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Background: Tuberculosis (TB) is an infectious disease caused by

Mycobacterium tuberculosis (Mtb) infection. Cuproptosis is a novel cell death

mechanism correlated with various diseases. This study sought to elucidate the

role of cuproptosis-related genes (CRGs) in TB.

Methods: Based on the GSE83456 dataset, we analyzed the expression profiles

of CRGs and immune cell infiltration in TB. Based on CRGs, the molecular

clusters and related immune cell infiltration were explored using 92 TB samples.

The Weighted Gene Co-expression Network Analysis (WGCNA) algorithm was

utilized to identify the co-expression modules and cluster-specific differentially

expressed genes. Subsequently, the optimal machine learning model was

determined by comparing the performance of the random forest (RF), support

vector machine (SVM), generalized linear model (GLM), and eXtreme Gradient

Boosting (XGB). The predictive performance of the machine learning model was

assessed by generating calibration curves and decision curve analysis and

validated in an external dataset.

Results: 11 CRGs were identified as differentially expressed cuproptosis genes.

Significant differences in immune cells were observed in TB patients. Two

cuproptosis-related molecular clusters expressed genes were identified.

Distinct clusters were identified based on the differential expression of CRGs

and immune cells. Besides, significant differences in biological functions and

pathway activities were observed between the two clusters. A nomogram was

generated to facilitate clinical implementation. Next, calibration curves were

generated, and decision curve analysis was conducted to validate the accuracy of

our model in predicting TB subtypes. XGB machine learning model yielded the

best performance in distinguishing TB patients with different clusters. The top

five genes from the XGB model were selected as predictor genes. The XGB

model exhibited satisfactory performance during validation in an external

dataset. Further analysis revealed that these five model-related genes were

significantly associated with latent and active TB.
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Conclusion: Our study provided hitherto undocumented evidence of the

relationship between cuproptosis and TB and established an optimal machine

learning model to evaluate the TB subtypes and latent and active TB patients.
KEYWORDS

tuberculosis, cuproptosis, molecular clusters, immune infiltration, machine
learning model
Introduction

Tuberculosis (TB) is an infectious disease caused by

Mycobacterium tuberculosis (Mtb) infection (1). A clinical

diagnosis of TB is usually established based on the following

criteria (2–5): 1) a positive tuberculin skin test (TST). 2)

abnormal chest radiographs: a single lesion with enlargement of

the draining lymph nodes in lung, a single lesion with unremarkable

lymph nodes and multiple secondary tubercles in lung and miliary

lesions throughout the lung,etc. 3) clinical evidence of current

disease: chronic productive cough, hemoptysis, low-grade fever,

night sweats, loss of appetite, malaise, fatigue and weight loss,etc. 4)

A positive culture of Mtb (the most important technique to

diagnose TB). Currently, acid-fast bacilli (AFB) testing and Mtb

culture remain the mainstay for detecting mycobacterium TB. AFB

takes less time but being less accurate (6, 7). Current evidence

suggests that the culture of pathogenic microorganisms is the gold

standard for identifying TB with specificity rates greater than 99%

(5). However, false-positive cultures for Mtb are not rare due to

contamination of clinical devices, clerical errors, and laboratory

cross-contamination (8). There is a possibility of missed diagnosis

and misdiagnosis of TB. Hence, identification of TB is a

huge challenge.

The number of people with undiagnosed and untreated TB has

grown, resulting first in an increased number of TB deaths and

more community transmission of infection and then, with some

lag-time, increased numbers of people (9). In 2021, there were an

estimated 1.6 million deaths (9). Patients infected with Mtb may

experience physical stress. Alexandria Jones-Patten found that

depressive symptoms were reported in 26.1% TB patients and

anxiety symptoms were reported in 47.2% TB patients (10). The

Mtb infection leads to different clinical characteristics of symptoms,

which affects the quality of life of patients and brings a heavy

burden to families and society (4, 11). About half of TB patients and

their households face catastrophic total costs due to TB disease (9).

Therefore, it is of great clinical significance to accurately identify the

biomarker of TB at the molecular level and establish multivariate

prediction models.

