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SIRT2 plays complex
roles in neuroinflammation
neuroimmunology-
associated disorders

Wenmei Lu, Haonan Ji and Danhong Wu*

Department of Neurology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
Neuroinflammation and neuroimmunology-associated disorders, including

ischemic stroke and neurodegenerative disease, commonly cause severe

neurologic function deficits, including bradypragia, hemiplegia, aphasia, and

cognitive impairment, and the pathological mechanism is not completely clear.

SIRT2, an NAD+-dependent deacetylase predominantly localized in the

cytoplasm, was proven to play an important and paradoxical role in regulating

ischemic stroke and neurodegenerative disease. This review summarizes the

comprehensive mechanism of the crucial pathological functions of SIRT2 in

apoptosis, necroptosis, autophagy, neuroinflammation, and immune response.

Elaborating on themechanism by which SIRT2 participates in neuroinflammation

and neuroimmunology-associated disorders is beneficial to discover

novel effective drugs for diseases, varying from vascular disorders to

neurodegenerative diseases.
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Abbreviations: SIRT2, The silent information regulator 2; HDACs, histone deacetylases; NAD, Nicotinamide
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Tetrahydropyridin; CDKNIA, Cyclin-dependent kinase inhibitor1A gene; NLRP3, NLR Family Pyrin

Domain Containing 3; NFATc4, the nuclear factor of activated T-cells 4; MKP1, the acetylation of

mitogen-activated protein kinase phosphatase-1.
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Introduction

Neuroinflammation and neuroimmunology-associated

disorders involve cerebral vascular diseases, neurodegenerative

diseases, neuroinflammatory diseases, intracranial infectious

diseases, traumatic brain injury, etc. Cerebral ischemic stroke

and neurodegenerative diseases are the most common

neuropathological disorders, which bring heavy burden to society

and families (1, 2). The silent information regulator 2 (SIRT2), a

cytoplasmic NAD+-dependent deacetylase, plays important roles in

both cerebral ischemic stroke and neurodegenerative diseases (3–5).

Increasing evidence has elucidated various pivotal roles that

SIRT2 plays in pathological processes, including apoptosis,

necroptosis, autophagy, and Inflammatory immune response

which were the pathological mechanism underlying cerebral

ischemic stroke and neurodegenerative diseases (6–8). And SIRT2

is highly expressed in the brain. It is mainly expressed in Myelin-

Rich Regions in Oligodendrocytes in brain (9). SIRT2 protein also

expresses in neurons even though its biological function is not

completely clear (10). In addition, Werner et al. and Beirowski et al.

found SIRT2 could regulate myelin formation in nervous system

(11, 12). The higher SIRT2 expression in brain suggests that SIRT2

regulates the pathophysiologic progress in the central

nervous system.

SIRT2, as an important deacetylase, was proved to colocalize

with microtubules mainly in the cytoplasm. SIRT2 deacetylated

tubulin at lysine 40 with preferential affinity than histone H3 (3).

And Tubulin involves in various pathophysiological processes such

as cytoskeletal maintenance, axonal degeneration, and axial

transport (13, 14). P38 was proved to be one of SIRT2 substrates,

SIRT2 deacetylated P38 to suppress neuroblastoma (15). SIRT2

could deacetylate Forkhead Box Protein O3a (Foxo3a), P53, Foxo1,

Nuclear Factor Of Activated T Cells 4 (NFATc4), P65, and the NLR

Family Pyrin Domain Containing 3 (NLRP3) to influence cell

viability and inflammation. P300 is the most important acetylase

in mammals, and SIRT2 could regulate P300 autoacetylation (16).

