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Consensus cluster analysis of
apoptosis-related genes in
patients with osteoarthritis and
their correlation with immune
cell infiltration

Enming Yu, Mingshu Zhang, Gongping Xu, Xiaoqi Liu
and Jinglong Yan*

Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University,
Harbin, China
Background: Osteoarthritis (OA) progression involves multiple factors, including

cartilage erosion as the basic pathological mechanism of degeneration, and is

closely related to chondrocyte apoptosis. To analyze the correlation between

apoptosis and OA development, we selected apoptosis genes from the

differentially expressed genes (DEGs) between OA and normal samples from

the Gene Expression Omnibus (GEO) database, used lasso regression analysis to

identify characteristic genes, and performed consensus cluster analysis to further

explore the pathogenesis of this disease.

Methods: The Gene expression profile datasets of OA samples, GSE12021 and

GSE55235, were downloaded from GEO. The datasets were combined and

analyzed for DEGs. Apoptosis-related genes (ARGs) were collected from the

GeneCards database and intersected with DEGs for apoptosis-related DEGs

(ARDEGs). Least absolute shrinkage and selection operator (LASSO) regression

analysis was performed to obtain characteristic genes, and a nomogram was

constructed based on these genes. A consensus cluster analysis was performed

to divide the patients into clusters. The immune characteristics, functional

enrichment, and immune infiltration statuses of the clusters were compared. In

addition, a protein–protein interaction network of mRNA drugs, mRNA-

transcription factors (TFs), and mRNA-miRNAs was constructed.

Results: A total of 95 DEGs were identified, of which 47 were upregulated and 48

were downregulated, and 31 hub geneswere selected as ARDEGs. LASSO regression

analysis revealed nine characteristic genes: growth differentiation factor 15 (GDF15),

NAMPT, TLR7, CXCL2, KLF2, REV3L, KLF9, THBD, and MTHFD2. Clusters A and B

were identified, and neutrophil activation and neutrophil activation involved in the

immune response were highly enriched in Cluster B, whereas protein repair and

purine salvage signal pathways were enriched in Cluster A. The number of activated

natural killer cells in Cluster B was significantly higher than that in Cluster A. GDF15

and KLF9 interacted with 193 and 32 TFs, respectively, and CXCL2 and REV3L

interacted with 48 and 82 miRNAs, respectively.
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Conclusion: ARGs could predict the occurrence of OA and may be related to

different degrees of OA progression.
KEYWORDS

osteoarthritis, apoptosis-related genes, differentially expressed genes, immune
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1 Introduction

Osteoarthritis (OA) mainly affects the articular cartilage and is

the most common joint disease. It is characterized by joint pain,

stiffness, hypertrophy, and limited activity. It is most common in

weight-bearing joints, such as the knee, hip, cervical, and lumbar

spine, as well as the proximal and distal finger joints (1). It is the most

prevalent among middle-aged and older individuals. Among people

aged >65 years, the incidence of the disease is as high as 50% (2). The

following clinical manifestations support the diagnosis of OA: Age of

onset ≥ 45 years; Persistent usage-related joint pain in one or a few

joints; Early morning and Short-lived (≤ 30 minutes) stiffness (3).

According to X-ray findings, OA can be classified into 5 grades as

follows: 0-None; 1-Doubtful; 2-Minimal; 3-Moderate; 4-Severe (4).

The differential diagnosis for OA mainly depends on the location of

the affected site and the presence other systemic symptoms. The

differential diagnosis includes rheumatoid arthritis, psoriatic arthritis,

crystalline arthritis, hemochromatosis, infectious arthritis, and other

soft-tissue abnormalities. This disease is a progressive disease that

eventually causes degeneration, fibrosis, rupture, defects, and damage

to the entire articular surface of the joint, considerably affecting the

lives of patients. If not treated promptly, there may be a risk of

disability for patients (5). Owing to the fact that the etiology and

pathogenesis of OA are not yet fully understood, symptomatic

treatment can only be used to delay the progression of the disease,

alleviate the symptoms of patients, correct deformities through

surgery in the late stage, and improve the function of affected limbs

(6). Therefore, OA pathogenesis requires further investigation.

Currently, most researchers believe that OA is the result of a

combination of mechanical and biological factors leading to an

imbalance in the degradation and anabolism of articular

chondrocytes, extracellular matrix (ECM), and subchondral bone (7).

Apoptosis is a process of programmed cell death controlled by genes.

The human body maintains the homeostasis of various system tissues

by clearing the dead cells and metabolites. However, if the apoptosis

process is disrupted, it is directly or indirectly related to the occurrence

of many diseases, such as tumors, autoimmune diseases, local injuries,

etc. (8). Apoptosis in the cartilage tissue related to matrix degradation

and calcification has been detected in OA cartilage, indicating that

apoptosis plays a role in OA pathogenesis (9).