A deeper understanding of the underlying mechanism of TB is

warranted to identify the biomarker associated with TB. Copper, a

critical element for life, is a catalytic or structural cofactor essential

to various biological processes, including mitochondrial respiration,

antioxidant defense, and biosynthesis (12). However, dysregulation

of copper homeostasis has been proven to be associated with
02
diseases (13). Previous research suggested that copper is involved

in the pathogenesis of TB. Alex G. Dalecki et al. suggested that the

copper ions could kill Mtb (14). G. Mohan found that the serum

copper levels of TB patients were decreased after antitubercular

treatment (15). Gnogbo Alexis Bahi et al. demonstrated that the

copper was closely associated with multidrug-resistant TB (16).

Copper appears to play an important role in TB, but the underlying

mechanism remains unclear. Cuproptosis was proposed as a novel

cell death mechanism (17). Excess copper accumulation triggers the

destruction of iron-sulfur cofactors and stimulates destructive

reactive oxygen species produced by copper-driven iron-death

reactions, ultimately causing cell death (18). Furthermore, copper

binds to the acylated component of the tricarboxylic acid (TCA)

cycle, causing acylated protein aggregation and depletion of iron-

sulfur cluster proteins, leading to cell death (17). Therefore, it is

highly conceivable that cuproptosis is closely related to the

development of TB. Further illustrating the molecular

characteristics of cuproptosis-related genes (CRGs) may explain

the heterogeneity of TB and provide a new perspective for the

clinical diagnosis and treatment of TB.

In this study, the differential expression analysis of CRGs and

immune signatures was conducted between normal and TB

individuals. A predictive model was developed to identify patients

with distinct molecular clusters by comparing different machine-

learning algorithms. The correlation between model-related genes

with latent TB and active TB was investigated in an external TB

cohort. Finally, our study may provide novel insights into the

prediction of TB and the differentiation between latent and

active TB.
Materials and methods

Experimental design

The experimental design is illustrated in Figure 1.
Data acquisition and preprocessing

Two microarray datasets (GSE83456 and GSE152532) were

obtained from the Gene Expression Omnibus (GEO) database

(www.ncbi.nlm.nih.gov/geo). Perl programming language was

employed to preprocess the two microarray datasets. Microarray
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datasets were merged with probe platform.The GSE83456 dataset

(GPL10058 platform, PMID: 27706152), including 61 blood

samples from healthy people (control group) and 92 blood

samples from TB patients (TB group), was selected for

preliminary analysis. Diagnosis of TB was based on the following:

positive mycobacterial culture result from the site of disease; or

caseating granuloma on biopsy and/or clinical/radiological features

consistent with TB and a good response to therapy (19). The

GSE152532 dataset (GPL10058 platform, PMID: 34555657),

including 11 blood samples from healthy people and 136 blood

samples from TB patients, was selected for validation. The blood

samples from TB patients in GSE152532 dataset contained 111

latent TB samples and 25 active TB samples. Latent TB was

confirmed in participants with a positive interferon gamma

release assay(IGRA) and the absence of clinical and radiographic

signs of ATB or any other significant co-morbidity. Active TB was

defined as either a suspected (based on clinical suspicion and

radiological and/or histological evidence) or microbiologically

confirmed (by Mtb culture) new diagnosis of pulmonary or

extrapulmonary TB disease, in the absence of any other

significant co-morbidity (20).The cuproptosis-related genes in the

Molecular Signature Database (MsigDB) v7.0 database (http://

www.gsea-msigdb.org/gsea/msigdb/) were combined with gene

sets relevant to cuproptosis from a prior study (21). R
Frontiers in Immunology 03
programming language (version 4.1.3) was employed to conduct

this study.
Identification of differentially expressed
CRGs in TB

The R package “limma” was utilized to identify differentially

expressed CRGs (threshold P<0.05) from the GSE83456 dataset.

Subsequently, the R packages “ggpubr” and “pheatmap” were

utilized to generate box plots and heat maps, respectively. The

differential CRGs were correlated by the R package “corrplot “ to

explore correlations between genes.
Assessment of immune cell infiltration

The common method for studying cell heterogeneity, such as

flow cytometry, rely on a limited repertoire of phenotypic markers.

