD23, CD31 and PSGL-1 (CD162)

(204) while the others, including CD35, CD11b, CD66, CD69 and

CD81, are increased (205).

The most consistent and readily detectable activation marker is

the almost universal leukocyte early activation marker CD69, since

it is not normally expressed on the surface of eosinophils but it can

be up-regulated on eosinophil membrane. Conversely, alteration of

other phenotypic markers is more of a subtle change in the level of

surface expression rather than presence versus absence. The surface

and intracellular distribution of CD69 was previously investigated

with a whole-blood cell-membrane permeabilization technique, the

FOG method, and flow cytometry (206). Eosinophils and

neutrophils from healthy donors have a preformed intracellular

pool of CD69, which is mobilized on the cell surface on eosinophils,

but not on neutrophils, to various extents by selected stimuli.

Previous studies demonstrate the dynamic nature of eosinophil

surface molecules and the important role for whole-blood staining in

developing and understanding the role of eosinophils in inflammatory

reactions (207). In fact, simultaneous comparison of purified

eosinophils and whole-blood cells revealed significant differences in

the levelsof expressionofvarious surfacemolecules, suggesting that the

purification process may activate the eosinophils (208). For example,

IL-33-induced activation of human (209) andmouse (138) eosinophils

results in increased expression of CD69 and CD11b, the latter

promoting adhesion and contact-dependent degranulation. It was

also demonstrated that eosinophils can kill target cells in situ by

protease-induced apoptosis mediated by their production of

granzyme B, perforin, or cationic proteins, such as EPO and ECP, as

revealed by intracellular MFC or confocal microscopy (138, 210).

Focusing on the topic of the present review, a number of

markers expressed by eosinophils are involved in the recognition

and orchestration of antiviral responses to respiratory viruses (66,

78, 102), including the coronavirus receptors CD13 and CD147, the

measles virus receptor CD46, and the Echo-/Coxackie virus

receptor CD55. Moreover, once activated by cytokines, such as

IFN-g or TNF-a, eosinophils may display additional virus

receptors, such as the rhinovirus receptor CD54 (ICAM-1) (211).

Furthermore, distinct immunotypes were evident in COVID-19

patients, with altered expression of several receptors involved in

activation, adhesion, and migration of granulocytes (e.g., CD62L,

CD11a/b, CD69, CD63, CXCR4). A comprehensive granulocyte

characterization in COVID-19, which reveals specific immunotypes

with potential predictive value for key clinical features associated

with COVID-19, has been described (212).
8.4 Eosinophil characterization needs MFC
harmonized assays

Low abundance, activation status, sample origin and relatively

low life span of blood eosinophils are challenging factors for a
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TABLE 2 Major eosinophil receptors.

Cytokine receptors Pattern-recognition receptors (PRRs) Chemokine receptors

IL-2R TLR1 CCR3

IL-3R (CD123) TLR5 CCR1

IL-4R TLR7 CCR2

IL-5R (CD125) TLR8 CXCR3

IL-9R TLR9 CXCR4

IL-10R TLR2 CCR4

IL-13R TLR3 CCR5

IL-17R TLR4 CCR6

IL-23R TLR6 CCR8

IL-27R TLR10 CCR9

IL-31R NOD1 CXCR2

IL-33R NOD2 FPR1

TSLPR RIGs

GM-CSFR (CD116) RAGE Complement receptors

c-kit (CD117) CR1 (CD35)

IFN-gR Immunoglobulin receptors CR3bi (Mac1; CD11b–CD18)

TGF-bR FCaR (CD89) CD88 (C5aR)

CD131 FCgRII (CD32) C3aR

IL-1R FcϵRI*

TNF-aR FcϵRII Inhibitory receptors

FCgRIIB (CD32)

Adhesion molecules Lipid mediator receptors LIR3 (CD85a)

CD62L (L-selectin) DP2 prostaglandin receptor (CRTH2) KIR2DL3

CD162 (PSGL1) CysLT1R CD300a

CD15 (Sialil Lewis X) CysLT2R Siglec-8

CD34 PAFR Siglec-10

CD44 LTB4R

CD54 (ICAM-1) DP1 prostaglandin receptor Other receptors

CR3bi (Mac1; CD11b–CD18) EP2 prostaglandin receptor CD52

CR4 (CD11c–CD18) Histamine 4R

LFA-1 (CD11a–CD18) Proteinase-activated receptors CD95

VLA4 (CD49d–CD29) PAR1 CD69

2B4 (CD244) PAR2 Paired immunoglobulin-like receptor B (PIRB)

CD43 (lukosialin) MHCII

ESL-1 Costimulatory receptors PPAR g

CD28

CD86
F
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*Present on human eosinophils, but not in mouse eosinophils.
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reliable characterization of these granulocytes by MFC (213). MFC

is a powerful technology but, given the complexity of polychromatic

assays currently used, a harmonization process is crucial to

guarantee reproducibility of data among laboratories, especially in

multicenter trials (214, 215).