To comprehensively understand the role of apoptosis and

immune mechanisms in the occurrence and development of OA,

we analyzed transcriptome data from the GEO database, selected

characteristic apoptosis-related genes (ARGs) that could predict

OA occurrence, and attempted to cluster patients with OA based on
02
these genes. We analyzed the immune characteristics, biological

pathways, and immune infiltration between different clusters and

searched for drugs and molecules that inhibit OA occurrence.
2 Materials and methods

2.1 Data downloading and
initial preparation

OA-related chip sequencing data and corresponding clinical

sample information were downloaded from the GSE12021 (10) and

GSE55235 (11) datasets in the GEO database. The sample source was

Homo sapiens and the two dataset sequencing platforms were GPL96

and GPL97. The data set GSE12021 contains 33 samples in total,

including 13 normal samples and 20 samples from patients with OA;

the data set GSE55235 contains 20 samples in total, including 10

normal samples and 10 samples from patients with OA. We integrated

the above sets of data expression into one data set, which was named as

the combined data or combined gene expression. Then, the R package

“sva” (12) was used to correct the batch effect between different data

sets and log2 (X+1) standardization was performed. Standardized data

were used as the basis for subsequent analyses.
2.2 Apoptosis-related differentially
expressed genes

A total of 3,576 ARGs were collected from the GeneCards database

(13) and other documents. The differential gene analysis between OA

samples and normal samples was conducted using the R package

“limma” (14). Significant DEGs were screened using the absolute value

of the log2Fold change (log2FC) > 1 and P< 0.05. The upregulated

genes were defined as log2FC > 1 and P< 0.05, and the downregulated

DEGs were defined as log2FC< - 1 and P< 0.05. The DEG expression

results are displayed on a volcano map and a heatmap. The ARGs and

DEGs are intersected as hub genes called ARDEGs.
2.3 Least absolute shrinkage and
selection operator regression analysis
and risk model construction

To accurately screen for biomarkers related to OA, we

conducted dimensionality reduction screening using the LASSO
frontiersin.org
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model with 1,000 iterations (15). The objective function of the

LASSO regression model was as follows:

min
Z  

(a0,ajXi,Yi +   ljjajj1)

where l represents the penalty coefficient, which can be selected

through 10-fold cross-validation for the chosen l; ||a||1 is defined as
the sum of the absolute values of each vector element. LASSO

regression was implemented through the R package “glmnet” (16).

A risk-scoring formula was established by weighing each

normalized gene expression value with the penalty coefficient of

the characteristic gene.

riskScore  =  o
i
Coefficient (genei)*mRNA Expression ( genei)

Subsequently, a nomogram model was constructed based on

selected candidate ARDEGs to predict OA.
2.4 Consensus clustering method and
identification of apoptotic subtypes

Based on the expression data of the characteristic genes in the

Combine data chipset with all the samples, apoptotic clusters were

identified using the R package “ConsensusClusterPlus” (17). The R

package “limma” was used again to analyze the differential genes of

different apoptotic subtypes in the combined data set, with |log2FC|

> 1 and P< 0.05 as the differential gene-screening criteria. DEGs

with |log2FC| > 4 and P< 0.05 were considered upregulated, whereas

those with |log2FC|< -3 and P< 0.05 were considered

downregulated. The results are displayed using a volcano map.
2.5 Gene function enrichment analysis by
GO and single-sample gene set
enrichment analysis

GO enrichment analysis (18) is a common method for conducting

large-scale functional enrichment studies on biological processes (BPs),

molecular functions (MFs), and cellular components (CCs). It was

conducted for all the ARDEGs through the “clusterProfiler” package

(19). To analyze the differences in BPs between subgroups based on

gene expression data, we used ssGSEA (20), which is a computational

method that analyzes whether a specific gene set shows statistical

differences between two biological states. It is commonly used to

estimate changes in pathways and BPs in expression dataset samples,

with a P value< 0.05 considered to be statistically significant.
2.6 Correlation analysis and chromosome
location between genes

To explore the correlation among ARDEGs, spearman analysis

was performed through the R package “cowplot” (21), and heat

maps, scatter maps, and correlation curves were drawn. P values<

0.05 imply that the genes have a strong correlation. The R package
Frontiers in Immunology 03
“RCircos” (22) was used to draw the location map of the key genes

in the chromosome with the location information of genes

downloaded from the ENSEMBL database (23).
2.7 CIBERSORT for the infiltration state of
immune cells

CIBERSORT (https://cibersort.stanford.edu/) (24) is an R/

webpage version tool that deconvolutes the expression matrix of

human immune cell subtypes based on the principle of linear

support vector regression. The expression of 22 types of known

immune cells was calculated and evaluated for infiltration status

using the CIBERSORT algorithm, and the percentage difference of

immune cells between the OA samples and the normal samples was

tested using the Wilcoxon test, with a P value< 0.05 considered to be

statistically significant.
2.8 Drug–gene interaction analysis

We searched the DGIdb database (Version 3.0.2, https://

www.dgidb.org) (25) with ARDEG names as the input to predict

any potential drugs or molecular compounds interacting with them.