In addition, SIRT2 could be regulated as the substrate. P300 could

acetylate SIRT2 and attenuate its deacetylase activity (17), and the

cyclin-dependent kinase 5 (Cdk5) could promote the

phosphorylation of SIRT2 at Ser331 and 335 sites (18) and cyclin

E-Cdk2, cyclin A-Cdk2 could phosphorylate SIRT2 at Ser331 to

inhibit its catalytic activity (19). Mitogen-Activated Protein Kinase

3/1 (ERK1/2) and was reported to interact with SIRT2 and induce

the activity, stability, and protein levels of SIRT2 (20). And SIRT2

could be sumoylated, and desumoylated-SIRT2 possesses lower

deacetylase activity (15). The complex protein interaction with

SIRT2 may constitute the complex regulatory network of SIRT2

in neuropathological disorders (Figure 1).
SIRT2 in ischemic stroke

Acute ischemic stroke (AIS) commonly causes hemiplegia,

aphasia, paresthesia, coma, and even death. It is important to

discover the pathological mechanism of ischemic stroke. Recent
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studies have shown acute ischemic stroke promotes SIRT2 protein

expression. In ischemic stroke mouse brains, expression of SIRT2

was upregulated and translocated into neuronal nuclei in the

ischemic penumbra (21). But in photothrombotic stroke rats,

expression of SIRT2 was upregulated in the cytoplasm of the

penumbra neurons and SIRT2 was not detected in penumbra

astrocytes (22). The serum SIRT2 expression was increased in AIS

patients alongside increasing serum Tumor Necrosis Factor (TNF),

IL-6, and IL-17. Serum SIRT2 expression was positively correlated

with deteriorated neurological function (23). SIRT2 induces neuron

death after ischemic stroke. AK1 and AGK2 could downregulate the

AKT/FOXO3a pathway and reduce cleaved caspase-3, Bim, and

Bad, resulting in attenuating neuron apoptosis induced by middle

cerebral artery occlusion (MCAO) (5). Down-regulation of SIRT2

by inhibitor or SIRT2 knockout could decrease the infarct volume

and neurological impairment scores (5, 21). Another SIRT2

inhibitor AK7 showed a neuroprotective effect by activating the

P38 MAPK signaling pathway in MCAO mice (24). However, the

SIRT2 inhibitor, SirReal2, did not change the infarction volume

in photothrombot ic s t roke ra t s (22) . N icot inamide

phosphoribosyltransferase (Nampt) is the rate-limiting enzyme

for mammalian NAD synthesis. Nampt and NAD showed a

protective effect in increased neural stem cells, lower mortality,

improved neurofunctional deficit, and enhanced body weight after

middle cerebral artery occlusion. And SIRT2 regulated the Nampt-

NAD axis-dependent prodifferentiative effect (25).

Neuroinflammation and immune response contribute to the

pathophysiology after ischemic stroke. Infiltrating regulatory T cells

(Treg Cells) provide neuronal protection in the penumbra region.

And the microglia induced the expression of SIRT2 and hypoxia-

inducible factor 1-alpha (HIF-1a) in Treg Cells to weaken its anti-

inflammatory effect after MCAO (26). However, SIRT2 could

enhance NAD/NADH mediated ATP increases in microglia (27)

and prevent excessive microglia activation-induced inflammation

through NF-kB deacetylation (28). The inflammasome is a multi-

protein complex to recruit and activates proinflammatory caspase-

1, followed by the secretion of inflammatory cytokines and other

mediators (29). The microglia-specific Microglia-specific PPAR

gamma coactivator-1alpha (PGC-1a) could decreased neurologic

deficits of acute ischemic stroke mice by inhibiting inflammatory
FIGURE 1

SIRT2 interacts with diverse proteins.
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response (30). Glycogen synthase kinase 3b (GSK-3b) inhibitor and
knockdown improved neurological function and reduced infarction

volume by reducing NLRP3 inflammasome, cleaved caspase-1, IL-

1b, and IL-18 in MCAO rats (31). SIRT2 was proved to inhibit

NLRP3 inflammasome depending on its deacetylate activity

suggesting SIRT2 may influence ischemic stroke by regulating

inflammasome activity.
SIRT2 in neurodegenerative disease

The neurodegenerative disease involves a range of chronic and

progressive disorders that are characterized by misfolding proteins

deposition, loss, and dysfunction of neurons, neuroinflammation

and immune homeostasis destruction (32). Parkinson’s disease is

one of the most common Neurodegenerative disorders with

distinctive manifestations of static tremor, rigidity, and

bradykinesia (33). The serum SIRT2 expression was positively

correlated to Parkinson’s disease, and the serum SIRT2 level

could help to discriminate Parkinson’s disease from atypical

Parkinson’s syndrome (34). YKK(e-thioAc)AM, one of the SIRT2

inhibitors, could inhibit the serum SIRT2 of Parkinson’s disease

patients (35). SIRT2 Inhibition has been considered a

neuroprotective effect in Parkinson’s disease. Lei L et al.