Commercial MFC panels have been designed to identify

eosinophils as well as other granulocytes by means of dried/

lyophilized antibody mixtures. Lyophilized reagents have already

proven to yield high reproducibility and efficient standardization in

large‐scale projects, such as the ONE study (216) and the

PreciseADS study (217). These panels can be implemented in

order not only to quantify the proportion of eosinophils in the

blood but also to assess their activation status by means of markers,

such as CD62L, CD11b or CD69.

Based on the multiple surface molecules expressed by

eosinophils (Table 2) (19, 218), several panels can be designed ad

hoc depending on research context. As examples, in the contest of

allergy, several panels have been described based on CD40 and

ICOS ligand, applied to study chronic rhinosinusitis (219), Siglec-8,

CD62L, CD125, CD101 and CD123 expression in asthma and

COPD patients (220) or CD63, CD193 (CCR3), CD294 (CRTH2)

and HLA-DR in the blood of asthma patients (221).
8.5 DNA methylation microarrays

An innovative method based on DNA methylation microarrays

can be employed to examine cell-type composition in complex

tissues. An expanded version of a reference-based deconvolution of

blood DNA methylation to include 12 leukocyte subtypes

(neutrophils, eosinophils, basophils, monocytes, naïve and

memory B cells, naïve and memory CD4+ and CD8+ T cells,

natural killer, and T regulatory cells) is described by Salas and co-

Workers. The method provides 56 immune profile variables

comprising markers associated to eosinophil identity. These

libraries enable a detailed representation of immune-cell profiles

in blood using only DNA and facilitate their standardization,

thorough investigation of immune profiles in human health and

disease (222).
8.6 Degranulation and adhesion assay

A comprehensive and organized list of methods to assess

degranulation in eosinophil is enclosed in a recent review (223).

Among these, measuring the EPO amount in a cell-free fluid is a

valuable method to indirectly determine liberated granules. EPO

can be measured by a modified procedure described by Bozemann.

Briefly, eosinophils are incubated in the presence of H2O2 and 1.4

mM tetramethybenzidine , 0 .3 M sucrose and 3 mM

decyltrimethylammonium bromide. During 3 min at room

temperature, absorbance is measured at 650 nm in an ELISA

plate reader in 30 sec intervals and the increase in absorbance is

calculated (224). Alternatively, a sandwich ELISA employing pairs

of EPO specific antibodies is commercially available.
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Eosinophil adhesion to a particular cell correlates to its

activation state but it also depends on the specific membrane

molecules expression on target cells. Adhesion of eosinophils to a

target cell can be quantitatively determined by flow cytometry, by

labelling eosinophils and target cells with different fluorescent dyes

(e.g., PKH26 and PKH67) before co-culture (1-2 hours). Determination

of the percentage of cell conjugates by double positivity of the dyes, with

respect to single dye positive eosinophils, can give a good estimate of the

extent of eosinophil adhesion to target cells (138). Moreover, Grosicki

and co-Workers described a “human eosinophils adhesion to

endothelium assay” for drug screening based on co-culture of

eosinophils and a human endothelial cells. After co-culture, adherent

cells are stained with Hoechst 33342 for identification of eosinophils by

nucleimorphologicalproperties throughfluorescencemicroscopy(225).

Finally, the nitric oxide-cGMP pathway involved in leukocyte rolling,

adhesion, and extravasation can be investigated in isolated eosinophils

by commercial available kits (211).
9 Concluding remarks

Biomarkers are pivotal parameters for detecting the presence or

absence of disease, monitoring changes in the clinical course of an

illness, interpreting the response to an intervention or the environment,

predicting treatment response, identifying populations at high risk for

disease progression, recurrence, or clinical events, identify susceptibility

or risk and to determine the likelihood of adverse events. Recent

evidences highlight the importance of measuring blood eosinophils in

respiratory diseases such asthma (226) and Chronic obstructive

pulmonary disease (COPD) (227–230) for determination of disease

severity and to aid in treatment decisions. In the context of respiratory

viral infections, eosinophils have emerged as a valuable diagnostic and

prognostic tool in the management of the SARS-CoV-2 infection (117).

However, while eosinopenia seems to be a frequent feature in severe

COVID-19, the precise role of eosinophils and the underlying

mechanisms in this emerging disease are still poorly understood. Of

note, allergic diseases and asthma do not aggravate the risk of severe/

critical COVID-19 outcomes and patients with allergic disease should

continue with standard treatment (112). Although detection of SARS-

CoV-2 infection in allergic patients might be challenging due to overlap

of allergy and COVID-19 symptoms, screening for SARS-CoV-2 is

imperative to minimize viral transmission and to differentiate between

COVID-19 symptoms and allergies. Further studies are required to

fully understand the relationship between eosinophils and other

respiratory viruses during certain conditions, such as asthma. Finally,

standardized protocols for improving eosinophil characterization are

desirable for the use of these granulocytes as biomarkers in the

screening and management of respiratory diseases.
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