The results were visualized by a drug–gene interaction network

using the Cytoscape software.
2.9 Construction of mRNA–miRNA and
mRNA–transcription factor networks

MiRNAs (26) are a class of non-coding single-stranded RNA

molecules encoded by endogenous genes, with a length of

approximately 19–25 nucleotides, that play an essential regulatory

role in the evolution of biological development. MiRNAs regulate the

expression of target genes by participating in the post-transcriptional

regulation of genes and play a crucial regulatory role in tumor

occurrence and development, biological development, organ

formation, epigenetic regulation, and viral defense. Typically,

miRNAs have very complex regulatory networks and often one

miRNA can regulate multiple target genes, whereas the same target

gene can also regulate many miRNAs. To analyze the relationship

between hub genes and miRNAs at the post-transcriptional stage, we

obtained hub gene miRNAs from the Network Analyst database (27)

and constructed an mRNA–miRNA regulatory network. TFs control

gene expression by interacting with target genes during the post-

transcriptional stage. To analyze the regulatory effect of TFs on hub

genes, the targeted relationship between transcription factors and hub

genes was retrieved from the Network Analyst database, and an

interaction network between hub genes and TFs was constructed.
2.10 Statistical methods

All data were processed and analyzed using the R software

(version 4.1.1). To compare two continuous variables that were
frontiersin.org

https://cibersort.stanford.edu/
https://www.dgidb.org
https://www.dgidb.org
https://doi.org/10.3389/fimmu.2023.1202758
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yu et al. 10.3389/fimmu.2023.1202758
distributed normally, an independent Student’s t-test was

conducted. The Mann–Whitney U test was performed to

determine the difference between non-normally distributed

variables. Pearson’s correlation analysis was used to calculate the

correlation coefficient (r) between the different genes, the Pearson’s

correlation coefficient between two variables is defined as the

quotient of the covariance and standard deviation between two

variables:

rX,Y =  
cov(X,Y)
sXsY

=  
E½(X − mX)(Y − mY )�

sXsY

The above equation defines the overall correlation coefficient,

and the Greek lowercase letters are commonly used as

representative symbols. To estimate the covariance and standard

deviation of the sample, the Pearson correlation coefficient (r). P

values of all statistical processes were bilateral, with P values< 0.05

considered significant.
3 Results

3.1 Workflow

The workflow is depicted in Figure 1.
Frontiers in Immunology 04
3.2 Data set combination, OA-related
DEGs, and their GO functional enrichment

In this study, the two data sets GSE12021 and GSE55235 were

combined, and the batch effect between the data sets was removed

(Figure 2). Ninety-five DEGs were then obtained from the OA (n =

30) and control samples (n = 23), including 47 upregulated and 48

downregulated genes (Figures 3A, B). GO functional annotation

was performed on the DEGs to determine their biological functions

(Figures 3C–E). The results showed that these DEGs were mainly

enriched in BPs, such as ECM organization, extracellular structure

organization, and CCs, such as collagen-containing extracellular

matrix, immunoglobulin complex/circulating, as well as MFs such

as immunoglobulin receptor binding, antigen binding

(Figures 3C–E).
3.3 Risk prediction model construction

A total of 31 hub genes were selected from the apoptotic genes

and DEGs (Figure 4A), and hub genes with FDR< 0.05 were selected

as candidate genes. The hub genes were put into logistic Lasso

analysis. The analysis results revealed nine characteristic genes,

namely growth differentiation factor 15 (GDF15), NAMPT, TLR7,
FIGURE 1

The flow chart.
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CXCL2, KLF2, REV3L, KLF9, THBD, and MTHFD2, which

occurred 413 times in 1,000 cycles (Figure 4B; Table 1). The gene

correlations of the nine characteristic genes were calculated. The

results showed a strong correlation between CXCL2 and KLF2 (r =

0.8, P< 0.05, r for the correlation coefficient), also CXCL2 and

THBD (r = 0.74, P< 0.05) (Figure 4C). The location of 18 genes on

the human chromosome through the R package RCircos is shown

(Figure 4D), and the results showed that these genes were frequently

found on chr2, chr4, chr6, chr7, chr9, chr19, chr20, and chrX.

Based on the patient’s predicted risk score for OA, the results

showed that the score had a profound effect (Figure 5A). The

calibration curve indicated that the nomogram model was accurate

(Figure 5B). Decision curve analysis (DCA) was used to evaluate the

potential clinical impact of the nomogram model and its association

with OA. The dashed line in the DCA curve remained above the grey

and black lines from 0 to 1, indicating that the decision based on the

nomogram model may be beneficial for patients with OA (Figure 5C).