demonstrated SIRT2 exacerbates neuronal apoptosis and

nigrostriatal damage by deacetylating Foxo3a and activating Bim

both in vitro (36) and in vivo Parkinson’s disease (PD) model (37).

SIRT2 level was highly increased in the PD model, and miR-212-5p

could inhibit SIRT2-P53 axis-dependent programmed cell death in

PD pathogenesis (38). In addition, SIRT2 was observed to

translocate to the nucleus in both cellular and animal PD models.

The cyclin-dependent kinase 5 (Cdk5) phosphorylated SIRT2 at the

Ser331 and Ser335 sites and promoted SIRT2 nuclear translocation,

and subsequently caused neuronal death and PD progression (18).

SIRT2 inhibition could rescue alpha-synuclein toxicity and protect

against dopaminergic cell death in the Drosophila PD model (39).

The ICL-SIRT078, a selective SIRT2 inhibitor, showed

neuroprotective function in vitro PD model (40). And AK7,

another SIRT2 inhibitor, ameliorated alpha-synuclein toxicity and

reduced dopaminergic neuron loss in Parkinson’s disease (41). But

there have been few studies that proposed different conclusions. Éva

M Szegő et al. found that SIRT2 interacted with protein kinase B

and modulated DA neurons differentiation. SIRT2 knockout

decreased the number of DA neurons in the substantia nigra and

reduced striatal fiber density in mice (42). And Preeti Singh et al.

found SIRT2 could reduce the formation of a-synuclein and

enhance SOD2 expression to prevent neuronal stress in the PD

brain (43). These results suggest that SIRT2 may mediate the

pathogenesis of Parkinson’s disease with intricacy and

important mechanisms.

SIRT2 plays important role in other neurodegenerative diseases.

AK7 remarkably reduced aggregated mutant huntingtin, improved

motor function, reduced brain atrophy, and extended survival of

genetic mouse models of Huntington’s disease (44). And a thiazole-

containing inhibitor of SIRT2 induced Nuclear respiratory factors 2

(NRF2) activation and reduced production of reactive oxygen
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species and nitrogen intermediated in Huntington’s disease (45).

However, another study showed SIRT2 deletion in the gene could

not influence mouse Huntington’s progression in the mouse model

(46). It was found the level of SIRT2 was increased in the plasma of

Alzheimer’s disease (AD) patients than control subjects (47). And

SIRT2 level was found positively related with p-tau level in the

cerebral fluid of AD patients (48). The risk of Alzheimer’s disease

has been reported to be correlated with the single-nucleotide

polymorphism (SNP) at the 3’un-translated region (3’UTR) of

SIRT2 (49). And SIRT2 inhibition exhibited neuroprotection in

Alzheimer’s disease. And SIRT2 was enhanced in insulin-deficient

amyloid-b (Ab) precursor protein (APP) transgenic mouse model,

and overexpression of SIRT2 induced tau hyperphosphorylation

through ERK activation (50). The SIRT2 inhibitor, AK1 or SIRT2

knockout could increase the elimination of Ab oligomers to

enhance cell survival by increasing microtubule stabilization and

improving autophagy (51). Ning B et al. found that SIRT2

inhibition could enhance the acetylation of the amyloid precursor

protein, increase soluble APP-a (sAPPa) protein, and inhibit b-
amyloid-induced neuron toxicity to ameliorate cognitive

impairment (52, 53). Based on the above reports, most studies

showed SIRT2 inhibition plays a neuroprotective effect in

neurodegenerative disease.