However, tissue disaggregation before flow cytometry can lead to

lost or damaged cells, altering results (22). Aaron M Newman et al.

presented cell-type identification by estimating relative subsets of

RNA transcripts (CIBERSORT), a computational approach that

accurately resolves relative fractions of diverse cell subsets in GEPs
FIGURE 1

Schematic representation of the experimental design used to investigate the role of CRGs in TB.
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f r om comp l e x t i s s u e s ( 23 ) . C IBERSORT (h t t p s : / /

CIBERSORT.stanford.edu//) is an analytical tool from the

Alizadeh Lab and Newman Lab to impute gene expression

profiles and provide an estimation of the abundances of member

cell types in a mixed cell population, using gene expression data.

Based on the gene expression data of the GSE83456 dataset, the

CIBERSORT algorithm and Leukocyte signature matrix (LM22)

were used to estimate the relative abundance of 22 immune cells in

each sample. LM22 is a gene matrix that contains 547 white blood

cells characteristic genes to differentiate 22 types of immune cells,

including myeloid subgroup, Natural killer (NK) cells, naive and

memory B-cells, and seven types of T-cell (24). Monte Carlo

sampling was used to obtain the inverse folded product p-value of

each sample. Only the samples with p-value < 0.05 were considered

accurate immune cell components. The sum of the 22 immune cells

in each sample was 1.
Correlation analysis between CRGs and
infiltrated immune cells

The correlation coefficient between CRGs and the

characteristics of relevant immune cells was analyzed to further

demonstrate the correlation between CRGs expression and the

relative percentage of immune cells. Spearman correlation

analysis was conducted, and a p-value less than 0.05 indicated a

significant correlation. Finally, the results were visualized using the

R package “corrplot”.
Clustering of TB patients

Based on the expression profile of CRGs, the R package

“ConsensusClusterPlus” was utilized to apply the unsupervised

clustering analysis. The 92 TB samples were classified into

clusters using the k-means algorithm with 1,000 iterations. k

values are defined from 1 to 9 to generate different subtypes. The

optimal number of clusters was selected according to the cluster

consensus score. The principal component analysis (PCA) was used

to visualize the distribution of the clusters.
Gene set variation analysis analysis

GSVA contributes to the current need of Gene set enrichment

methods for RNA-seq data (25). GSVA is an open source software

package for R which forms part of the Bioconductor project and can be

downloaded at http://www.bioconductor.org. The R package “GSVA”

was used for GSVA enrichment analysis to elucidate the differences of

enriched gene sets among different CRGs clusters. The gene matrix

transposed (gmt) file,including “ c2.cp.kegg.v2022.1.Hs.symbols.gmt”

and “ c5.all.v2022.1.Hs.symbols.gmt”, were downloaded from the

MSigDB website database for further GSVA analysis. The R package

“limma” was utilized to identify differentially expressed pathways and

biological functions by comparing GSVA scores between different

CRGs clusters. A p-value < 0.05 was statistically significant.
Frontiers in Immunology 04
Weighted gene co-expression
network analysis

Weighted correlation network analysis (WGCNA) can be used

for finding clusters (modules) of highly correlated genes, for

summarizing such clusters using the module eigengene or an

intramodular hub gene, for relating modules to one another and

to external sample traits (using eigengene network methodology),

and for calculating module membership measures (26).The R

packages “WGCNA” was utilized to identify the co-expression

modules. The top 25% genes with the highest variance were used

for WGCNA analysis to guarantee the accuracy of quality results.