Simultaneously, the ROC curves of the nine characteristic genes were

analyzed to predict OA independently, and the results showed that the

nine characteristic genes had an efficient predictive ability (Figure 5D).
Frontiers in Immunology 05
3.4 Apoptosis mode identification

Using the “ConsensusClusterPlus” package in the R software, based

on nine characteristic genes, two cell apoptosis subtypes (ClusterA and

ClusterB) were identified using the consistency clustering method

(Figures 6A, B). The volcanic map of DEGs of Cluster A and Cluster

B was shown in the Figure 6C. Except for TLR7, the nine characteristic

genes were expressed at high levels in the normal samples. ClusterA

contained 13 samples and ClusterB contained 17 samples. The

expression levels of the characteristic genes CXCL2, GDF15, KLF2,

MTHFD2, NAMPT, and REV3L were significantly higher in ClusterA

than those in ClusterB, whereas the expression level ofKLF9was higher

in ClusterB than that in ClusterA (Figures 6D, E).
3.5 Analysis of functional
differences between two different
cell apoptosis modes

To analyze the differences between the two different cell

apoptosis modes, DEGs were obtained in the two cell apoptosis

modes, ClusterA and ClusterB (Figure 6F). We then analyzed the

effects of DEGs between the two cell apoptosis modes on the

biological functions of patients. GSEA revealed that neutrophil

activation and neutrophil activation involved in immune response

were highly enriched in ClusterB (Figure 6F). Using ssGSEA, we

explored the highly enriched biological signaling pathways in the

two cell apoptosis subgroups. The results showed that the protein

repair and purine salvage signaling pathways were highly enriched

in the ClusterA model (Figure 6G).
3.6 Differences in immune characteristics
between the two cell apoptosis modes

The results of the CIBERSORT analysis showed that the level of

activated natural killer (NK) cells in ClusterB was significantly higher
BA

FIGURE 2

Gene expression distribution and batch effect correction of all samples. (A) The difference between the two data sets before removing the batch
effect. (B) The difference between the two data sets after removing the batch effect.
TABLE 1 The gene lists.

Gene

CXCL2

GDF15

KLF2

KLF9

MTHFD2

NAMPT

REV3L

THBD

TLR7
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than that in ClusterA. The M2 macrophage content in patients in

ClusterA was significantly higher than that in ClusterB (Figures 7A, B).
3.7 Analysis of correlation between key
genes and immune cell infiltration

The results showed that the expression of CXCL2, GDF15, KLF2,

andMTHFD2 genes was positively correlated with activated NK cells (r

= 0.37, P = 0.04; r = 0.68, P< 0.01; r = 0.65, P< 0.01; R = 0.56, P< 0.01,

respectively), whereas the gene expression of KLF9 was negatively

correlated with activated NK cells (r = -0.6, P< 0.01) (Figure 7C). The

expression of CXCL2, GDF15, KLF2, and MTHFD2 genes was
Frontiers in Immunology 06
negatively correlated with M2 macrophages (r = -0.45, P = 0.01; r =

-0.8, P< 0.01; r = -0.63, P< 0.01; r = -0.53, P< 0.01), whereas the gene

expression of KLF9 was positively correlated with M2 macrophages

(r = 0.6, P< 0.01) (Figure 7C).

The ssGSEA results showed that the contents of several immune

cells in ClusterAwere higher than those in ClusterB, such as the activated

CD8 T cell, the central memory CD4 T cell, the central memory CD8 T

cell, and the Type 1 T helper cell (P< 0.05). Nevertheless, the contents of

some immune cells in ClusterA were lower than those in ClusterB, such

as regulatory T cell, the natural killer cell, the gamma delta T cell, Type 2

T helper cell, the neutrophil, and nature killer T cell (P< 0.05, Figure 8A).

Correlation analysis showed that the nine characteristic genes were

closely related to immune cell content (Figure 8B).
B

C D

E

A

FIGURE 3

The ARDEGs. (A) The volcano map of DEGs related to osteoarthritis (OA). The x-axis represents log2FoldChange, and the y-axis represents -log10
(P-value). The red node represents the upregulated differentially expressed genes (DEGs), blue node represents the downregulated DEGs, and the
gray node represents the non-significant genes. (B) Heat map of the expression level of DEGs related to OA; green represents disease samples,
brown represents normal control samples, red represents high expression, and blue represents low expression. (C–E) Functional enrichment analysis
of DEGs. (C) The abscissa represents the enriched gene book, the ordinate represents the biological process, and the color indicates the significance
of the enrichment results. (D) Ring diagram of GO enrichment results. The innermost ring in the figure is the gene cluster tree. The middle ring is the
logFC value corresponding to these genes. The closer the red logFC value, the higher the upregulation level. The outer ring is the GO terms
enriched by these genes. Each GO term uses a color to set itself apart. (E) The result of the enrichment analysis of the KEGG pathway shows that the
node color represents the gene expression level, and the quadrilateral color represents the KEGG pathway Z-core. ARDEGs, apoptosis-related
differentially expressed genes; DEGs, differentially expressed genes.
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As shown in Figure 9, the correlations between the immune

cells in patients with OA was further calculated, the results showed

that NK cells showed significantly positively correlated with gamma

delta T cells, MDSC, and eosinophils (P< 0.05), whereas negatively

correlated with immature B cells, macrophages, and activated

dendritic cells (P< 0.05).3.8 Drug–gene interaction analysis.