SIRT2 in apoptosis

Apoptosis is the most fundamental form of cell death which is

called programmed cell death possessing special morphological

features as their characteristic. The characteristic morphology

changing of apoptosis includes cytoplasmic shrinking, activation

of the caspase-3 pathway, fragmentation of chromosomes, nuclear

membrane breakdown, and formation of apoptotic bodies, and

consequently the cell breaks up (54). Importantly, apoptosis has

been widely observed in neuropathological disorders. A large

amount of reactive oxygen species (ROS), DNA damage,

mitochondrial dysfunction, and Ca2+ overload caused by

neuropathological progression could induce cell apoptosis (55, 56).

MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) is a

dopaminergic neurotoxin causing nigrostriatal damage which is

detected to be located in the central nervous system (CNS) after

system administration. Knockout of SIRT2 could lead to the

increase of Foxo3a acetylation and the decrease of tyrosine-

hydroxylase and Bim expression levels, reduce of MPTP-induced

apoptosis (36). Yongzhi L et al. reported noise exposure upregulated

cochlea SIRT2 expression and SIRT2 inhibition attenuated the

noise-induced hearing loss (NIHL). The AK7, a selective SIRT2

inhibitor, reduced oxidative nuclear DNA damage and cochlear

cells apoptosis (57). Hui N and her colleagues found that down-

regulation of SIRT2 could significantly alleviate cells early-stage

apoptosis induced by H2O2 in PC12 cells. They detected that siRNA

and AGK2 decreased apoptosis by attenuating H2O2-inducing

caspase-3 activation and a decrease in ROS levels resulting from

H2O2 application (58). Melatonin might suppress SIRT2-mediated

FOXO3a deacetylation, reduce pro-apoptotic proteins, and increase

Bcl-2 and Bcl-2/Bax in the hippocampus of aged rats (59). Above

all, SIRT2 induces cell apoptosis in a pathological state.
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Oppositely, other studies showed that SIRT2 inhibition may

exacerbate cell apoptosis in a given pathological progression. Using

Sirtinol and Salermide to inhibit SIRT2, P53 acetylating was

increased as well as cell apoptosis was enhanced (60). AEM1 and

AEM2, two selective SIRT2 inhibitors, increased p53 acetylation

levels and up-regulated CDKNIA (Cyclin-dependent kinase

inhibitor 1A gene) expression, and then CDKNIA targets with the

cell cycle regulation element p21WAF11 and two pro-apoptotic

genes PUMA and NOXA to mediate apoptosis (61). Furthermore, it

is proved that Sirt2 deacetylate lysine residues in the catalytic

domain of P300 indirectly influence p53 activity (16).

Additionally, Sirt2 deacetylated and down-regulated the

transcriptional activity of P53, and 14-3-3 b/g augment

deacetylation and down-regulation of P53 transcriptional activity

by Sirt2 in an AKT-dependent manner (62). Further study showed

that SIRT2 catalyzed P53 deacetylation in the cytoplasm at lysine

382 (63). And SIRT2 inhibition showed an induced-apoptosis effect

in the vascular endothelial cell line (PIEC). Jie Z et al. showed both

SIRT2 inhibitor and SIRT2 siRNA could induce mitochondrial

depolarization and decrease intracellular ATP levels (64).
SIRT2 in necroptosis

Necrosis is initially known as a passive energy-independent cell

death pathway that is inversely proved that at least partial forms of

necrosis are well-regulated. There is evidence existing to elucidate

the molecular regulation mechanism in the specific caspase-

independent programmed necrosis. TNF-inducing necroptosis

can activate receptor-interacting protein 3 (RIP3), and activating

RIP3 further promotes receptor-interacting protein 1 (RIP1)

phosphorylation, subsequently, RIP1-RIP3 complex formation.

The complex can activate the pro-necrotic kinase, promote

reactive oxygen species production, and finally, programmed

necrosis occurring (65). Necroptosis is important in responding

to environmental insults, for example, viruses or bacteria infection,

and acute ischemia stroke (66). And current studies suggest that

necroptosis is associated with neuroinflammatory disease (67). As

for neurodegenerative disease, applying methamphetamine to

embryonic cortical neurons, significant necroptosis was found in

a time and dose-dependent manner with over-expression of tumor

necrosis factor-a (68).

