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Role of ICAM1 in tumor
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Background: Treating triple-negative breast cancer (TNBC) is a difficult

landscape owing to its short survival times and high risk of metastasis and

recurrence among patients. Although involved in tumor invasion and

metastasis, the mechanism of action of intercellular adhesion molecule 1

(ICAM1), a trans-membrane glycoprotein, in TNBC is ambiguous.

Methods: We examined ICAM1’s role in TNBC, focusing on its expression, cell

survival, mutation, and tumor immunity. Then, a risk score model was created

utilizing co-expressed genes associated with ICAM1. According to their

respective risk scores, we divided patients into high- and low-risk groups.

Immune function, drug susceptibility differences, and somatic variants were

analyzed in the high-and low-risk groups. And we used the CMap database to

predict potential medications. Then, TNBC cells with low expression of ICAM-1

were co-cultured with PMA-treated THP-1 cells and CD8 T cells. In addition, We

detected the expression of PD-1 and CTLA4 of low ICAM-1 expressing TNBC

cells when they were cocultured with CD8 T cells.

Results: ICAM1 was found to be involved in leukocyte cell adhesion, motility, and

immune activation. Patients with low-ICAM1 group had shorter disease-free

survival (DFS) than those with high-ICAM1 group. The group with elevated levels

of ICAM1 exhibited significantly increased levels of T-cell regulation, quiescence

in natural killer (NK) cells, and M1 macrophage. ICAM1 expression was correlated

with immune checkpoint drugs. The prognostic ability of the risk score model

was found to be superior to that of individual genes. Patients categorized as

high-risk exhibited elevated clinical stages, showed higher M1 macrophage

numbers, and were able to benefit better from immunotherapy. Individuals

belonging to the high-risk group exhibit significantly elevated mutation rates in

TP53, TTN, and SYNE1 genes, along with increased TMB and PD-L1 levels and

decreased TIDE scores. These findings suggest that immunotherapy may be

advantageous for the high-risk group. Furthermore, low expression of ICAM1was

found to promote polarization to M2macrophages along with T-cell exhaustion.

Conclusion: In conclusion, Low ICAM1 expression may be related to immune

escape, leading to poor treatment response and a worse prognosis.
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Introduction

Breast cancer is the primary mortality cause in the female

population. with more than 2.2 million affected globally (1). By

2050, more than 3 million breast cancer cases are predicted to be

diagnosed annually across the world (2). The earliest classification

of breast cancer was based on clinicopathological features, such as

in situ carcinoma and metastases (3). Breast cancer updated

categorization has resulted in recognition of four distinct sub

types, involving triple-negative breast cancer (TNBC), human

epidermal growth factor receptor (HER2)-over-expressing,

luminal A, as well as luminal B. TNBC, which lacks the

expression of the estrogen receptor (ER), progesterone receptor

(PR), and human epidermal growth factor receptor 2 (HER2),

makes up roughly 10–15% of breast cancer incidents (4). TNBC

is characterized by early metastases, aggressive proliferation, poor

prognosis, and survival (5). A challenging treatment landscape

enhances the requirement for a more thorough comprehension of

the molecular underpinnings behind the emergence as well as the

progress of TNBC, which can help further identify suitable

diagnostic markers and treatment targets.

Cell adhesion molecules (CAMs) are primarily found on

endothelial and immune cells’ surfaces and contribute significantly

to the ability of lymphocytes to bind to target cells. The trans-

membrane glycoprotein receptor ICAM1, which belongs to the

immunoglobulin (Ig) family, was identified first in mice (6). ICAM1

in association with macrophage 1 antigen (MAC-1), CD11b/CD18,

lymphocyte function-associated antigen (LFA)-1, CD11a/CD18, and

CD11b/CD18 promotes tumor metastasis by activating the immune

systemandenhancing cell signalingand inflammatory responses (7, 8).

The expression of ICAM1 is observed to be low in vascular endothelial

cells as well as specific lymphocytes. However, in the presence of

inflammatory cytokines involving interleukin (IL)-1 alongwith tumor

necrosis factor (TNF)-a, ICAM1 expression increases, improving

adhesion between endothelial cells and leukocytes, leading to

inflammation (9). On one hand, soluble ICAM1 released from the

cell surface causes local immunosuppression in patients with gastric

cancer (10). On the other hand, ICAM1 may have a role in tumor

metastasis (7). The emergence of gastric cancer is linked to ICAM1

levels, and hence ICAM1 can potentially be a biomarker for early

diagnosis and prognosis of gastric cancer (11). Other molecules, such

as microRNAs (miRNAs), also regulate ICAM1 levels. MiR-335-5p

binds to the ICAM13′UTR (untranslated region) and inhibits ICAM1

expression, thereby limiting the migration, invasion, andmetastasis of

thyroid cancer cells (12). ICAM1 is reported to involve different cancer

kinds, such as ovarian cancer (13), colorectal (14), renal cell carcinoma

(15), and prostate (16). ICAM1 expression levels are higher in the

TNBC subtype than in other breast cancer types (17). Moreover,

ICAM1 increases apoptosis resistance via transforming growth factor-

beta (TGF-b)/SMAD signaling pathway, leading to bonemetastases in

TNBC (18). However, the role of ICAM1 in TNBC is not yet clear.

The present investigation assessed ICAM1 expression levels

association with TNBC patients’ prognosis. The participants were

split into two groups, specifically high- and low-ICAM1 groups, on

the basis of median ICAM1 expression. Differential genes between

groups and the related pathways, gene mutation, and protein
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interaction network were analyzed. We used to gene-weight co-

expression analysis on TNBC samples to identify ICAM1 co-

expressed genes and analyze their functions and pathways. A risk

score model was developed utilizing the co-expression genes of

ICAM1. The model was utilized to categorize tissue samples

obtained from patients into high- and low-risk groups. Immune

infiltration along with tumor microenvironment among high- and

low-risk groups was compared. Small molecules’ therapeutic effects

were then analyzed using the Connectivity Map (CMap) database in

patients with TNBC. TNBC cells with low ICAM1 expression

subjected to co-culture with THP-1 cells underwent treatment with

phorbol 12-myristate 13-acetate (PMA) and CD8 T cells to study the

alterations in ICAM1 expression in the tumor microenvironment.
Methods

Acquisition of datasets

The Cancer Genome Atlas (TCGA) database were employed to

acquire survival, clinical characteristics, and gene expression data of

breast cancer. To identify TNBC samples, we searched the database

using estrogen receptor (ER), progesterone receptor (PR), as well as

HER-2 keywords. Incomplete survival data and negative samples

were disregarded. We can have calculated the expression level of

each gene in all samples, filtered out low-expressing genes, and

excluded poor-quality samples retaining only high-quality samples.