The DGIdb database was used to retrieve small-molecule

compounds and drugs that regulated key genes. As shown in the

drug–gene interaction network, 29 drugs or molecular compounds,

including mepyrazole, conafinil, and abacavir, were associated with the

key genes NFKBIA, ARAF, and ADH1B of OA ClusterA (Figure 10A).

A total of 38 drugs or molecular compounds, including PICTILISIB,

Linifanib, and CHEMBL225519, were related to the key genes STK11,

PLK3, and PADI1 of OA ClusterB (Figure 10B). The relevance of these

drugs or compounds to key genes could imply that they may have

varying degrees of effect in regulating these genes.
3.9 PPI network

We constructed mRNA–miRNA and mRNA–TF networks of the

characteristic genes. ThemRNA-TF network included 1,324 interactions,

8 mRNA, and 368 TFs. GDF15 interacted with 193 TFs, while KLF9
Frontiers in Immunology 07
interacted with 232 TFs (Figure 11A). The mRNA–miRNA network of

the nine characteristic genes was constructed, including 4,213 interaction

relationships, 9 mRNAs, and 1,236 miRNAs, with CXCL2 interacting

with 48 miRNAs and REV3L interacting with 82 miRNAs (Figure 11B).
4 Discussion

OA is the most common chronic degenerative joint disease

encountered in orthopedic clinics, among which the most

commonly affected joints are the hip and knee joints. The

incidence rate of OA increases annually with increasing age,

especially in middle-aged and older populations (28). In addition

to relieving symptoms, there are currently no reports confirming

that existing treatment measures can prevent or reverse OA

progression. Therefore, the pathogenesis of atherosclerosis has

become a popular research topic. OA is the result of multiple

factors, such as cartilage nutrition, metabolic abnormalities, stress

imbalance, abnormal degradation of the cartilage matrix by

enzymes, cumulative minor trauma, obesity, and increased joint

weight bearing (29). The occurrence of OA is a continuous process,

and its basic pathological mechanism involves cartilage

degeneration and erosion. As the disease continues to develop,
B

C

D

A

FIGURE 4

Construction and correlation analysis of the diagnosis model of osteoarthritis. (A, B) Through lasso algorithm, characteristic genes are selected from
apoptosis-related genes. The horizontal axis is the combination of genes selected through 1000 Lasso analyses, and the vertical axis is the number
of occurrences. (C) For the correlation analysis of nine characteristic genes in all samples, *P< 0.05, **P< 0.01, ***P< 0.001, and the number
represents the correlation level. (D) Location map of nine characteristic genes on the chromosome.
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cystic changes in the subchondral bone occur gradually, and bone

spurs begin to appear at the edge of the joint. In this continuous

pathological change, cartilage degeneration is a key link and the

initiating factor in the occurrence and development of OA (30). In

addition to relieving the symptoms of OA, there are currently no

reports confirming whether the existing treatment measures can

prevent or reverse its progression. Therefore, studying OA

pathogenesis and progression is essential for understanding the

disease and proposing effective treatment targets.

Some researchers believe that OA development is closely related

to chondrocyte apoptosis. Hwang et al. (31) suggested that significant

apoptosis occurs in advanced OA, resulting in a decrease in

chondrocytes, often accompanied by lacunar emptying,

highlighting that chondrocyte apoptosis is a characteristic of OA

progression. However, the role of apoptosis in the progressive
Frontiers in Immunology 08
degeneration of cartilage remains unclear. Identifying key genes

and pathways related to cell apoptosis can help people understand

the process of OA occurrence and development and carry out

targeted molecular research to design targeted therapeutic drugs.

Therefore, to analyze the correlation between apoptosis and OA

development, we selected apoptosis genes from the DEGs between

OA and normal samples and performed LASSO regression analysis to

identify nine characteristic genes: GDF15, NAMPT, TLR7, CXCL2,

KLF2, REV3L, KLF9, THBD, and MTHFD2. We also constructed a

risk-prediction nomogram. Testing the prediction accuracy of the

nomogram showed that nine apoptotic genes accurately predicted

OA occurrence. This indicated that apoptosis and apoptotic genes

play key roles in OA occurrence and development.

