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Background and aim: Rheumatoid arthritis (RA) is an autoinflammatory disease

that may lead to severe disability. The diagnosis of RA is limited due to the need

for biomarkers with both reliability and efficiency. Platelets are deeply involved in

the pathogenesis of RA. Our study aims to identify the underlying mechanism

and screening for related biomarkers.

Methods: We obtained two microarray datasets (GSE93272 and GSE17755) from

the GEO database. We performed Weighted correlation network analysis

(WGCNA) to analyze the expression modules in differentially expressed genes

identified from GSE93272. We used KEGG, GO and GSEA enrichment analysis to

elucidate the platelets-relating signatures (PRS). We then used the LASSO

algorithm to develop a diagnostic model. We then used GSE17755 as a

validation cohort to assess the diagnostic performance by operating Receiver

Operating Curve (ROC).

Results: The application of WGCNA resulted in the identification of 11 distinct

co-expression modules. Notably, Module 2 exhibited a prominent association

with platelets among the differentially expressed genes (DEGs) analyzed.

Furthermore, a predictive model consisting of six genes (MAPK3, ACTB,

ACTG1, VAV2, PTPN6, and ACTN1) was constructed using LASSO coefficients.

The resultant PRS model demonstrated excellent diagnostic accuracy in both

cohorts, as evidenced by area under the curve (AUC) values of 0.801 and 0.979.

Conclusion: We elucidated the PRSs occurred in the pathogenesis of RA and

developed a diagnostic model with excellent diagnostic potential.
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Introduction

Rheumatoid arthritis (RA) is a significant public health concern

worldwide, affecting a considerable proportion of the population.

It is a chronic autoimmune disease characterized by inflammation

of the joints, which causes pain, stiffness, and can lead to severe

disability in some individuals (1). The prevalence of RA is estimated

to be around 0.56% globally (2). Despite extensive research efforts,

the pathogenesis of RA remains incompletely understood, with

complex interactions between genetic, environmental, and

immunological factors likely playing a role in its development

(3, 4). Furthermore, current diagnostic methods for RA are still

suboptimal, highlighting the need for reliable and efficient

biomarkers to improve patient outcomes (5).

One area of interest in RA research has been the role of platelets

in the disease’s pathogenesis (6–8). Platelets play a crucial role in the

autoimmune process and have been shown to be closely associated

with inflammatory markers and disease activity in RA (9, 10).

Various molecules derived from platelets, such as interleukin-1 (IL-

1), transforming growth factor-b (TGFb), and CXCL4/7, have been

identified as potent mediators of RA pathogenesis (11–13).

However, while platelet levels have been investigated as a

potential biomarker for RA diagnosis, current evidence suggests

that this approach has limited diagnostic utility (14). Therefore,

there is an unmet need to explore new biomarkers for RA diagnosis

and prognosis.

As a typical autoinflammatory disease, the study of less well-

studied systems and cell types could help build a more comprehensive

clinical picture of RA progression and identify new biomarkers. Thus,

our study aimed to elucidate platelet-related signatures (PRS)

regulation using an integrated bioinformatic analysis of a publicly

available mRNA database. The application of machine learning

methods has been a focus of various medical areas (15). The

development of technology provides the possibility of developing a

new effective diagnostic model for RA (16). Although limited studies

have focused on applying machine-learning methods to RA patients

recently (17, 18), our study is the first use of a machine-learning

approach to develop a diagnostic model based on the platelet-related

pathway. LASSO (Least Absolute Shrinkage and Selection Operator),

an unsupervised machine learning method, offers superior

performance in building diagnostic models by performing

simultaneous feature selection and regularization, efficiently

identifying the most relevant predictors. This quality reduces model

complexity and overfitting, leading to more accurate and

generalizable diagnostic predictions. This approach holds the

promise of identifying novel biomarkers and improving RA

diagnosis and management.

While RA’s exact pathogenesis remains unclear, platelets have

been extensively studied as potential contributors to the disease’s
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development. Our study aims to contribute to this growing body of

research by exploring the regulation of PRS using an integrated

bioinformatic approach and developing a diagnostic model based

on platelet-related pathways. Our findings could provide new

insights into RA pathogenesis and lead to the discovery of novel

biomarkers for improved diagnosis and treatment outcomes.
Methods

Study design and datasets collection

In this study, bioinformatic analysis was used to identify the

PRS in RA. We first achieved the DEGs in the exploration cohort.

Then we used WGCNA to identify the co-expressed modules and

further used functional enrichment and GSEA to elucidate the

platelet-related module. We then used the LASSO algorithm to

develop a diagnostic model, we then validated its diagnostic

efficiency in both the exploration cohort and an outside validation

cohort. In order to further explore the biological relationship of the

PRS model, we used ssGSEA to explore the correlation of our PRS

model and the immune infiltration.