Knockdown of SIRT2 could reduce the RIP1-RIP3 complex

formation in response to TNF inducing programmed necrosis in a

casepase-8 activity manner (69). And SIRT2 down-regulation was

proved to attenuate necroptosis by inducing the acetylation and

nuclear translocation of the nuclear factor of activated T-cells 4

(NFATc4) (70), the acetylation of mitogen-activated protein kinase

phosphatase-1 (MKP-1) and suppressing the phosphorylation of

p38 and JNK (71). Confusingly, knockdown of SIRT2 by AGK2 or

three independent siRNAs failed to prevent cells from necroptosis

in L929 cells, mouse embryonic fibroblasts (MEFs), and bone

marrow-derived macrophages (BMDMs) induced separately by

TZ and TNF (72). So more works are warranted to elucidate the

roles and underlying mechanisms of SIRT2 in necroptosis.
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SIRT2 in autophagy

Autophagy is a self-digestion process of denatured proteins and

damaged organelles. And autophagosomes with double membrane

structures are gradually informed and delivered to lysosomes (73).

Autophagy involves various complex autophagy protein network

pathway that influences autophagosome formation and maturation

(74). Appropriate autophagy plays neuroprotective effects on

cerebral ischemia, while excessive autophagy deteriorates

neurological injury (29). Autophagy activation help the

elimination of the intracellular abnormal protein deposits, such as

lewy bodies and a-Synuclein (75). So autophagy may be the

potent i a l t a rge t to regu la t e neurodegenera t i ve and

ischemic diseases.

Recent studies report that SIRT2 could deacetylate FOXO1.

And the interaction between acetylated FoxO1 and Autophagy

Related 7 (Atg7) is essential for autophagy induced by oxidative

stress or serum starvation (76). Another paper elaborated that

FoxO1 translocation through the cytoplasm and nuclear

modulates time-dependent autophagy. It is noted that FoxO1

hypo-acetylation in nuclear and hyper-acetylation in the

cytoplasm may induce autophagy. And SIRT2 could deacetylate

FOXO1 in the cytoplasm to mediate autophagy (77). Jiyeong Gal

et al. found that over-expression of SIRT2 inhibited lysosome-

mediated autophagy by regulating autophagosome formation. And

then, SIRT2 over-expression exacerbates MG132 and amyloid-

inducing protein-mediated cytotoxicity, resulting in increased cell

fragility in response to environmental stress. They also found SIRT2

down-regulation could reduce the level of ubiquitinated protein as

well as cytotoxicity induced by MG132 in the siRNA-transfection-

inducing SIRT2 silencing SH-SY5Y cell model (78). Consistently, a

study reported that knockdown of autophagy genes (ATG5–ATG7)

increased p62 accumulation and suppressed autophagy, and SIRT2

knockdown could attenuate p62 reduction so that basal autophagy

levels were up-regulated in cells. SIRT2 knockdown would prevent

post-slippage death, followed by mitotic arrest influenced by

rapamycin and mild starvation which mediates autophagy up-

regulation (79). These results suggested SIRT2 may suppress

stress and starvation-induced autophagy.

Microtubule Associated Protein 1 Light Chain 3 (LC3) is the key

marker of autophagy. The removal of the C-terminal 22 amino

acids of cytosolic LC3-I to synthesize membraned bound LC3-II

means autophagosome maturation. Song, T et al. found acetylation

of LC3 highly influences its stability and cargo recognition ability.

Acetylation inhibited the interaction of LC3 and P62 and the LC3

proteasome-dependent degradation process. In a word, acetylated

LC3 is suitable for storage (80). The histone deacetylase 6 (HDAC6)

could deacetylate LC3. And the HDAC6 inhibitor, tubacin could

upregulate acetylated LC3 along with p62/SQSTM1 accumulation

to reduce serum starvation-induced autophagy degradation (81).