We searched Gene Expression Omnibus (GEO) database for TNBC

gene expression data to validate risk score model. ICAM1mutations

across 33 cancer types were analyzed using the cBioPortal for

Cancer Genomics tool. We also used Human Protein Atlas

(HPA) database to determine ICAM1 distribution at tissue and

cellular levels.
Prognostic analysis of ICAM1 in
breast cancer

The TCGA dataset was utilized to gather prognostic data on

breast cancer patients, including disease-free survival (DFS) and

survival status. Firstly, breast cancer patients were grouped into 4

categories (luminal A, luminal B, TNBC, and HER-2 over-

expressed) based on clinical data. According to median ICAM1

expression levels, individuals were split into high- and low-ICAM1

groups. R survival package survfit function was utilized to assess

survival contrast among high- and low-ICAM1 groups, and

ggsurvplot function was employed to create a survival curve and

add annotations such as hazard ratio (HR) as well as p-value.
Differential pathway analysis of high- and
low-ICAM1 groups

The differential expression analysis (Log2FC) and multiple

adjusted p values were calculated utilizing R limma package. The

fold change values for every gene in the high- and low-ICAM1
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groups were determined, as well as a differential analysis was

conducted to identify differential genes. Genes that exhibited

differential expression showed a p-value < 0.05 and a Log2FC

absolute value greater than 1. In addition, the enrichGO function

of the ClusterProfiler package was utilized to conduct Gene

Ontology (GO) enrichment analysis on differentially expressed

genes. This analysis encompasses three levels of biological

processes, cellular components, as well as molecular activities.

Furthermore, we conducted Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analysis utilizing Enrichr (https://

maayanlab.cloud/Enrichr/) and Gene Set Enrichment Analysis

(GSEA), furtherly investigating differential genes.
High- and low-ICAM1 groups
immunological analysis

To accurately determine the composition and quantify the

immune cells in patient samples in the TNBC tumor

microenvironment, we used the CIBERSORT algorithm. The

algorithm utilized the Leukocyte Signature Matrix file and

Expression Data (LM22.txt) as input files. Statistical tests were

carried out utilizing rstatix package. Wilcox rank sum test was

applied to investigate immune cells ratio variations between the

high- and low-ICAM1 groups, and results were displayed using the

ggpubr R package.
ICAM1 protein interaction network analysis

The GeneMANIA online database (https://genemania.org)

employs a quick heuristic approach for predicting gene function

across various functional association networks. In-depth genomic

and proteomic data are used to identify functionally related genes,

and each functional genomic dataset is weighted following the

expected query value. GeneMANIA was utilized in this research

to examine the network of interactions between the ICAM1

proteins. Proteins in the network were subjected to the KEGG

annotation study using the Enrichr online tool, while proteins in the

protein-protein interaction (PPI) network was analyzed for GO

enrichment employing R clusterProfiler software.
Weighted gene co-expression analysis

The R WGCNA package was utilized to construct gene co-

expression networks in TNBC. We initially applied the

goodSamplesGenes function to remove any missing genes and

samples before clustering the samples and eliminating outliers

from the dataset. The correlation coefficient needs to be

calculated for the traditional analysis of the association between

two genes, but this method is that a threshold needs to be artificially

defined to confirm whether the gene expression is similar. WGCNA

uses the idea of a soft-threshold to solve this problem well, and used

the pickSoftThreshold function to to pick the best soft-threshold.

Genes with comparable expression patterns should be grouped
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together into a single module using the blockwiseModules

function for network creation and module discovery. After the

correlation between each module and phenotype was computed, the

modules that co-expressed the ICAM1 gene were chosen for further

investigation, and a module-correlation heat map was created using

the labelledHeatmap function. The GO and KEGG enrichment

analyses were conducted on the co-expressed genes of ICAM1 to

gain a deeper understanding of their biological significance.
Risk score model construction

We conducted Cox regression analysis on 97 patients with

TNBC according to genes intersecting in the blue module and PPI

network, combined with their expression levels and survival

statistics from tumor samples. Patients whose survival times were

not reported were removed from the analysis. We used the R caret

package to divide the patients into training and test sets at a 7:3

proportion. The training set was utilized for the training model,

followed by an assessment of the test set to prevent the model from

over-fitting, and model training process employed 10-fold cross-

validation. We performed Lasso Cox analysis and only included

genes exhibiting non-zero regression coefficients in the final

prognostic model. Patients were categorized into two groups,

high-risk and low-risk, utilizing the median risk score derived

from the risk score model for every patient. The R Survival

package was applied to generate a Kaplan-Meier survival curve,

which investigates survival rate variations among high-risk as well

as low-risk groups.

In GEO analysis, GSE58812 datasets, which contains 107 TN

breast cancer patients and undertook robust functional annotation

of the molecular entities, were chosen as the external validation set,

and The model was employed to categorize patients into high- and

low-risk groups, and subsequently, the risk score for every sample

was determined. Furthermore, the study conducted survival

difference analysis and utilized receiver operating characteristic

curve (ROC) analysis confirming risk score model accuracy across

the groups. Using the R timeROC function, we created a time-

dependent ROC curve assessing risk score model predictive

accuracy and estimated the area under the curve (AUC) for one,

three, as well as five years. The prognostic significance of the risk

score model has been verified through the utilization of both

univariate and multivariate Cox regression analyses. A nomogram

was created utilizing the R regression modeling strategies (rms)

package to forecast the prospective survival rate of patients.
Analysis of differences in immune function
and drug susceptibility in high- and low-
risk groups

Tumor purity variations, stromal score, and the immune score

of the tumor immune microenvironment were estimated for both

high-risk as well as low-risk groups. Scatter plots with risk scores

were generated, and the correlation was examined using a linear

fitting. R ESTIMATE package was utilized for immune cell
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quantification in high- as well as low-risk groups. The oncoPredict

software was utilized to forecast the drug response and compare

response variation to particular drugs among the high- as well as

low-risk groups.
Somatic variant analysis

TCGA dataset and R maftools package analysis were utilized to

retrieve TNBC somatic mutation data. The oncoplot function was

employed to create a waterfall chart of the top 20 gene mutations

comparing high- as well as low-risk groups. Then, we analyzed

mutation effects on ICAM1 protein structure using PyMOL v2.3.
Compound treatment response prediction

We used the CMap database to predict potential medications.

The up and down-regulated genes among high- as well as low-risk

groups were fed into the database, along with the top 15, as well as

the bottom 15 results, which were selected for a visualization based

on median tau scores. The 3 dimensional (3D) structures of the

drug candidates were visualized using the PubChem database.
Cell culture

American Tissue Culture Collection (ATCC, Manassas, VA,

USA) provided immortalized TNBC cell lines MDA-MB-231. These

cells were cultured in RPMI1640 media with 10% fetal bovine serum

(FBS). The MCF10A epithelial cell line was cultured in Dulbecco’s

Modified Eagle’s media with 10% fetal bovine serum(FBS-DMEM).

THP-1 cells (#GDC0100, China Center for Type Culture Collection,

Wuhan, China) were cultured in RPMI1640 media with 10% fetal

bovine serum (FBS). The cells were cultured and maintained under

standard conditions of 37°C and humidity of 5% CO2.
Quantitative real-time polymerase
chain reaction

The Trizol reagent (Invitrogen, USA) was employed for the

extraction of the total cellular RNA. High-quality RNA was

quantified through UV analysis. Reverse transcription of isolated

RNA into cDNA was carried out by employing the PrimeScript™

RT reagent kit (Takara Biomedical Technology, Beijing, China)

with a gDNA eraser. The SYBR® Premix Ex Taq™ was utilized to

conduct real-time polymerase chain reaction (RT-PCR). (Takara

Biomedical Technology, Beijing, China) on a LightCyclerR 480II

real-time fluorescence quantitative PCR (qPCR) instrument

(Roche, Shanghai, China). The 2-DDCT method was employed to

calculate fold changes, while Glyceraldehyde 3-phosphate

dehydrogenase (GAPDH) was utilized as a normalization agent

for mRNA expression.
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Cell co-culture assays

Phorbol 12-myristate 13-acetate (PMA)-treated THP-1 cells

(5 × 104) or CD8 T cells were inoculated in transwell chambers.