GDF15, a member of the tumor growth factor superfamily, has

recently been identified as a possible biomarker of aging and is
B C

D

A

FIGURE 5

Nomogram. (A) Nomograms predicting the risk score for the diagnosis of patients with osteoarthritis (OA). (B) The model evaluation curve; gray
represents random diagnosis, while green and pink represent model diagnosis. (C) DCA curve. The x-axis represents the risk threshold, y-axis
represents the net profit rate, black solid line represents 0 net profit rate, all (gray solid line) represents that all samples are subject to intervention,
and the affected site modeling (black dotted line) represents the model curve. (D) ROC curve of nine characteristic genes in the diagnosis of OA.
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associated with various clinical conditions, including coronary

artery disease, diabetes, and various cancer types. Wen et al. (32)

studied the role of the GDF15/MAPK14 axis in the aging of

chondrocytes in OA and found that GDF15 is a driving factor for

chondrocyte aging and apoptosis and could promote the

progression of OA by inducing angiogenesis. TLR7 is involved in

immune responses in many inflammatory diseases. Liu et al. (33)

believe that silencing TLR7 could block the p21-mediated JAK2/

STAT3 pathway and prevent lipopolysaccharide-induced apoptosis

and chondrocyte injury. The results of the present study are

consistent with those of these studies.

We conducted a differential analysis using OA samples and

control samples to obtain 95 DEGs, which were mainly enriched in

ECM organization, extracellular structure organization, collagen-

containing ECM, immunoglobulin complex, circulation,

immunoglobulin circulating, immunoglobulin-receiver-binding,

and antigen binding. Some researchers have suggested that with
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the progression of the disease, the immune barrier of the ECM

disappears and specific surface antigens of chondrocytes cause

autoimmune reactions, opening a molecular damage mode for

ECM products. The innate immune and inflammatory cycle

mechanisms in OA lead to sustained joint damage (34). The

results of our genetic enrichment analysis are consistent with

these findings.

Previous studies have found rare mutations in certain genes that

can lead to hereditary OA, even results in severe OA (35–37). At

least 100 risk loci associated with OA have also been identified by

genome wide-association studies (38, 39). In this study, we plotted

the genetic locus on the chromosome of characteristic genes. These

results provide clues for further studies on the genetic

underpinnings and biological mechanisms of OA pathogenesis.

First, neighboring genes in the same chromosomal regions as the

potentially OA-related genes may participate in similar pathways

and functions. Second, further studies will focus on exploring the
B C

D E

F G
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FIGURE 6

Consistency cluster score of patients with osteoarthritis (OA) and functional analysis between the two apoptosis modes. (A) Consistency clustering
result diagram. (B) CDF, this figure shows the cumulative distribution function when K takes different values. It is used to judge the value of K, and
CDF reaches the approximate maximum value. During this time, the cluster analysis results are the most reliable, usually taking the value of K with a
small decline slope of CDF. (C) Cluster A and Cluster B differentially expressed genes (DEGs) have a volcanic map with log2FoldChange as the
abscissa and -log10 (P-value) as the ordinate. The red node represents the upregulated DEGs, green node represents the downregulated DEGs, and
gray node represents the cause of non-significant DEGs. (D) Histograms of the expression levels of nine characteristic genes in the disease group
and the control group, with blue indicating the control group and yellow indicating the disease group. (E) Histogram of the expression level of nine
characteristic genes in ClusterA and ClusterB of the OA subgroups, blue represents ClusterA, and yellow represents ClusterB. (F) GSEA analysis
results between ClusterA and ClusterB. (G) SSGSEA analysis of Cluster A and Cluster B, KEGG biological function enrichment analysis. CDF,
cumulative distribution function; SSGSEA, single sample gene set enrichment analysis. * represents P < 0.1, ** represents P < 0.01, *** represents P <
0.001, ns represents non-significant.
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relationships between single nucleotide polymorphisms in these

genes and OA risk. Furthermore, the overlap between gene

locations and regulatory elements suggests these genes could be

co-regulated in certain biological processes important to OA. In our

study, differential expression gene analysis revealed interesting

patterns, such as KLF2 and GDF15 genes located on the same

chromosome. The observation of differential genes clustered on

specific chromosomes has prompted us to delve deeper into the

potential implications of this phenomenon. The co-localization of

differentially expressed genes on the same chromosome may reflect

a coordinated regulatory mechanism that regulate their expression

levels. This co-regulation may be attributed to various factors, such
Frontiers in Immunology 10
as shared transcriptional regulatory elements, epigenetic

modifications, and even physical chromatin interactions. By

enhancing our understanding of OA genetics and biology, these

findings could ultimately promote drug development.