The optimal soft power was selected to construct the weighted

adjacency matrix, which was further transformed into a topological

overlap matrix (TOM). When the minimum module size was set to

100, the TOM dissimilarity measure (1-TOM) based on the

hierarchical clustering tree algorithm was used to obtain the

module. Each module was assigned a random color. Modular

characteristic genes represent the overall gene expression profile

of each module. Gene significance (GS) represented the correlation

between genes and clinical phenotypes. The relationship between

modules and disease status was reflected by module significance

(MS). MS, defined as the mean of the gene significance values of all

genes within a module, represents the correlation between module

genes and traits
Construction of predictive model based on
multiple machine learning algorithms

Based on two different CRGs clusters, the R package “caret” was

applied for establishing machine learning models, including

random forest (RF), support vector machine (SVM), generalized

linear model (GLM), and eXtreme Gradient Boosting (XGB). The R

package “pROC” was utilized to visualize the area below the ROC

curve. The five genes with the lowest dropout-loss values were

considered as top five variables. Therefore, the optimal machine

learning model was determined, and the top five variables were

identified as the key predictive genes associated with TB. ROC curve

analysis was utilized to verify the diagnostic value of the diagnostic

model in the GSE152532 dataset. Finally, based on the key

predictive genes of TB, Spearman correlation analysis was

performed in the GSE152532 dataset to explore the associations

between prediction model-related genes with latent TB and active

TB. A p-value < 0.05 was statistically significant.

Construction and validation of
a nomogram

The the top five variables were considered as the predictors.

Based on the predictors, a nomogram was constructed to identify

TB clusters by the R package “rms”. Each predictor was attributed a

score, and the “total score” was obtained by summing the scores of

all predictors. Calibration curve analysis and decision curve analysis

(DCA) were applied to evaluate the predictive performance of

the nomogram.
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Statistical analysis

R Programming Language (version 4.1.3) was used for data

analysis and statistical analyses. Bilateral wilcoxon tests were

utilized to evaluate statistical differences between the two groups.

Spearman correlation, calculated by “cor.test” function,was applied

to analyze the relationship between the expression level of

cuproptosis-related genes and immune cells. A p-value < 0.05 was

statistically significant.
Result

Identification of CRGs clusters in TB

To clarify the biological function of CRGs in the occurrence and

development of TB, the GSE83456 dataset was utilized to assess the

differential expression of CRGs between TB and healthy people. A

total of 11 CRGs were identified as differentially expressed

cuproptosis genes (Figure 2A). The expressions of NFE2L2,
Frontiers in Immunology 05
NLRP3, ATP7B, SLC31A1, MTF1, and DLD were upregulated,

while LIAS, LIPT1, DLAT, GLS, and DBT were downregulated in

TB patients (Figure 2B). Subsequently, correlation analysis between

these differentially expressed CRGs was performed to explore

whether cuproptosis regulators participated in the progression of

TB (Figure 2C). Among these genes, significant positive correlations

were found between NFE2L2 and MTF1 (correlation coefficient, r=

0.56), LIPT1 and DLAT (correlation coefficient,r= 0.59), DLD and

DLAT (correlation coefficient,r = 0.51), as well as GLS and DBT

(correlation coefficient,r = 0.55) (Figure 2D).
Immune infiltration in TB

An immune infiltration analysis was conducted to clarify

immune differences between the TB and control groups.

CIBERSORT analysis revealed differences in the abundance of 22

infiltrating immune cell types between the TB and control groups

(Figure 3A). CD8+ T cells, resting memory CD4+ T cells, and

follicular helper T cells were significantly decreased, while
B

C D

A

FIGURE 2

Identification of differentially expressed CRGs in patients with TB. (A) The expression levels of CRGs were presented in the heatmap. A total of 11
CRGs were identified as differentially expressed cuproptosis genes. (B) The expression levels of 11 CRGs were exhibited between control and TB
groups in boxplots. The expressions of NFE2L2, NLRP3, ATP7B, SLC31A1, MTF1, and DLD were upregulated; LIAS, LIPT1, DLAT, GLS, and DBT were
downregulated in TB patients. (C, D) Correlation analysis of 11 differentially expressed CRGs. Red and green colors respectively represent positive
and negative correlations. Significant positive correlations were found between NFE2L2 and MTF1, LIPT1 and DLAT, DLD and DLAT, as well as GLS
and DBT (*p<0.05, **p<0.01, ***p<0.001).
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monocytes, M0, M1, and M2 macrophages, activated dendritic cells,