MDB-MA-231 cells with stable low expression of ICAM1 were

inoculated in the lower transwell chamber. RPMI1640 medium

containing 10% FBS was added for 48 h. Subsequently, Co-cultured

PMA-treated THP-1 cells or CD8 T cells analysis were performed

employing qPCR with enzyme-linked immunosorbent assay

(ELISA), respectively.
Cytokine analysis

After 24 h of co-culturing with MDA-MB-231 cells, the TNF-a,
interferon (IFN)-g, macrophage colony-stimulating factor (M-

CSF), interleukin (IL)-1b, TGF-b1, chemokine (C-C motif) ligand

7 (CCL17) levels in the macrophage and CD8 T cells were examined

using the ELISA kit (R&D systems, Bio-Techne, Shanghai, China)

following recommendations provided by the manufacturer.
In vitro cytotoxic assay

Cell-mediated cytotoxicity was assessed using a non-radioactive

lactate dehydrogenase (LDH) release assay (Roche), in accordance

with the manufacturer’s instructions. The measured values were

adjusted by subtracting the spontaneous LDH release from both the

target and effector cells. The percentage of specific lysis, indicating

the extent of cell death, was calculated using the formula:

(experimental release – target spontaneous release – effector

spontaneous release) divided by (target maximum release – target

spontaneous release). Each experiment was replicated three times,

and the results were consistent.
Statistical analyses

The data are shown in mean ± standard deviation (SD) format.

Statistical analysis was conducted utilizing Statistical Package for

Social Sciences (SPSS) version 22.0 (IBM Corp.) program. Group

differences were assessed utilizing either a one-way ANOVA with

Tukey’s post hoc test or a Student’s t-test. A statistically significant

level was a p-value <0.05.
Results

ICAM1 gene expression analysis

ICAM1 expression pattern may vary in different types of cancer

(Figure 1A). ICAM1 was weakly expressed in LUAD, SKCM, LUSC,

as well as KICH but was strongly expressed in BRCA, CHOL,

HNSC, KIRC, KIRP, STAD, THCA, as well as UCEC. TCGA,
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GSE76275, and GSE76250 datasets were chosen to evaluate ICAM1

expression in TNBC. Results demonstrated that ICAM1 expression

was more abundant in TNBC than in paracancer tissues

(Figures 1B–D), and ICAM1 is primarily localized to the plasma

membrane and cytoplasm (Figure 1E).
Analysis of clinical prognosis for ICAM1

Patientswithbreast cancerwere categorized into4 groups (luminal

A, luminal B, TNBC, and HER-2 over-expressed), as well as the

correlation between ICAM1 expression and DFS was analyzed.

However, except for a trend toward better prognosis in the high-
Frontiers in Immunology 05
ICAM1 group, there was no association between ICAM1 and

prognosis among the four groups (Figures 2A–D). We attempted to

merge the data from the four types of breast cancer. Results identified

that high-ICAM1 group patients had improved prognosis that was

statistically significant (hazard ratio [HR]=0.55, p=0.0074; Figure 2E).

The non-significant outcomes of the survival analysis were attributed

to the small TNBC sample size. Hence, the GSE21653 dataset was

analyzed, which revealed that patients belonging to the high-ICAM1

group exhibited a more favorable prognosis (Figure 2F). We then

selected the clinical parameters of age and stage to examine the

association between ICAM1 and TNBC. ICAM1 expression levels

between patients aged 65 years and more than 65 years were found to

be the same (Figure 2G). Furthermore, we found that stage I had the
B C D

E

A

FIGURE 1

ICAM1 gene expression analysis. (A) ICAM1 expression levels in 33 common cancer types; (B) ICAM1 expression levels in the TNBC tumors and
control tissues of the TCGA database; (C) ICAM1 in the tumors and control tissues of the GSE76275 dataset; (D) ICAM1 expression levels in the
tumor and control tissues of the GSE76250 dataset; (E) HPA database analysis of ICAM1 subcellular localization. *p<0.05, **p<0.01, ***p<0.001.
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highest ICAM1expression levels, followedby stage II, whereas stage III

had the lowest (Figure 2H). As the clinical stage of TNBC increased,

ICAM1expression levelsdecreased.Therefore,webelieve ICAM1may

act as a protective factor for TNBC.
Pathway enrichment analysis of the high-
and low-ICAM1 groups

Individuals were categorized into high- as well as low-ICAM1

group on the basis of ICAM1 median expression. We established
Frontiers in Immunology 06
|log2FC|>2, p<0.05, and identified 8296 differential genes. The high-

ICAM1 group had 3913 genes that were over-expressed and 4383

genes that were decreased among them (Table S2). GSEA of these

differential genes showed that epithelial-mesenchymal transition,

IFN response, and allograft rejection were over-expressed in the

high-ICAM1 group (Figures 3A–D), whereas oxidative

phosphorylation and KRAS signaling down pathway was

decreased in the high-ICAM1 group (Figures 3E, F). The GO

enrichment analysis revealed that differential genes were primarily

involved in leukocyte cell adhesion, monocyte differentiation,

control of T-cell activation, as well as leukocyte cell adhesion
B

C D

E F

G H

A

FIGURE 2

Clinical prognosis analysis of ICAM1. Survival curve of ICAM1 in: (A) TNBC; (B) luminal A type breast cancer; (C) luminal B type breast cancer; (D)
HER-2 over-expressed type breast cancer; (E) all breast cancer types; (F) the GSE21653 datasets; (G) Correlation between ICAM1 expression level
and age; (H) Correlation between ICAM1 expression level and clinical stage. **p<0.01, ns p>0.05.
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positive regulation (Figure 3G). KEGG enrichment analysis

revealed that differential genes were included in pathways such as

phagosomes, infection with human T-cell leukemia virus 1,

Toxoplasma gondii, and cellular molecular adhesion (Figure 3H).
ICAM1 mutation analysis

To understand the role of common mutations in developing

drug targets, we analyzed common ICAM1 mutation types in

various cancers using cBioPortal datasets. Results showed that
Frontiers in Immunology 07
point mutations, structural variations, amplifications, deep

deletions, as well as multiple modifications are the most common

forms of ICAM1mutations. An ICAM1mutation is most often seen

in ovarian epithelial tumors, whereas it is least frequently found in

renal clear cell carcinoma. Further, some cancers, such as

cholangiocarcinoma and leukemia, have only one point mutation

in ICAM1. We also found that the frequency of ICAM1mutation in

breast cancer is about 2%, and the mutation is mainly in the form of

amplification, accompanied by a point mutation and structural

variation (Figure 4A). A lollipop diagram shows the location of

mutations on the ICAM1 gene structure, with different color blocks
B

C D

E F

G H

A

FIGURE 3

Pathway enrichment analysis of the high- and low-ICAM1 groups. (A–F) Gene set enrichment analysis; (G) GO enrichment analysis; (H) KEGG
metabolic pathway enrichment analysis.
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indicating the different structural domains of the ICAM1. ICAM1

contains 4 immunoglobulin domains, and the T231M mutation

frequency is the highest in breast cancer (red arrows). ICAM1

exhibits several post-translational modifications, including

phosphorylation, acetylation, ubiquitination, N-linked

glycosylation, and O-linked glycosylation, in addition to

alterations at the transcriptional level (Figure 4B). Finally, we
Frontiers in Immunology 08
found that the side chains of T231 formed three hydrogen bonds

with the backbone of K246 in the wild type, whereas a mutation of

M231 weakened the hydrogen bonds between the side chain and

K246 backbone (Figure 4C). Further, we screened the TNBC data

from the cBioPortal database and found that copy number

amplification was the type of ICAM1 variation, and there was no

point mutation.
B

C

A

FIGURE 4

ICAM1 mutation analysis. (A) Mutation analysis of ICAM1 in common cancers; (B) Lollipop display of common mutations (point mutation and post-
translational modification mutation) of ICAM1 on the gene structure; (C) Display of the secondary structure of ICAM1 protein and molecular
interaction analysis after the T231M mutation.
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ICAM1 protein interaction network