We obtained RA patients’ transcriptome and clinical information

from the GEO database (https://www.ncbi.nlm.nih.gov/geo/). The

two cohorts (GSE93272 (19) and GSE17755 (20)) were included in

our study. Both datasets contain peripheral blood cell samples. The

basic information of the two datasets is concluded in Table 1.
Differential expressed gene and
WGCNA analysis

We used the ‘limma’ package from R to assess RA patients’

differential expressed genes (DEGs) and healthy controls in

GSE93272. DEGs were defined as |log2FC|>1 (FC, fold change)

and adj.P<0.05.

We then performed WGCNA analysis by the ‘WGCNA’

package in R to assess the biological co-expressing network in the

DEGs (21). Our WGCNA parameters were networkType =

“unsigned”, minModuleSize = 20, mergeCutHeight = 0.25 and

deepSplit = 2.
Enrichment analysis and
module identification

GO and KEGG analysis was performed by ‘cluster profiler’ in R

to identify the platelets-related module (22). We screened for the

module with the closest relationship to the platelet.
TABLE 1 General information of obtained datasets.

Datasets Platform Sample RA samples Control samples

GSE93272 GPL570 275 232 43

GSE17755 GP1291 165 112 53
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Gene set enrichment analysis (GSEA)

The GSEA analysis was performed to show whether the defined

gene set’s performance showed a significant difference in RA patients

and healthy controls (23). To determine the role of platelets in the

pathogenesis of RA, the enrichment of GOBP PLATELET

ACTIVATION and GOBP PLATELET AGGREGATION between

RA patients and healthy controls was illustrated via the

‘clusterProfiler’ package of R (22).
Development of diagnostic model via
machine learning

We used the LASSO algorithm to construct a diagnostic model; the

‘glmnet’ package was used to train our model. After removing genes

with coefficients of 0, we used the remaining coefficients to construct

the diagnostic model. The formula risk is shown as follows: risk score =

(ExpressionGENE1 × CoefficientGENE1) + (ExpressionGENE2 ×

CoefficientGENE2) + ⋯+(ExpressionGENEn × CoefficientGENEn).

The box plot is applied to display the risk score of the individuals.
Validation of diagnostic potential of PRS
signature in both cohorts

We tested the diagnostic ability of our diagnostic model in the

testing cohorts via the ‘ROCR’ package of R. We evaluated its

diagnostic potential in GSE93272 and an outside validation group,

GSE17755. The area under the curve (AUC) is calculated to display

its diagnostic potential.
Single-sample gene set
enrichment analysis

To further analyze the biological function of PRS signature, we

performed ssGSEA to analyze the infiltration score of 16 immune

cells and the activity of 13 immune pathways. The ‘gsva’ package

was used to perform the ssGSEA in GSE93272 (24). The

c5.all.v7.0.symbols.gmt gene set was selected as the reference gene set.
Statistical analysis

All statistical analyses were performed via R (ver. 4.0.2). P<0.05

was considered statistically significant.
Results

Identification of DEGs and platelets-
related genes

We achieved the gene expression matrix and the clinical data of

GSE93272 after data preprocessing through the ‘GEOquery’ and
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‘limma’ packages of R. The DEG selecting criteria were log2|FC|≥1

and adj.P ≤ 0.05. (FC, fold change; adj.P: adjusted P value). We

obtained 3776 upregulated DEGs and 4714 downregulated DEGs

(Figure 1A). The expression of the DEGs in each sample is

presented in Figure 1B.
Identification of PRS through WGCNA

We used a sample clustering tree to elucidate the outliers

(Figure 1C). We then selected the soft threshold b by the

“pickSoftThreshold” function in the WGCNA (Figure 1D) and

identified the modules (Figure 1C). The soft threshold was set as

seven.We further developed a hierarchical clustering tree, each branch

representing genes with similar expression and biological functions

(Figure 1E). Moreover, we analyzed the interaction between elucidated

modules by calculating the degree of connectivity (Figure 1F).
Enrichment analysis of the module

We performed GO and KEGG analysis using the

‘clusterProfiler’ package in R to identify the module that has the

closest relationship to platelets, which is referred to as module 2.