eosinophils, and neutrophils were increased in the TB group

(Figure 3B). Meanwhile, resting dendritic cells, eosinophils, M0,

M1, and M2 macrophages, activated mast cells, resting mast cells,

monocytes, neutrophils, activated NK cells, resting NK cells, plasma
Frontiers in Immunology 06
cells, activated memory CD4+ T cells, resting memory CD4+ T cells,

naïve CD4+ T cells, CD8+ T cells, follicular helper T cells, gamma

delta T cells, and T cells regulatory (Tregs) were associated with

CRGs (Figure 3C). These results suggest that CRGs are key factors in

regulating molecular and immune-invasive states in TB patients.
B

C

A

FIGURE 3

Analysis of immune cell infiltration in patients with TB. (A) CIBERSORT analysis revealed differences in the abundance of 22 infiltrating immune cell
types between the TB and control groups. (B) The differences in immune infiltration between control and TB groups are shown in the boxplot. CD8
+ T cells, resting memory CD4+ T cells, and follicular helper T cells were significantly decreased, while monocytes, M0, M1, and M2 macrophages,
activated dendritic cells, eosinophils, and neutrophils were increased in the TB group (C) Correlation analysis between 11 differential CRGs and
infiltrated immune cells. Resting dendritic cells, eosinophils, M0, M1, and M2 macrophages, activated mast cells, resting mast cells, monocytes,
neutrophils, activated NK cells, resting NK cells, plasma cells, activated memory CD4+ T cells, resting memory CD4+ T cells, naïve CD4+ T cells,
CD8+ T cells, follicular helper T cells, gamma delta T cells, and T cells regulatory (Tregs) were associated with CRGs. *p<0.05, **p<0.01, ***p<0.001.
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CRGs-clusters in TB

Based on the expression of 11 CRGs, 92 TB samples were

grouped using a consensus clustering algorithm. The optimal

number of clusters was observed when the k value was set to 2 (k

= 2), and the CDF curve fluctuated within the minimum range of

the consensus index of 0.2 to 0.6 (Figures 4A, B). At k = 2 ~ 9, the

area under the CDF curve exhibited differences between two CDF

curves (k and k-1) (Figure 4C). At k = 2, the concordance score of

each subtype was the highest (Figure 4D). PCA analysis revealed

that the 92 TB patients could be divided into Cluster 1 (n = 42) and

Cluster 2 (n = 50), which were significantly different (Figure 4E).
Differentiation of CRGs and immune
infiltration between the CRGs-clusters

The expression differences of 11 CRGs between Cluster 1 and

Cluster 2 were comprehensively evaluated to explore the molecular

characteristics between clusters. Distinct CRGs expression profiles

were observed between Cluster 1 and Cluster 2 (Figure 5A). The

expression of NFE2L2, NLRP3, SLC31A1, LIPT1, DLD, DLAT,

MTF1, GLS, and DBT was significantly upregulated in Cluster 2

(Figure 5B). In addition, the immune cell infiltration analysis

showed significant differences in the immune microenvironment

between Cluster 1 and Cluster 2 (Figure 5C). The abundance of M0

macrophages, eosinophils, and neutrophils was significantly

increased (Figure 5D).
Frontiers in Immunology 07
Biological functions and pathway activities

The pathway activities and biological functions associated with

each group were identified by GSVA. The functional enrichment

results showed that lipopolysaccharide-mediated signaling,

regulation of myeloid cell differentiation, and protoporphyrinogen

IX metabolic process were significantly enriched in Cluster 1

(Figure 6A). In contrast, cerebellar Purkinje cell granule cell

precursor cell signaling involved in the regulation of granule cell

precursor cell proliferation, neuropeptide hormone activity, and

positive regulation of gastrulation were significantly enriched in

Cluster 2 (Figure 6A). KEGG pathway analysis suggested that

Chronic myeloid leukemia, apoptosis, and neurotrophin signaling

pathways were significantly enriched in Cluster 1 (Figure 6B), while

olfactory transduction, taste transduction, maturity-onset diabetes

of the young, retinol metabolism, and neuroactive ligand-receptor

interaction were significantly enriched in Cluster 2 (Figure 6B).
Gene modules screening and co-
expression network construction