The ICAM1 protein interaction network consists of 20 nodes

with 326 edges, and the interaction correlation is dominated by

physical interactions (77.64%; Figure 5A). GO enrichment analysis

findings demonstrated that interacting proteins are associated with

processes, such as leukocyte migration, integrin-mediated cell
Frontiers in Immunology 09
adhesion, leukocyte cell adhesion, and leukocyte activation,

implicated in immunological responses (Figure 5B). The

interacting proteins are located on the plasma membrane exterior

side, the plasma membrane signaling receptor complex, the

microvillus, as well as the actin-based cell projection (Figure 5C).

The interacting proteins are associated with molecular functions

such as integrin binding, heat shock protein binding, cytokine
B

C D

E

A

FIGURE 5

ICAM1 protein interaction network analysis. (A) PPI network for ICAM1; (B) Biological processes (BP) enrichment analysis; (C) Cellular components
(CC) enrichment analysis; (D) Molecular function (MF) enrichment analysis; (E) KEGG enrichment analysis.
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receptor binding, opsonin binding, and complement binding

(Figure 5D). The KEGG enrichment analysis revealed that

interact ing proteins part icipated in pathway such as

Staphylococcus aureus infection, malarial pathogenesis, leukocyte

transendothelial migration, and cell adhesion (Figure 5E).

Therefore, ICAM1 is essential for leukocyte motility, intercellular

adhe s i on o f l e uko c y t e s , and l e uko c y t e - a s s o c i a t e d

immunological activation.
Analysis of tumor infiltrates and tumor
microenvironments in the high- and low-
ICAM1 groups

The immune infiltration cell variations among the high- and

low-ICAM1 groups were examined using the CIBERSORT

algorithm. The findings demonstrated that compared to the low-

ICAM1 group, the high-ICAM1 group had considerably higher

levels of T-cell regulation, natural killer (NK) cell quiescence, and

M1 macrophage. Moreover, the low-ICAM1 group had higher

plasma cells than the high-ICAM1 group (Figure 6A). The

ESTIMATE algorithm was used for the analysis of stromal scores,

estimate scores, as well as immune scores of the high- and low-

ICAM1 groups. The high-ICAM1 group surpassed in terms of

stromal cells (p=0.037, Figure 6B), tumor cell purity (p=3.8e-10,

Figure 6C), and immune score (p=5.4e-08, Figure 6D). We

examined ICAM1 expression levels’ association with stromal cells,

tumor purity, and immunological scores. ICAM1 expression

corresponded well with the stromal cell quantity (R-0.26,

p=0.0035), tumor purity (R=0.52, p=3.2e-10), and immune score

(R=0.59, p=2.2e-13, Figures 6E–G). Also, we found a favorable

correlation between ICAM1 and six immunological checkpoint

molecules (CD274, CTLA4, HAVCR2, LAG3, PDCD1, and

PDCD1LG2; Figure S1).
Weighted gene co-expression analysis

The cluster tree showed that two samples (TCGA-A1-A0SK-01,

TCGA-D8-A1JF-01) deviated from the population and were

eliminated in subsequent analysis steps (Figure 7A). The scale

independence approached 0.95 when the network soft threshold

was set to 8, and the mean connectivity was nearing zero.

(Figure 7B). The transformation of the correlation matrix into an

adjacency matrix was achieved via calculating the weighted value of

the gene correlation coefficient, and the topological overlap matrix

(TOM) was built. Hierarchical clustering was performed according

to the constructed TOM, and different gene modules were obtained

according to minModuleSize=30, labeled with different colors,

resulting in a total of 28 modules,and grey modules represent

genes that were not classified under any module (Figure 7C). We

further extracted each eigengene and calculated the correlation

between co-expression modules and clinical characteristics (alive,

dead, and overall survival). The module’s association with overall

survival (OS) was our primary focus. Results from the Clinical

feature correlation heat map revealed that the black and blue
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modules had the highest correlation with OS (Figure 7D). Our

research focused on the ICAM1 gene located in the blue module, a

scatter plot of gene significance and module membership showed

that OS is connected with genes in the blue module (r=0.2, p=3.1e-

09, Figure 7E). We then examined the cellular pathways impacted

by the genes co-expressed in the blue module. GO enrichment

analysis results demonstrated that the blue module is associated

with processes, such as leukocyte-mediated immunity, positive

control of cytokine production, leukocyte adhesion, leukocyte

activation, and monocyte differentiation (Figure S2A) in addition

to immune receptor activity, cytokine receptor binding, cytokine

activity, cytokine receptor activity, and cytokine binding (Figure

S2B). The cellular components of the blue module include the

plasma membrane, secretory granules membrane, endocytic

vesicles, endocytic vesicles membrane, and phagocytic vesicles

(Figure S2C). KEGG enrichment analysis revealed that the blue

module participated in allogeneic rejection, blood cell lines, graft-

versus-host disease, antigen processing and expression, and

cytokine–cytokine receptor interactions. (Figure S2D).
Construction of a TNBC risk score model

We obtained 97 TNBC samples after excluding samples with

inadequate survival information. We selected the optimal value

using utilized the minimal absolute shrinkage along with selection

operator (Lasso) Cox regression analysis to derive a three-gene

signature (Figures 8A, B). The function for calculating the risk score

was formulated as follows: risk score = (-0.064*ICAM1)

+(-0.502*CD79B) +(0.524*MSR1), this indicates that CD79B and

ICAM1 are protective factors, whereas MSR1 is a risk factor

(Figure 8C). We analyzed the expression of levels of MSR1 and

CD79B genes in TNBC and found that CD79B expression in the

tumor tissues was not statistically different from the normal tissues;

however, the expression levels of MSR1 were significantly elevated

compared to the levels observed in the corresponding healthy

tissues (Figure 8D). We also performed immunohistochemical

validation of the CD79B and MSR1 genes employing the HPA

dataset. The correlation among the expression of MSR1 and CD79B

genes, as well as patient survival, was examined, and the results

indicated that individuals exhibiting elevated MSR1 expression

levels experienced a more unfavorable prognosis (Figure 8E),

while those with high CD79B had a better prognosis (Figure 8F).

We observed no difference in the CD79B expression for the tumor

and normal tissues (Figure 8G), while MSR1 in the tumor tissues

was expressed at higher levels than that in the normal tissues

(Figure 8H). ROC curves were utilized for evaluation of the

prognostic ability of the model and found an AUC of more than

0.7 at 1, 3, and 5 years (Figure 8I). Compared to the prognostic

value of ICAM1, CD79B, and MSR1, the risk score showed superior

prognostic capability than individual genes (Figures 8J–L).