Subsequently, we conducted GO and KEGG analysis on module 2

to identify the platelet-related pathway (Figure 2A). The genes

involved in this pathway shown in Figure 2A were identified as

potential PRS candidates. To ascertain the activity of platelet-related

pathways more accurately, we employed GSEA. Specifically, we

evaluated the activity of GOBP PLATELET ACTIVATION

(Figure 2B) and GOBP PLATELET AGGREGATION (Figure 2C)

for module 2.
Construction of the PRS model

We acquired the expression data of candidate PRS fromGSE93272

as a training group.We then utilized the LASSO algorithm to derive the

coefficient profile plots (Figure 3A) and partial likelihood deviance

(Figure 3B). From these analyses, we identified six non-zero coefficient

signatures, namely MAPK3, ACTB, ACTG1, VAV2, PTPN6, and

ACTN1, which were used to construct the risk score model. The

formula for the risk score is as follows: riskScore =0.08×

ExpressionMAPK3 + 0.16×ExpressionACTB +0.27×ExpressionACTG1 +

0 . 2 5 × E x p r e s s i o n V A V 2 + 0 . 0 0 3 × E x p r e s s i o n P T P N 6

+ 0.09×ExpressionACTN1.
Evaluation of diagnostic potential in
training and validation cohorts

We assessed the predictive capability of our PRS in both the

training and validation groups by computing the risk score for each

sample in these cohorts (Figures 4A, C). We subsequently employed

the ROC analysis to determine the diagnostic potential of our

model. The AUC values were 0.801 (Figure 4B) and 0.979
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FIGURE 2

The enrichment analysis and GSEA of module 2. GO and KEGG analysis of module 2, the color represents the log|FC| of the pathway (A). GOBP
PLATELET ACTIVATION (B) and GOBP PLATELET AGGREGATION (C) are significantly enriched in RA patients compared to the healthy controls.
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Performing LASSO algorithm. Coefficient profile plots of each independent variable (A). Partial likelihood deviance for LASSO logistic regression (B).
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FIGURE 1

WGCNA analysis of the DEGs. Volcano plot of the DEGs between RA patients and healthy controls (A). heatmap of gene expression in GSE93272
(B). Sample and module dendrogram of GSE93272 (C). Analysis of scale-free index and mean connectivity of various soft thresholds, the red line
indicating the selected soft threshold (D). Cluster dendrogram (E) and topological overlap matrix (F) of all DEGs.
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(Figure 4D) for the training and validation groups, respectively,

indicating excellent diagnostic accuracy for both cohorts. We have

also applied the Precision-Recall curve through ‘modEVA’of R to

further evaluate its efficiency (Supplementary Figure 1). To

distinguish between High- and Low-risk groups, we used a cutoff

value of 9.08 in the training group.
Analysis of immune-related status
and genes

To further examine the immune status associated with the

PRS, we utilized single-sample Gene Set Enrichment Analysis

(ssGSEA) to analyze the immune landscape (Figure 5A). Our

findings indicate that activated CD4/8 T cells, effector memory

CD4 T cells, Eosinophils, Gamma delta T cells, Mast cells, Myeloid-

derived suppressor cells (MDSCs), and plasmacytoid dendritic

cells are significantly different between the High- and Low-risk

groups. Additionally, we employed GeneMANIA to identify the

top 20 genes most closely related to the PRS (Figure 5B).

Furthermore, we examined the co-expression network of the PRS,
Frontiers in Immunology 05
which revealed a strong association with blood coagulation,

coagulation, and hemostasis.
Discussion

RA is an autoimmune disorder involving multiple systems. The

current first-line diagnosis criteria for RA is the 2010 ACR/EULAR

classification criteria (25). The diagnosis based on this requires a

combination of clinical performance and laboratory results.

However, this meant the trauma caused by RA already existed by

the time of diagnosis. Thus, developing a new bio-signature could

enhance the diagnosis of RA and contribute to its clinical outcome.

Platelets are deeply involved in regulating the innate immune

system (26). Elevated platelet indices have been associated with

RA disease activity (27, 28). Platelets are believed to be involved in

the inflammatory process through a direct link with immune cells

or the secretion of inflammatory mediators (29, 30). Platelets have

shown a potential for treatment targeting (31). Given the role of

platelets in RA, developing a new bio-signature that includes

platelet indices could help improve the diagnosis of RA. This
B

C D

A

FIGURE 4

Evaluation of diagnostic potential in GSE93272 and GSE17755. PRS-based riskScore calculated in GSE93272 (A) and GSE17755 (C). ROC for
evaluating the diagnostic potential of PRS in GSE93272 (B) and GSE17755 (D).
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approach could allow for earlier detection of the disease, which

would enable medical practitioners to initiate treatment strategies

early enough to prevent severe damage from occurring. Moreover,

targeting platelets could provide a new therapeutic avenue for

treating RA.

Our study obtained 3776 upregulated DEGs and 4714

downregulated DEGs by comparing genes expressed in RA and

healthy control samples. We then usedWGCNA analysis to identify

the co-express modules. GO enrichment analysis of each module

identifies the module and the genes with the closest interaction with

platelets. We then used GSEA to elucidate the activity of pathway

GOBP PLATELET ACTIVATION and GOBP PLATELET

AGGREGATION and identify 27 candidate PRS. We then used

the LASSO algorithm to construct a 6 PRS model that showed

excellent diagnostic potential between RA and healthy control in

GSE93272 and GSE17755. We divided our samples into the high-

and low-risk group based on our PRS and performed ssGSEA to

illustrate the immune infiltration landscape. In addition, we used

GeneMANIA to demonstrate the related genes and pathways that

share the closest relationship with PRS.