Moreover, there is a paper showing that SIRT1 could deacetylate

nuclear LC3 at K49 and K51 to stimulate starvation-induce

autophagy. The deacetylated LC3 could interact with the nuclear

protein DOR and shuttle to the cytoplasm where it can bind Atg7

(82). As shown above, HDAC6 was not the only deacetylase acting
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on LC3B-II (81), and SIRT1 mainly deacetylated nuclear LC3.

Consequently, there may be other deacetylases catalyzing LC3 in

the cytoplasm, and SIRT2 is a deacetylate kinase mainly distributed

in the cytoplasm. Whether SIRT2 involves in autophagy by

promoting the deacetylation of cytoplasm LC3 remains unclear.
SIRT2 in neuroinflammation

Inflammation is a double-edged sword. it protects organisms

against viruses and bacteria invasion. But in other conditions,

inflammation may exacerbate tissue injury, especially in the

process of Systemic inflammatory response syndrome (SIRS). The

role of SIRT2 on inflammation is still controversial and seems to be

tissue-specific and context-dependent. Several groups reported that

SIRT2 can inhibit inflammation in different pathological processes

(28, 83, 84). SIRT2 deacetylates P65 at Lys310 (85). In LPS-

stimulated inflammation, it has been found that SIRT2 knockout

mice showed increases in microglia activation and pro-

inflammation cytokines expression by enhancing acetylated NF-

kB and reducing its phosphorylation at serine 331 (S331) (28). Han,

B et al. found that PGC-1a could reduce the NLRP3 activation and

proinflammatory cytokine production after acute ischemic stroke

(30). Liu, M et al. found SIRT2 impairment activated the NF-kB
signal pathway by deacetylation and phosphorylation of P65.

Consistently, Another study reported SIRT2 inhibitor AK7

increased NF-kB P65 acetylation, resulting in increasing of

aquaporin4 (AQP4), matrix metalloproteinases (MMP)-9,

proinflammatory cytokines, and chemokines, which exacerbates

neuroinflammation (86). And SIRT2 was proved to inhibit the

NLRP3 inflammasome activation by deacetylating NLRP3. And

deacetylation of NLRP3 by SIRT2 could inhibit aging-associated

inflammation (87).

Other studies found the opposite results: Inhibition of SIRT2

can attenuate inflammation in macrophages (88) and microglia

(89). SIRT2 inhibitor may inhibit the phosphorylation of IkBa,
which can inhibit inflammation by decreasing the NF-kB activity

(88, 90). Besides, SIRT2 inhibitors might also decrease

inflammation by suppressing the MAPK signaling (91).

Moreover, the SIRT2 inhibitor exhibited a protective effect for

SH-SY5Y cells by inhibiting LPS-stimulated production of TNF-

aand PGE2 from microglial cells (92). AGK2, a SIRT2 inhibitor,

could decrease the LPS-induced increase of the mRNA of TNF-a
and IL-6, the level of active Caspase-3 & Bax and iNOS levels, block

NF-kB nuclear translocation, increase the expression of MKP-1 and

inhibit the activation of BV2 microglia (93, 94).

There are also several studies that reported that SIRT2 could not

affect inflammation. Cambinol, a nonselective inhibitor of Sirt1 and

SIRT2, could inhibit the expression of cytokines (including TNF,

IL-1b, IL-6, IL-12and IFN-g), NO and CD40 induced by toxic shock

syndrome in macrophages, DCs, splenocytes, and whole blood.