We created a heat map after examining the expression of

ICAM1, MSR1, and CD79B genes in high- as well as low-risk

groups. The high-risk group exhibited a notable upregulation of

MSR1, whereas those in the low-risk group demonstrated a

significant upregulation of ICAM1 and CD79B (Figure 9A). A
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forest plot was constructed to show the findings of a multivariate

Cox survival analysis of the risk score model. Results indicated that

ICAM1 and CD79B are protective factors (HR=0.46, p=0.003),

while MSR1 is a risk factor (HR=2.18, p=0.01, Figure 9B). The

training sets indicated that patients belonging to the high-risk group

exhibited lower survival rates (Figure 9C). A notable difference in

the duration of OS was observed among high-as well as low-risk

groups (Figure 9D). We used the external dataset GSE58812 for the

evaluation of the generalization capacity of the risk score model.

The model predicted a higher death rate and shorter OS time for the
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high-risk group in the external data, demonstrating that the risk

score model also has a strong predictive capacity (Figures 9E, F).
Independent predictive value of
risk score model

The contingency table chi-square test and mosaic plots were

initially utilized to investigate the risk level (high and low-risk)

association with survival status (dead and alive). There was a strong
B C D

E F G

A

FIGURE 6

Analysis of tumor infiltrates and tumor microenvironment in the high- and low-ICAM1 groups. Correlation analysis between: (A) ICAM1 gene
expression and immune infiltrating cells; (B) ICAM1 gene expression and stromal scores; (C) ICAM1 gene expression and estimate scores; (D) ICAM1
gene expression and immune scores; (E) ICAM1 gene expression and stromal scores; (F) ICAM1 gene expression and estimate scores; (G) ICAM1
gene expression with immune scores. *p<0.05, **p<0.01, ***p<0.001.
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association between the risk level and survival status (p<0.05,

Figure 10A). We compared the disparities in the survival status,

clinical stage, and risk class and found that patients who died had a

higher risk score than those who survived (live event, Figure 10B).

Additionally, patients in stage II/III exhibited a statistically significant

increase in risk score compared to those in stage I (Figure 10C).

Univariate andmultivariateCoxregressionanalyseswereconducted to

examine the potential of the risk score model as an independent

prognostic factor. The results of the univariate Cox regression analysis

indicate that the risk score is a prognostic factor for survival in patients
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with TNBC (HR=1.21, 95% confidence interval [CI]=1.02-1.43;

Figure 10D). Upon inclusion of additional clinical parameters, such

as age and stage, in the multivariate Cox regression analysis, the risk

score persisted as a prognostic predictor (HR=1.16, 95%CI=1.09-1.25;

Figure 10E). Nomogram were created for patients with TNBC, which

included risk score along with clinical parameters, for survival

probability prediction at 1, 3, as well as 5 years (Figure 10F). The

calibrated curve combining the decision curve (C-index=0.72)

demonstrated that the risk score model exhibited a high level of

predictive capability (Figure 10G, H).
B
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E

A

FIGURE 7

WGCNA analysis. (A) Analysis of sample level clustering combined with clinical traits; (B) Analysis of the scale-free fit index (left) and the mean
connectivity (right) for various soft-thresholding power value; (C) Dendrogram of all genes clustered based on a dissimilarity measure (1-TOM)
together with assigned module colors. (D) Heat map of the correlation between module eigengenes and clinical traits of TNBC. Each cell contains
the Pearson correlation coefficient and p value. (E) Scatter plot of gene significance and module membership for blue module.
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High- and low-risk groups enrichment and
somatic variant analysis

To evaluate differences among high- as well as low-risk groups,

differential expression analysis was performed across the groups

and identified 157 genes (Table S3). The GO enrichment analysis

was done to examine the biological processes along with molecular
Frontiers in Immunology 13
functions of differentially expressed genes across high- as well as

low-risk groups. The enriched biological processes included

epidermis development, skin development, intermediate-filament

organization, and intermediate-filament cytoskeleton organization.

These genes were located mainly in the intermediate-filament

cytoskeleton and intermediate-filament, as well as exhibited

molecular functions, such as the structural component of the skin
B C
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L

FIGURE 8

Establishment of the risk score model based on the intersection of genes in the blue module and PPI network. (A, B) LASSO Cox regression analysis
of 2 genes; I: Cox regression coefficient of three genes; (D) CD79B and MSR1 genes in TNBC expression analysis (E) HPA database analysis of CD79B
expression; (F) HPA database analysis of MSR1 expression; (G) Survival analysis of MSR1 in TNBC; (H) Survival analysis of CD79B in TNBC; (I) Time-
dependent ROC curves of the risk score model; (J) Time-dependent ROC curves of the ICAM1 gene; (K) Time-dependent ROC curves of CD79B
gene; (L) Time-dependent ROC curves of MSR1 gene.
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epidermis and the structural component of the cytoskeleton

(Figure 11A). The results of the KEGG enrichment analysis

(Figure 11B) demonstrated that the differentially expressed genes

were mainly correlated with the neuroactive ligand–receptor

interaction, taste transduction, Staphylococcus aureus infection,

estrogen signaling pathway, and other metabolic pathways. We

also investigated somatic mutations in the cohorts categorized as

high- and low-risk, revealing a high frequency of mutations in

TP53, TTN (titin), and SYNE1 (Spectrin Repeat Containing

Nuclear Envelope Protein 1) in both groups. The observed

mutation rate of the TTN gene was significantly greater in the

high-risk group (Figures 11C, D). Programmed cell death ligand 1
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(PD-L1), as well as tumor mutational burden (TMB), are

commonly used as indicators for the evaluation of the efficacy of

immunotherapy and identify populations that are likely to benefit

from immunotherapy (19). As a result, we discovered that the high-

risk group exhibited elevated levels of TMB and PD-L1 expression

compared to the low-risk group (p=0.036 and p=0.04, respectively,

Figures 11E, F). The Tumor Immune Dysfunction and Exclusion

(TIDE) score is an index utilized for forecasting the efficacy of

tumor immunotherapy. An elevated TIDE score usually indicates

that patients respond poorly to immunotherapy, while a decreased

TIDE score is indicative of a more favorable response. After

calculating the TIDE score, we found that the TIDE scores of the
B

C D

E F

A

FIGURE 9

Validation of the risk score model. (A) Expression of ICAM1, MSR1, and CD79B in the high- and low-risk groups; (B) Forest plot of the gene
associated with the risk score model; (C) Linkage diagram of the risk score model in the training set; (D) Survival analysis of high- and low-risk
groups in the training set; (E) Linkage diagram of the risk factors of the risk score model in the GSE58812 dataset; (F) Survival analysis of the high-
and low-risk groups in the GSE58812 dataset.
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low-risk group were significantly greater than those of the high-risk

group, suggesting that the high-risk group exhibited a more

favorable response to immunotherapy (Figure 11G). Based on

these findings, our hypothesis proposes that immunotherapy

could benefit patients in the high-risk group of TNBC.
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Immune comparison among patients in the
high- and low-risk group

the risk score association with immune infiltration was furtherly

investigated in TNBC. The purity of tumor cells is known to be
B C

D E

F G

H

A

FIGURE 10

Independent predictive value of the risk score model. (A) Mosaic plot of the risk score and patient survival status indicators; (B) The correlation
between the risk score and survival status of patients with TNBC; (C) Correlation between the risk score and clinical stage of patients with TNBC; (D)
Univariate Cox regression analysis of the risk score and other clinical indicators; (E) Multivariate Cox regression analysis of the risk score and other
clinical indicators; (F) Nomogram predicts the probability of the 1-, 3-, and 5-year OS; (G) Calibration curve of nomogram; (H) Decision curve of
nomogram. *p<0.05, **p<0.01.
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correlated with the prognosis as well as tumor immune infiltration.