In our study, we aimed to identify a platelet-related gene signature

that could serve as a potential diagnostic tool for RA. To achieve this

goal, we first compared the genes expressed in RA and healthy control

samples using RNA sequencing analysis. As a result, we identified 3776

upregulated differentially expressed genes (DEGs) and 4714

downregulated DEGs. We then utilized weighted gene co-expression

network analysis (WGCNA) to identify the co-expressed modules and

performed gene ontology (GO) enrichment analysis on each module to

identify the one with the closest interaction with platelets. Furthermore,

we employed gene set enrichment analysis (GSEA) to evaluate the

activity of platelet-related pathways and identify 27 candidate PRS

genes. Next, we constructed a PRS model using the Least Absolute

Shrinkage and Selection Operator (LASSO) algorithm, which showed

excellent diagnostic potential between RA and healthy control samples

in both GSE93272 and GSE17755 datasets. We used the PRS model to

divide the samples into high- and low-risk groups, followed by ssGSEA

to illustrate the immune infiltration landscape. Moreover, we analyzed

the related genes and pathways closely associated with the PRS using

GeneMANIA. Our results demonstrated that the PRS had a close
Frontiers in Immunology 06
relationship with blood coagulation, coagulation, and

hemostasis pathways.

This study found a diagnostic model based on logistic

regression of MAPK3, ACTB, ACTG1, VAV2, PTPN6, and

ACTN1. MAPK3 is a member of mitogen-activated protein

kinase, and participates in signaling cascades that regulate various

cellular processes including platelets activation and aggregation

(32). The MAPK3 inhibitors have shown the potential to develop

a new therapy for RA (33).ACTB, ACTN1 and ACTG1 are

members of cytoskeletal proteins. The actin network formation is

related to platelet granule release and remodeled upon platelet

activation (34). It has also been identified that actin is related to

manifestations involving muscle in RA patients (35). VAV2 is a Rho

family guanine nucleotide exchange factor (36). It is associated with

the platelet-derived growth factor (PDGF) receptor (37). Its

protection effect on antigen-induced RA has been verified in an

animal model (38). PTPN6 belongs to the protein tyrosine

phosphatase family. It is involved in various signaling pathways.

PTPNs are in fact found to be critical regulators of both platelet

activation and thrombosis (39). Although the biological function of

PTPNs in RA has not been clarified, analogs belonging to this

family have been identified as risk factors of RA (40, 41).

The study under consideration is the first of its kind to conduct an

integrated bioinformatic investigation aimed at exploring signatures

associated with platelets in patients suffering from rheumatoid arthritis.

This inquiry has allowed us to screen for potential biomarkers through

the application of a machine learning method, thus providing crucial

insight into the complex and multifaceted nature of this debilitating

condition. Subsequently, we have verified the diagnostic efficacy of our

proposed Platelet-Related Signature (PRS) in two separate cohorts,

confirming its practical utility as a viable tool for clinical assessment

and management. These findings represent a significant contribution

to the field of rheumatology and may serve as a valuable resource for

medical practitioners seeking to improve patient outcomes through

more accurate diagnosis and targeted treatment strategies.

While our study presents promising results, several limitations

should be acknowledged. Our cohort’s sample size is relatively

small, which may limit the generalizability of our findings.

Therefore, it is crucial to validate our model in larger cohorts to
A B

FIGURE 5

ssGSEA shows the infiltration result of 13 immune cells and 16 immune pathways (A). Twenty top related genes to the 6 PRS and their common
pathways (B). ns, insignificant.*P<0.05,***P<0.00005.
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assess its robustness and reliability. Furthermore, although we have

demonstrated the diagnostic potential of our PRS model, it lacks

verification from cell- and animal-based experiments. Future

research should focus on evaluating the underlying mechanisms

of the genes involved in our model through experimentation in

laboratory settings. This could include validating the differential

expression of candidate genes in vitro or using animal models to

investigate the functional relevance of these genes in RA

pathogenesis. Additionally, other factors such as age, sex, and

medication status can influence gene expression patterns in RA

patients. In this study, we did not account for the potential

confounding effects of these variables. Therefore, future studies

should consider including additional clinical and demographic data

to better understand the role of these factors in PRS development

and interpretation.

In conclusion, while our study highlights the potential of PRS as

a diagnostic tool for RA, further research is needed to address the

limitations mentioned above and fully evaluate the clinical utility of

our approach in the diagnosis and management of RA.
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