However, cambinol and sirtinol may not inhibit inflammation by

acting with just SIRT1 and SIRT2 because selective SIRT1 (EX-527

and CHIC-35) and SIRT2 (AGK2 and AK-7) inhibitors could not

inhibit inflammation (95). By comparing wild and SIRT2 knockout

C57BL/6 mice, no significant alteration in inflammatory cells
Frontiers in Immunology 05
activating was shown in the ischemic brain hemispheres between

wild-type mice and SIRT2(-/-) genotype mice (9). It is also reported

that autophagy could inhibit inflammasome activation and

inflammatory responses through mTOR and AMPK pathways

after ischemic stress (29). So SIRT2 may partly regulate

inflammation by inhibiting autophagy.
SIRT2 in neuroimmunology

The central nervous system had been viewed as an immune-

privileged site (96). However, decades of studies have shown that

the central nervous system is a rigorous immune regulatory tissue

with both innate and adaptive immune cells. Neuro-immune

response widely involves in both the development of the nervous

system and neuropathological changes (97, 98). The central nervous

system is protected by complex immune defense barriers

constituted by the skull, meninges, blood-brain barrier (BBB), and

cerebrospinal fluid (CSF) barrier (99). The skull contains special

bone marrow niches connected to meningeal veins and dural

sinuses which maintain the balance of immune cells and promote

the rapid immune response to injury in the meninges (100). And

the bone marrow pockets possess the tolerance to CNS antigens and

can sign distinct developing cells (100, 101). The meninges contain

various immune cells, including dendritic cells (DCs), natural killer

cells, T and B cells, mast cells, innate lymphoid cells, neutrophils,

and monocytes, and the immune cells can recruit from the

meninges to the parenchyma in immune response (102, 103). The

blood-brain barrier consists of various structures and cells,

including vascular endothelial cells, basement membrane,

astrocytic end-feet, and microglia (104). The BBB barrier limits

pathogenic factors and the immune cells to reach the brain

parenchyma from blood vessels (105). The choroid plexus is the

main producer of cerebrospinal fluid. And the choroid plexus

contains resident immune cells so that it could also regulate

immune response (106). And the cerebrospinal fluid is important

in parenchymal waste and antigen drainage, and immune

surveillance (107, 108). Microglia are the main resident immune

cells in the brain and the monocytes could be recruited quickly

during the immune response and differentiate into DCs or

macrophages (109, 110). Immune homeostasis is important in the

physiological function maintenance of the central nervous system,

and neuro-immunological response in the pathological processes

involves multiple central nervous system diseases. For example, the

amyloid-binduces brain endothelial cell impairment and blood-

brain barrier dysfunction in Alzheimer’s disease (111). And

microglial activation, infiltration of immune cells, and deficit of

blood-brain barrier integrity play vital roles in the damage of

ischemic stroke (112).

Present studies have proved that SIRT2 plays an important role

in neuroimmunology. SIRT2 directly mediates the AKT

phosphorylation and intracellular ATP increasing in NAD-

induced BV2 microglia (27). Downregulation of the SIRT2 level

could inhibit the activation of microglia (93). And SIRT2 knockout

help to maintain the integrity of BBB by inducing the expression of

ZO-1 and reducing ZO-1 gaps (113). But another study showed that
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SIRT2 inhibitor could enhance the acetylation and nuclear

translocation of NF-kB and upregulate AQP4 and MMP-9,

followed by blood-brain barrier disruption (86). Recently

reported, regulation T cells (Treg cells) infiltrated the brain 1 to 5

weeks after ischemic stroke in mice. Treg cells provided a

neuroprotective effect by increasing microglial reparative activity,

followed by oligodendrogenesis and white matter repair after

ischemic stroke (114). And another study found SIRT2 expression

was upregulated in Treg cells three days after transient middle

cerebral artery occlusion. Inhibition of SIRT2 activity could

upregulate the expression of immunosuppression-associated

molecules and enhance the anti-inflammatory effect of Treg cells.

Furthermore, microglia could induce the expression of hypoxia-

inducible factor 1-alpha (HIF-1a) to enhance SIRT2 expression in

Treg cells (26). And SIRT2 also regulates the immune response in

neurodegenerative diseases. Sa de Almeida J et al. found that

microglial SIRT2 protected the hippocampal by inhibiting N-

methyl-D-aspartate (NMDA)-mediated excitotoxicity and

affecting synaptic plasticity (115).
SIRT2 inhibitors

With the deeper study of SIRT2 biological function, various

specific inhibitors have been developed (Table 1). AK-1, a small

molecule SIRT2 inhibitor, shows neuroprotective effects in a mouse

model of frontotemporal dementia (FTD) by regulating the

expression of mutant tau protein (116). AK-7 is the developed

sulfobenzoic acid derivation analog of AK-1. It is a specific SIRT2

inhibitor that is permeable to the blood-brain barrier (117). AK-7

can competitively inhibit SIRT2 in NAD+ binding sites (41). AGK2

is an effective and selective SIRT2 inhibitor with an IC50 of 3.5mM.