Therefore, we employed the ESTIMATE method to analyze the

correlation and calculate the immune score, stromal cell

concentration, and tumor purity in patients with TNBC. We

found a correlation across risk score and quantity along with the

purity of tumor cells (estimated scores, R=0.14, p=0.046) and

stromal cells (stromal scores, R=0.26, p=0.034, Figures 12A–C).
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However, no discernible correlation was found among the risk score

as well as the immune score (Figure 12B). Subsequently, we

examined the connection between 23 immune cells and immune

scores using single-sample gene set enrichment analysis (ssGSEA).

Our findings showed that the high-risk group was mostly enriched

with macrophage M1, whereas the low-risk group was enriched

predominantly with B-cell naïve, B-cell memory, and T-cell
B
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FIGURE 11

Enrichment and somatic variant analysis of the high- and low-risk groups. (A) GO enrichment analysis of the differentially expressed genes in the
high- and low-risk groups; (B) KEGG enrichment analysis of differentially expressed genes in the high- and low-risk groups; (C) Waterfall plot
displays gene mutation information with high mutation frequencies in the high-risk group; (D) Waterfall plot displays gene mutation information with
high mutation frequencies in the low-risk group; (E) TMB difference in the high- and low-risk groups. (F) PD-L1 difference in the high- and low-risk
groups; (G) TIDE score for the high- and low-risk groups. *p<0.05.
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follicular helper cells (Figure 12D). To forecast the association

between risk score and drug sensitivity, we used the oncoPredict

algorithm and created a bubble plot to facilitate the clinical

translation of the model. The graph illustrates that although the

pharmaceuticals ulixertinib, osimertinib, AZD2014, and The

results indicate a negative association between Afatinib and
Frontiers in Immunology 17
the r i sk score , TAF1 5496 , and OF 1. Converse ly ,

Dihydrorotenone exhibited a positive association with the risk

score. (Figure 12E). The sensitivity differences for the seven

drugs between the high-and low-risk groups are depicted in

Figure 12F. Our findings may serve as a starting point for future

clinical translations.
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FIGURE 12

Immune comparison of patients in the high- and low-risk groups. Correlation of (A) ESTIMATE score, (B) immune scores, and (C) stromal scores
between the risk score; (D) Proportion of immune infiltrating cells in the high- and low-risk groups; (E) Correlation between immune score and drug
sensitivity predicted by the oncoPredicts algorithm; (F) Difference in the sensitivity of seven drugs between the high- and low-risk groups. *p<0.05,
**p<0.01.
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Treatment decisions based on the risk
score model

A total of 157 genes were found to be differentially expressed

between the high- and low-risk groups. Among these genes, 42 were

observed to be down-regulated, while 115 were up-regulated.

Subsequently, we used the CMap database to predict the

therapeutic effects of small-molecule drugs depending on the

outcomes of the differential expression analysis. According to the

median tau values, ten different perturbagens, including genes and

knockouts, were selected. The results suggest that, in addition to

using drugs such as VEP-155008 and PD-168077, it may be

beneficial to knock down or down-regulate the expression of

MTTP, CASP4, EIF2AK2, SRSF4, CCNF, CIAPIN1, GPX4,

CTRB2, PTS, and E2F3 for improvement of TNBC patient’s

prognosis. The prognosis was found to be poorer when genes

such as CGRRF1, GCLM, GTPBP3, VDAC1, CREBL2, GRN,

MPL, SRRM1, PNRC1, MECP2, ATRX, or UGCG were knocked

down or downregulated. Additionally, patients had a poorer

prognosis due to the use of epigallocatechin drugs, overexpression

of the Solute Carrier Family 25 Member 22 (SLC25A22) and E74

Like ETS Transcription Factor 1 (ELF1) genes, and other factors

(Figure 13A). The 3D structures of the small molecule drugs VEP-
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155008, PD-168077, and epigallocatechin were analyzed using the

PubChem database (Figures 13B–D).
Low expression of ICAM1 promotes
polarization of M2 macrophages and
T-cell exhaustion

In our previous study, we revealed that individuals exhibiting

reduced ICAM1 expression experienced a decrease in their OS

duration and worse anti-PD-L1 drug sensitivity. Furthermore, we

performed ICAM1 overexpression in MDB-MA-231 cells, where

cells transfected with the Empty vector represented the Low ICAM1

group, while those transfected with the ICAM1 overexpression

plasmid represented the High ICAM1 group (Figure 14A). Thus,

we speculated whether the low expression of ICAM1 altered the

tumor microenvironment in TNBC patients. To validate this

speculation, we used TNBC cells with low ang high ICAM1

MDB-MA-231 cells and co-cultured them with PMA-treated

THP-1 cells and CD8 T cells, respectively. We found that after

co-culturing with macrophages, the polarization ratio of M2-type

macrophages increased significantly, and the levels of tumor-

promoting cytokines TGF-b1, CCL17, and M-CSF were
B C D

A

FIGURE 13

Treatment decisions based on the risk score model. (A) Results of the query connectivity map; the 3D structure tomographs of the three candidate
small-molecule drugs for LUAD. (B) VEP-155008, (C) PD-168077, and (D) epigallocatechin.
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significantly increased (Figures 14B–D). However, TNBC cells with

low ICAM1 expression co-culturing with CD8 T cells to study the

alteration of ICAM1 expression in the tumor microenvironment of

TNBC patients, the expression levels of PD-1 as well as CTLA4 were

substantially elevated, and the levels of IFN gamma, TNF-a, and
granzyme were significantly decreased (Figures 14E, F). Moreover,

we have included the results of the LDH assay to evaluate the

cytotoxic effects of CD8 T cells on MDB-MA-231 cells. The results

demonstrated that low ICAM1 MDD-MA-231 cells were less

sensitive to CD8+ T cells (Figure 14G). So, low expression of

ICAM1 may be associated with immune escape in TNBC.
Discussion

TNBC is a subtype of breast cancer that exhibits high

aggressiveness, leading to a poor prognosis and a tendency for

early recurrence (20, 21). The overall survivals of most patients with

metastatic TNBC after systemic chemotherapy is less than 18

months (22). Therefore, there is a need for new treatments to

prolong survival. In recent years, patient survival in other solid

tumors has been prolonged with immunotherapy. Immune

checkpoint inhibitors are commonly used immunotherapy

medications that boost the cytotoxicity and proliferation ability of

tumor-infiltrating lymphocytes by blocking the binding of

inhibitory receptors (including CTLA-4 and PD-1) (23). TNBC

may benefit from immunotherapy more than other breast cancer

subtypes due to a higher PD-L1 expression in tumor and immune

cells as well as a higher TMB. With an increase in TMB, the number

of tumor-specific neoantigens displayed on the surface of tumor

cells also increases. These neoantigens activate neoantigen-specific

T lymphocytes, triggering anticancer immune responses (24–26).
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New biomarkers in immunotherapy responses need to be identified

to improve the therapeutic impact and thus quality of life. The

immune system and inflammatory responses of the body are

influenced by ICAM1. It may also facilitate tumor cell attachment

to different cell types, enabling malignancies to evade immune

monitoring. Tumor incidence and growth are correlated to

ICAM1 expression (27). ICAM1 gene was the focus of our study.