The WGCNA algorithm was applied to establish co-expression

networks and modules in the normal population and TB patients to

identify key gene modules associated with TB. The variance of each

gene expression in the GSE83456 dataset was calculated to select the

top 25% genes with the highest variance for further analysis. Ten co-

expression modules with different colors were obtained by dynamic
B C

D E

A

FIGURE 4

Identification of molecular subtypes associated with cuproptosis in TB. (A) The cluster number is most stable when the k value is set to 2. (B) the
CDF curve fluctuates within the minimum range of the consensus index of 0.2 to 0.6. (C) the area under the CDF curve shows the difference
between the two CDF curves. (D) when k = 2, the concordance score of each subtype was the highest(k=2). (E) PCA showed significant differences
between the two clusters. The 92 TB patients could be divided into Cluster 1 (n = 42) and Cluster 2 (n = 50), which were significantly different.
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cutting algorithm, and a heat map of the topological overlap matrix

(TOM) was generated. Among them, 1,225 genes in the blue

module exhibited the most significant relationship with TB

(Figure 7A). In addition, the WGCNA algorithm was conducted

to analyze the key gene modules closely related to CRGs clustering.

Module-clinical features (Cluster 1 and Cluster 2) relationship

analysis demonstrated a high correlation between the blue

module (929 genes) and TB clusters (Figure 7B). Finally, the

intersection of genes in the two modules yielded 154 genes by the

R package “Venn” (Figure 7C).
Construction of machine learning models

Four machine learning models, including RF, SVM, GLM, and

XGB, were constructed based on cluster-specific DEGs in the TB

training cohort. The R package “DALEX” was applied to interpret

the four models. The residual distribution of each model was

plotted in the validation set. The residuals of XGB and SVM

machine learning models were lower (Figures 8A, B).

Subsequently, the genes of the top 15 features of each model were

sequenced according to root mean square error (RMSE)

(Figure 8C). Moreover, the discriminative performance of the

four machine learning algorithms was evaluated by calculating

receiver operating characteristic (ROC) curves based on 5-fold

cross-validation in the training set (GSE83456 dataset)
Frontiers in Immunology 08
(Figure 8D). The areas under the ROC curve (AUC) were

obtained for the four models (RF, AUC=0.975; SVM,

AUC=0.979; XGB, AUC=0.957; GLM, AUC=0.716). Based on the

residual and AUC, the XGB machine learning model demonstrated

the best performance in distinguishing TB patients with different

clusters. Finally, the top five genes (C13orf18, PACS1, MGC18216,

RNASE2, and PLAUR) from the XGB model were selected as

predictor genes for further analysis.
Construction of nomogram model

A nomogram was constructed to estimate the risk of

cuproptosis clusters in 92 TB patients (Figure 9A). The prediction

performance of the nomogram was evaluated by calibration curves

and DCA. The predicted outcomes were consistent with the actual

outcomes (Figure 9B). DCA indicated that the accuracy of the

nomogram was relatively high, providing a net clinical

benefit (Figure 9C).
Assessment of machine learning models

The GSE152532 dataset was utilized to validate the accuracy of

the machine-learning model. In the GSE152532 dataset, the ROC

curve of the five genes of the XGB model (C13orf18, PACS1,
B

C D

A

FIGURE 5

Comparison of CRGs expression and immune cell infiltration between molecular subtypes of TB. (A) Distinct CRGs expression profiles were
observed between Cluster 1 and Cluster 2. (B)The expression of 13 CRGs between two clusters was presented in the boxplot. The expression of
NFE2L2, NLRP3, SLC31A1, LIPT1, DLD, DLAT, MTF1, GLS, and DBT was significantly upregulated in Cluster 2 (C) The difference in the abundance of
22 infiltrating immune cell types between the two clusters. (D) The differences in immune infiltration between control and TB groups are shown in a
boxplot. The abundance of M0 macrophages, eosinophils, and neutrophils was significantly increased. *p<0.05, **p<0.01, ***p<0.001.
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MGC18216, RNASE2, and PLAUR) exhibited good performance