Its inhibition activity level remained weak at 10 times higher

concentra t ions for SIRT1 or SIRT3 . AGK2 showed

neuroprotective function in ischemic stroke (5). AEM1 and

AEM2 show an SIRT2 inhibition effect with IC50 values of 18.5

and 3.8mM, but both the two compounds showed weak inhibition

activity to SIRT1, SIRT3, and yeast Sir2 (61). A recent study showed

that Thiomyristoyl (TM), a SIRT2 selective inhibitor, exerts

anticancer activity by degradation of c-Myc oncoprotein (118).
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YKK (e-thioAc) AM is a designed pentapeptide inhibitor

containing N-thioacetyl-lysine against SIRT2. YKK (e-thioAc)
AM was more specific towards SIRT2 than SIRT1 with the IC50

of 0.15mM (35). The 3-((2-methoxynaphthalen-1-yl)methyl)-7-

((pyridin-3-ylmethyl)amino)-5,6,7,8-tetrahydrobenzo[4,5]thieno

[2,3-d]pyrimidin-4(3H)-one(ICL-SIRT078) is a SIRT2 specific

inhibitor with a Ki value of 0.62 ± 0.15 mM. ICL-SIRT078 inhibits

SIRT2 in a substrate-competitive manner, and its affinity with

SIRT2 was more than 50-fold selectivity against SIRT1, SIRT3,

and SIRT5 (40). JH-T4 could inhibit SIRT2 by the formation of

hydrogen bonding. Regretfully, JH-T4 could also inhibit SIRT1 and

SIRT3 (119). These compounds inhibit SIRT2 with different

mechanisms, which provides convenience for studying the

pathophysiological mechanism of SIRT2.
Conclusion and discussion

SIRT2 is playing an increasing role in cell death, including

programmed cell death and non-programmed cell death, and

neuroinflammation under complex mechanism (Figures 1, 2). The

functions of SIRT2 in necroptosis and neuroinflammation are still
TABLE 1 The enzyme activity of novel SIRT2 inhibitors.

Compound Enzyme activity Characteristic function

AK-1 IC50 = 12.5mM

AK-7 IC50 = 15.5mM Blood-brain barrier permeability

AGK2 IC50 = 3.5mM AGK2 inhibits SIRT1 and SIRT3 with IC50s of 30 and 91 mM, respectively

AEM1 IC50 = 18.5mM p53-dependently induces apoptosis

AEM2 IC50 = 3.8mM

TM IC50 = 28nM TM inhibits SIRT1 with IC50 of 98 mM

YKK (ϵ-thioAc) AM IC50 = 0.15mM

ICL-SIRT078 Ki = 0.62 ± 0.15mM substrate-competitive inhibitor

JH-T4 IC50 = 0.03 ± 0.01mM JH-T4 inhibits SIRT2 by the formation of hydrogen bonding
FIGURE 2

SIRT2 plays complex roles in neuroinflammation and neuroimmunology.
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contradictory and more investigations are needed in the future to

determine the roles and mechanisms of SIRT2. Moreover, SIRT2

plays intricate complex roles in ischemic stroke and

neurodegenerative disease. Why does SIRT2 play a completely

contradictory effect? Does SIRT2 play more roles in both

biological maintaining and disorder occurrence? Further research

is still necessary to uncover the mechanism SIRT2 acts underlying

disease occurrence. And clarify the mechanism of SIRT2 in the

pathogenesis is important in supplying novel potential therapy

methods in the clinic. Discovering the mechanism that SIRT2 acts

in disease could provide a new method to explore new drugs.
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