Pan-cancer expression analysis revealed that ICAM1 is expressed

differentially in cancer types, and ICAM1 expression was up-

regulated in TNBC.

ICAM1 was reported to be related to the prognosis of different

tumors (28). The present study aimed to examine the correlation

between the expression of ICAM1 and TNBC prognosis and found

that ICAM1 expression was associated with Disease Free Survival

(DFS). However, this variation did not achieve statistical

significance. The DFS rate of people having low ICAM1

expression was poorer than those with high ICAM1 expression.

The inadequate sample size is the cause of the low 5-year survival

rate in breast cancer. Research has indicated that a reduction in

ICAM1 expression results in diminished cancer cell adhesion and

promotes distant metastasis of cancer cells (29). It is speculated that

low ICAM1 expression enhances the metastatic potential of TNBC

and reduces the survival time of patients. Our investigation of the

relationship between ICAM1 expression and clinical characteristics

revealed that ICAM1 levels were low at higher clinical stages of

TNBC. This outcome is consistent with the prognosis correlation.

The expression level of ICAM1 decreases as TNBC progresses, and

this has a negative impact on the prognosis. Mutation analysis

found that the non-synonymous mutation T231M in ICAM1

reduced the hydrogen bonds between the main chains of K246

and weakened the interaction. It is speculated that it may affect the

stability of the ICAM1 protein. A search of the COSMIC database
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FIGURE 14

Low expression of ICAM1 promotes polarization of M2 macrophages and T-cell depletion. (A) The overexpression of ICAM1 in MDB-MA-231 cells via
Lipofectamine2000 mediated transfection. (B) schematic diagram of the co-culture of low- and high ICAM1 MDB-MA-231 cells with PMA-treated
THP-1 cells and CD8 T cells; (C) Expression levels of CD206, CD163, and Arg1 increased significantly in the cells after co-culture based on the qRT-
PCR assay and Western blot; (D) ELISA to detect the levels of TGF-b1, CCL17, and M-CSF in the cell culture medium; (E) qRT-PCR and western blot
to detect the mRNA expression levels of PD-1 and CTLA4 in CD8 T cells after co-culture with low- and high ICAM1 MDA-MB-231 cells; (F) ELISA to
detect the levels of IFN-gamma, TNF-a, and granzyme levels. (G) The LDH assay kit is used to detect the cytotoxic effect of CD8 T cells on MDA-
MB-231 cells. Data are presented as mean ± SD and statistically analyzed using 2-way ANOVA, **p<0.01, *** <0.001, **** <0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1176647
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2023.1176647
showed that the T231Mmutation is only found in breast cancer and

may impact immune system signaling, however, no other studies

have reported this mutation. Moreover, Individuals belonging to the

high-risk group exhibit significantly elevated mutation rates in

TP53, TTN, and SYNE1 genes, along with increased TMB and

PD-L1 levels and decreased TIDE scores. Studies have shown that

p53, a tumor suppressor protein, can regulate the expression of

ICAM1. Activation of p53 in response to cellular stress or DNA

damage can lead to increased ICAM1 expression. This upregulation

of ICAM1 may promote immune cell recruitment and facilitate the

anti-tumor immune response (30). ICAM1 expression on tumor

cells or surrounding stromal cells can modulate immune cell

interactions and affect the infiltration of cytotoxic T cells into the

tumor. Conversely, p53 mutations or dysfunction can lead to

immunosuppression or evasion of immune surveillance. The

i n t e r p l a y b e twe en ICAM1 and p53 in th e tumo r

microenvironment can impact tumor progression, immune

responses, and patient outcomes (31, 32).

The relationship between ICAM1, TTN (Titin), and SYNE1

(Spectrin Repeat Containing Nuclear Envelope Protein 1) in cancer

is not extensively studied, and their direct interplay in cancer is not

well established. SYNE1 has been implicated in the regulation of

gene expression through its involvement in chromatin organization

and nuclear envelope dynamics. Altered gene expression patterns

can influence the tumor microenvironment by affecting immune

cell infiltration, extracellular matrix remodeling, and angiogenesis

(33). Dysregulation of SYNE1 or related proteins may therefore

contribute to changes in the tumor microenvironment through

indirect effects on gene expression program (34). The tumor

microenvironment is characterized by altered mechanical

properties, such as increased tissue stiffness. TTN, being a protein

involved in muscle elasticity, may contribute to the mechanical

properties of cancer cells or the surrounding stroma. Changes in

TTN expression or function within the tumor microenvironment

could potentially influence the mechanical interactions between

cancer cells, the extracellular matrix, and surrounding stromal cells

(35). Besides, TTN can interact with various signaling molecules

and influence signal transduction pathways. In the tumor

microenvironment, signaling pathways play a crucial role in cell

survival, proliferation, and interactions with the surrounding

stroma. Changes in TTN expression or alterations in its

interaction with signaling molecules could potentially impact

cellular signaling events within the tumor microenvironment (36).

The protein interaction network has shown that ICAM1

participates in leukocyte cell adhesion, leukocyte mobility, and

leukocyte-related immune activation. Analyzing the variations

within the high-ICAM1 as well as low-ICAM1 groups suggests that

ICAM1 is involved in regulatory processes, such as leukocyte cell

adhesion, mononuclear cell differentiation, control of T-cell

activation, and positive regulation of leukocyte cell adhesion.

Moreover, high-ICAM1 groups outperformed stromal cells

(p=0.037), tumor cell purity (p=3.8e-10), and immune score

(p=5.4e-08). The expression of ICAM1 correlated with common

immune checkpoint inhibitors in the ICAM1 low-expression group.

ICAM1may thus be used as a molecular marker in TNBC treatment.
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M1 macrophages are immunological cells with tendencies in

existence in a polarized state. When macrophages are stimulated,

they develop into M1 macrophages and exhibit pro-inflammatory

and cytotoxic activities. In the early stage of lung cancer, M1

macrophages can recognize and remove tumor cells and play a

role in immune surveillance (37). In addition, M1 macrophages can

induce and enhance the immune response of T cells, thus enhancing

the cytotoxic effect on tumors (38). However, the role of M1

macrophages may shift to promoting tumor growth and

metastasis when lung cancer progresses to advanced stages (39).

The study conducted a comparison of immune cell infiltration

between high- and low-risk groups in TNBC. The findings revealed

that the high-risk group exhibited a greater abundance of M1

macrophages. Thus, combining findings from previous studies

with our analysis, we suggested that M1 macrophages in the

high-risk set promoted TNBC cell growth and metastasis.