To subdivide the different pathways and characteristics of cell

apoptosis, we attempted to use nine genes to perform a consensus

cluster analysis on 30 OA samples and finally obtained two clusters,

namely Cluster A and Cluster B, including 13 samples for ClusterA and

17 samples for Cluster B. The expression of nine characteristic genes in

both clusters was significantly increased or decreased. We compared

the biologically related functions and pathways of the two clusters and

found that cluster A was highly enriched in protein repair and purine
B

C

A

FIGURE 7

Immune characteristics between the two apoptosis modes - CIBERSORT. (A) Accumulation diagram of immune cell content between Cluster A and
Cluster B shows different immune cells in different colors, and the x-axis represents the cell fraction and the y-axis represents the sample name.
(B) Histogram of the content of immune cells in patients of Cluster A and Cluster B; blue represents the Cluster A sample, and yellow represents the
Cluster B sample. (C) Correlation between nine characteristic genes and immune cells. The x-axis represents the amount of gene expression, and
the y-axis represents score of immune cell infiltration. r > 0 represents a positive correlation and r< 0 represents a negative correlation. * represents
P < 0.1, ** represents P < 0.01, *** represents P < 0.001, ns represents non-significant.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1202758
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yu et al. 10.3389/fimmu.2023.1202758
salvage signaling pathways, whereas Cluster B was highly enriched in

neutrophil activation, neutrophil activation involved in immune

response, and other neutrophil-related pathways in the cluster B

subgroup. These results suggest that cluster A was highly enriched in

cell repair and rescue, and cluster B was involved in inflammation-

related immune responses. Immune cell infiltration analysis showed

that the expression levels of T cells and M2macrophages was higher in

cluster A, whereas the expression levels of activated NK cells was

significantly higher in cluster B. This reflects the different immune

microenvironments of the two types of samples. We speculated that

this difference in immune cell infiltrationmay be related to the different

OA progression in the two types of samples. Chondrocyte aging and

apoptosis play a promoting role during OA occurrence and

development, (Cluster B). At this stage, the patient’s immune

response is dominated by adaptive immunity, manifested by the

disappearance of the ECM immune barrier and the release of specific

surface antigens from chondrocytes, which stimulate the
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corresponding T cells in the lymphocyte pool of the immune system,

triggering the process of cell-mediated immunity. In this process, T

cells release lymphatic factors to clear antigens, causing damage to the

cartilage cells and initiating BPs, such as protein repair and purine

rescue. However, the high level of NK cells is related to the clearance of

inflammatory factors, and the high concentration of neutrophil-related

pathways in cluster A suggests that the patients have progressed to the

stage of inflammatory circulation, and its immune response is

dominated by innate immunity, with an increase in the level of NK

cells as a significant feature.

We also observed that the expression levels of the CXCL2, GDF15,

KLF2, andMTHFD2 genes were positively correlated with the number

of activated NK cells and negatively correlated with the number of M2

macrophages; however, the reverse was true for KLF9. Therefore, we

speculate that these five genes are involved in regulating the immune

response. Evidence for this can be found in various literature. CXCL2 is

a member of the chemokine superfamily that encodes secreted proteins
B

A

FIGURE 8

Immune characteristics between the two cell apoptosis modes - ssGSEA. (A) Histogram of the content of immune cells in patients of Cluster A and
Cluster B; yellow represents the Cluster B sample and blue represents the Cluster A sample. (B) Correlation analysis between the nine characteristic
genes and the content of immune cells shows that the x-axis represents the immune cells, y-axis represents the characteristic genes, node color
represents the correlation size, and node size represents the significance level. ssGEA, single-sample gene set enrichment analysis. * represents P <
0.1, ** represents P < 0.01, *** represents P < 0.001, ns represents non-significant.
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involved in immune regulation and inflammatory processes. This

chemokine is a member of the CXC subfamily, expressed at

inflammatory sites, and may inhibit the proliferation of

hematopoietic progenitor cells (40). KLF2 regulates innate immune

responses during skeletal muscle injury and regeneration (41). Wang

et al. (42) confirmed thatGDF15 induces immunosuppression through

regulatory T cells.

In colon adenocarcinoma, patients with high GDF15 had

favorable overall survival, but this survival advantage was reversed

when they also had decreased NK cells (43). Another study suggested

that decidual NK cells contribute to embryo growth by GDF15

secretion (44). Besides, GDF15 overexpression was associated with

increased CD8 T cell numbers and proportion of activated CD8

+CD11c+ T cells. Furthermore, depletion of CD8 T cells in tumor-

bearing mice eliminated the protective effect of GDF15 against tumor

growth (45). In accordance with these observations, our results

suggested that both GDF15 and NK cells and activated CD8 T cells

were significantly increased in Cluster A, and they were positively

correlated. Further investigations with some wet lab evidences are

needed to validate our data and find more meaningful results.

According to our results, there were many changes and

correlations among immune cell subpopulations, which indicated

that various immune cells contribute to pathogenesis of OA through

complex mechanisms. Macrophages, B cells, T cells, and NK cells

produced proinflammatory cytokines like interleukin-1b (IL-1b)
(46). which induces extracellular matrix degradation (47) and

chondrocyte apoptosis by promoting chondrocyte hypertrophy and
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dedifferentiation (31). It has been reported that Th17 cells drive OA

progression by stimulating osteoclast progenitor recruitment through

increased chemokine production from bone marrow mesenchymal

stromal cells (48). In the patients with OA, the number of CD4+ T

cell is elevated in the subsynovial layer compared to healthy group

(49). CD4+ T cell secret interferon-gamma (IFN-g) which can

promote mesenchymal stem cell differentiation, while transforming

growth factor-b (TGF-b) from these cells is negatively related to

osteoblast differentiation (50). Distinct CD4+ T helper cell subsets

also influence joint inflammation and remodel. Th1 cells promote

immune response via producing IFN-g- and IL-2-related cytokines

(51). IL-4 released by Th2 cells exerts protective effects on cartilage

(49). Additionally, memory T cells impair immune function (52).

Targeting these various immune cell types and their signaling

molecules may be helpful to clarify the pathogenesis of OA and

explore new therapeutic strategies for managing OA.

Treg cells have been found to participate in changes in subchondral

bone remodeling, an important process in the pathogenesis of OA.

Treg cells secret various of cytokines and further promote osteoclast

maturation (53). However, Treg cells also secrete IL-17F, IL-17A and

BMP-2 that strongly promote osteoblastic differentiation (54).

Additionally, Treg cells can inhibit bone resorption by promoting

osteoclast apoptosis (55).While Treg cells have complex effects on bone

remodeling through multiple mechanisms, the exactly biological

mechanisms require further exploration.

T helper (Th) cells interact with other immune cells, such as B

lymphocytes, through cytokine signaling and participate in immune
FIGURE 9

Correlation between immune cells in patients with osteoarthritis (OA). The correlation of immune cells in patients with OA is negative in red and
positive in blue.
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regulation (56). B lymphocytes can activate T cells by presenting

antigens like granulocyte colony-stimulating factor (G-CSF) (57),

which promotes osteoclast progenitor proliferation (58).

Inflammatory mediators secreted by neutrophils and osteoclasts

differentially impact mesenchymal stem cells (MSCs) (59). MSCs can

inhibit NK cell cytotoxicity and proliferation, prevent autoreactive

antibody production, suppress Th1 cell activation, and stimulate Treg

cell generation (60). Additionally, macrophages communicate with

osteocytes through paracrine signaling and direct cell-cell contact (61).

Taken together, interactions among various immune cell types

including T cells, B cells, neutrophils, osteoclasts, MSCs, and

macrophages influence bone remodeling and the progression of OA.
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In drug sensitivity analysis, we compared the differential genes

of two modes of cell apoptosis (Cluster A and Cluster B) and

attempted to find targeted therapeutic drugs. We found 29

molecular compounds targeting key genes of Cluster A and 38

molecular compounds targeting Cluster B. Although these drugs

were rarely used in the clinical treatment of osteoarthritis, they may

become potential treatment agents, which remain to be discovered

in the future studies.

This study has some limitations. First, although there are

significant differences in the immune characteristics and functional

enrichment between Cluster A and Cluster B, we have not yet found an

exact grade of OA to correspond to the clusters; second, our data were
B

A

FIGURE 10

Drug sensitivity analysis. (A) Cell apoptosis of osteoarthritis is related to small molecular compounds or drug sensitivity analysis of Cluster A. (B) Cell
apoptosis of osteoarthritis is related to small molecular compounds or drug sensitivity analysis of Cluster B. Red represents the core differential genes of
each subtype, gray represents small molecular compounds or drugs, and the connection represents the connection between drugs and genes.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1202758
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yu et al. 10.3389/fimmu.2023.1202758
from GEO. The total sample size for OA was only 30 cases, which is

relatively small, and a data bias may have occurred during the research

process. Third, we did not directly identify specific drugs or molecules

that regulate the nine characteristic genes that affect OA progression,

which should be further explored in future studies.

Apoptotic genes play a key role in the development and

occurrence of OA. The ARGs GDF15, NAMPT, TLR7, CXCL2,

KLF2, REV3L, KLF9, THBD, and MTHFD2 could independently
Frontiers in Immunology 14
and accurately predict OA occurrence. Patients with OA can be

divided into two clusters with significant differences in immune

characteristics, functional enrichment, and immune infiltration,

which may be related to different degrees of OA progression.

However, more clinical evidence is needed to confirm this.

CXCL2, GDF15, KLF2, MTHFD2, and KLF9 are strongly

correlated with immune infiltration in patients with OA and

could become novel therapeutic targets that affect OA progression.
B

A

FIGURE 11

mRNA–miRNA and mRNA–TF network associated with characteristic genes. (A) The mRNA–TF network related to characteristic genes, with gray
nodes representing TF and red nodes representing characteristic genes. (B) The mRNA-miRNA network associated with the characteristic gene. The
gray node represents the miRNA and the blue node represents the characteristic gene. TF, transcription factor.
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