The WGCNA approach is based on a network with a scale-free

structure, which examines the gene expression patterns of many

sample genes. The genes are clustered according to the expression

patterns, and the clustered gene set is called a module. The

correlation between the module and clinical information can be

analyzed, and the key module can be identified (40). The WGCNA

analysis was used in this study to identify a total of 28 modules

based on the TNBC gene expression data. The association between

each module and the patient’s OS time was also examined. Among

them, the black and blue modules significantly correlated to patient

survival time, and ICAM1 belonged to the blue module. The genes

in the blue module are involved in leukocyte-mediated immunity,

cytokine production positive regulation, leukocyte cell adhesion, as

well as other biological processes, suggesting that these co-expressed

genes are implicated in the immunology of TNBC. The risk score

model is often employed to examine survival outcomes related to

patients’ disease characteristics (41).

According to the genes intersection of the blue module and the

PPI network, a risk score model comprising ICAM1, MSR1, and

CD79B was constructed using Lasso Cox regression analysis.

Several studies have shown that the MSR1 gene may be involved

in tumorigenesis and development and that the level of MSR1

expression in tumors is closely related to malignancy and prognosis.

For example, reduced expression levels of MSR1 in tumors, such as

lung cancer and melanoma, may be associated with invasion,

metastasis, and poor prognosis. While in other tumors, such as

colorectal cancer, a high expression of MSR1may be associated with

poor prognosis. We also found that high MSR1 expression in TNBC

had a poorer prognosis (42–44). The expression levels of the CD79B

gene were associated with prognosis in various cancers. In gastric

and non-small cell lung cancer, a decreased CD79B expression was

related to shorter survival as well as tumor malignancy (45, 46).

Thus, CD79B is a protective factor in gastric and non-small cell lung

cancers, which corroborated the finding that TNBC patients

exhibiting elevated levels of CD79B expression demonstrated a

more favorable prognosis. The patients were split into two

distinct groups, which are high- and low-risk according to risk

score function. The TCGA and GEO datasets were employed to

compare the survival outcomes of the two groups. The results
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indicated that the high-risk group had a shorter OS time and higher

mortality rate. The independent prognostic capability of the risk

score model was demonstrated by both univariate and multivariate

Cox regression analyses. The risk score model showed a strong

predictive performance based on the time-dependent ROC analysis,

a nomogram was created to forecast the likelihood of patients’

survival in the future. Significantly, the differential expressions of

genes in the high- and low-risk groups with TNBC had an influence

on biological processes, such as the development of the epidermis

and skin and the construction of intermediate filaments in the

cytoskeleton. The differentially expressed genes are believed to be

linked to the epidermal growth factor (EGFR) signaling pathway.

Moreover, the high-risk group had substantially increased TMB and

PD-L1 expression levels and lower TIDE scores than the low-

risk group.

As we investigated the relationship between the risk score and

medication sensitivity further, we discovered that the risk score had a

favorable associationwithTAF1 5496,OF1, anddihydrorotenone and

an unfavorable correlation with ulixertinib, osimertinib, AZD2014,

and afatinib. These findings lead to the hypothesis that

immunotherapy may benefit high-risk group patients. To better

decide treatment strategies for patients with TNBC, a link between

drug, gene, and disease was found through changes in gene expression,

and the analysis was completed using the CMap database. The results

showed that the knockdown of genes, such as MTTP, CASP4,

EIF2AK2, and SRSF4, and the use of VEP-155008 and PD-168077

improved the prognosis in patients with TNBC. In recent years, VER-

155008 has gained increased research focus in tumor therapy. Several

studies have shown that VER-155008 has anti-tumor effects on

cancers, such as colorectal, lung, and breast (47, 48). Our results

showed that VER-155008 improved the prognosis of patients with

TNBC. PD-168077 has gained increased attention in the treatment of

obesity and metabolic diseases. Several studies have shown that PD-

168077 can improve insulin resistance and secretion and lower blood

glucose levelsby activatingGPR40 (49).There arenoreportson theuse

of PD-168077 in oncology treatment. Ourfinding that PD-168077 can

be used to improve TNBC patients’ prognosis requires additional

preclinical as well as clinical studies to understand its efficacy and

safety. However, the knockdown of CGRRF1, GCLM, GTPBP3, and

VDAC1 and the use of epigallocatechin led to a worse prognosis for

patients. Epigallocatechin has been investigated as a possible adjuvant

therapeutic agent. Research findings have indicated that it can prevent

the proliferation and spread of cancer cells through pathways, such as

regulation of apoptosis, cell cycle, and tumor angiogenesis (50).

However, our study suggests that epigallocatechin may not benefit

patientswithTNBC.WhenTNBC cells with low expression of ICAM-

1 were co-cultured with PMA-treated THP-1 cells and CD8 T cells,

respectively, a substantial rise in polarized M2-type macrophage

proportion was observed. an immunosuppressive macrophage

subtype that can inhibit immune cell activation and promote tumor

growth (51). This may be related to the fact that TNBC cells low in

ICAM-1 expression inhibits the immune cells’ function in the tumor

microenvironment and induce polarization of M2-typemacrophages.

Inaddition, the expressionofPD-1andCTLA4may increasewhen low

ICAM-1expressingTNBCcells are co-culturedwithCD8Tcells,while

secreted immune effector molecules are reduced, suggesting that CD8
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T-cells may be suppressed. Thus, low expression of ICAM1 promotes

the polarization of M2 macrophages as well as T-cell exhaustion.

Interestingly, we found that ICAM1 levels gradually decrease with

the progression of TNBC. This can cause an increase in tumor cell

invasion andmetastasis, allowing evasion of immune surveillance and

thus negatively impacting patient prognosis. In contrast, in prostate

cancer, tumor cells evade NK cell attack by suppressing ICAM1

expression (52). Theranostic nanoparticles modified with anti-

ICAM1 target could specifically target TNBC in an in vitro

experiment by Chen et al. (53). However, a recent study found that

ICAM1-deficient breast cancer cells develop large metastatic lesions

(54). Thus, the use of anti-ICAM1 targets to treat tumors may be

accompanied by an increased risk of potential metastasis.Therefore,

the clinical significance of anti-ICAM1 approaches may be further

enhanced through personalized medicine approaches. Identifying

patient subgroups with elevated ICAM1 expression or specific

genetic profiles associated with ICAM1 regulation can help tailor

treatment strategies and improve therapeutic responses. However,

ICAM1has been implicated in themetastatic spread of cancer cells. By

promoting interactions between tumor cells and endothelial cells,

ICAM1 facilitates the adhesion and transmigration of cancer cells to

distant organs. Hence, there’s still the complexities and potential

limitations of anti-ICAM1 approaches.

There are still some limitations of our study. Firstly, the TCGA

database for BRCA included only a small number of TNBC cases. The

analysis comprised a sample of fewer than 100 patients, following the

exclusionof samples thathad incomplete survivaldata. Secondly,when

we analyzed the sub-cellular localization of ICAM1, only breast cancer

samples couldbe selected because noTNBCsamples related to ICAM1

expression were retrieved from the HPA database; this may affect the

analysis results. Nevertheless, the limited sample size lacks conclusive

evidence on whether the up-regulation of ICAM1 is closely related to

the increase in TNBC metastases, high recurrence rate, and OS,

additional clinical studies are warranted in this direction.

In conclusion, the ICAM1 expression level is correlated with the

TNBC prognosis. Low ICAM1 expression may be related to

immune escape, leading to poor treatment response and

worsened prognosis. ICAM1 has the potential to function as a

prognostic indicator as well as a treatment target for TNBC.
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