(AUC= 0.825) (Figure 10A). The TB patients in GSE152532 dataset

could be divided into latent TB and active TB groups. Based on the

clinical characteristics, the five genes were utilized to predict latent

and active TB (Figures 10B-F), C13orf18 (R=-0.18) and MGC18216

(R=-0.23) were negatively correlated with active TB (Figures 10B,

C). RNASE2 (R=0.25) was positively correlated with active

TB (Figure 10F).
Discussion

TB is mainly classified by the detection of Mtb, including AFB

and culture of the pathogenic microorganism (2–4). However, there

is an increasing consensus that the accuracy of AFB is not high (5–

7). Although the culture of pathogenic microorganisms exhibits

high specificity, false-positive cultures for Mtb are not rare (5, 8).

Hence, comprehending the pathogenesis of TB and identifying the

most appropriate molecular clusters of TB is crucial for enhancing

the diagnosis and treatment of this patient population. A previous

study suggested that dysregulation of copper homeostasis and cell

death are involved in the pathogenesis of TB (15, 27). However,
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little is currently known about the role of cuproptosis, a novel cell

death mechanism, in TB (17). Herein, we sought to elucidate the

specific role of CRGs in the TB phenotype and immune

microenvironment. Additionally, gene signatures related to

cuproptosis were applied to predict the TB subtypes.

In this study, the expression profiles of CRGs were

comprehensively analyzed in the blood of normal subjects and

patients with TB for the first time. Compared with the normal

population, 11 CRGs were abnormally expressed in patients with

TB, including NFE2L2, NLRP3, ATP7B, SLC31A1, MTF1, DLD,

LIAS, LIPT1, DLAT, GLS, and DBT, suggesting that CRGs play an

essential role in the development of TB. There is a rich literature

available substantiating that NFE2L2, NLRP3, and GLS genes may

be involved in the pathogenesis of TB. Guiyi Ji et al. demonstrated

that abnormal expression of NFE2L2 is associated with

susceptibility to TB (28). Kai S. Beckwith et al. found that the

plasma membrane was damaged by Mtb infection, which led to

NLRP3 activation and pyrosis (29). Emerging evidence suggests

that Mtb could cause damage to alveolar epithelial cells, while GLS

is necessary for alveolar epithelial regeneration (30, 31). However,

whether the other eight genes (ATP7B, SLC31A1, MTF1, DLD,

LIAS, LIPT1, DLAT, and DBT) are involved in the pathogenesis of
B

A

FIGURE 6

Biological functions and pathway activities between two CRG clusters. (A) Differences in biological functions between Cluster 1 and Cluster 2
samples ranked by t-value of GSVA method. Lipopolysaccharide-mediated signaling, regulation of myeloid cell differentiation, and
protoporphyrinogen IX metabolic process were significantly enriched in Cluster 1. Cerebellar Purkinje cell granule cell precursor cell signaling
involved in the regulation of granule cell precursor cell proliferation, neuropeptide hormone activity, and positive regulation of gastrulation were
significantly enriched in Cluster 2.(B) Differences in hallmark pathway activities between Cluster 1 and Cluster 2 samples ranked by the t-value of the
GSVA method. Chronic myeloid leukemia, apoptosis, and neurotrophin signaling pathways were significantly enriched in Cluster 1. Olfactory
transduction, taste transduction, maturity-onset diabetes of the young, retinol metabolism, and neuroactive ligand-receptor interaction were
significantly enriched in Cluster 2.
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TB remains unclear. Subsequently, the correlation between CRGs

was calculated to elucidate the relationship between the mutual

regulation of CRGs and TB. Among the CRGs, the most significant

correlations were found between NFE2L2 and MTF1, LIPT1 and

DLAT, DLD and DLAT, and GLS and DBT. To our knowledge, no

study has hitherto revealed the mutual regulatory mechanism of
Frontiers in Immunology 10
these genes in TB. Moreover, we found that the abundance of

immune cells changed between the control and TB groups,

consistent with findings reported by Hunter et al. (32). In this

respect, we found that the levels of CD8+ T cells, follicular helper T

cells, and resting memory CD4+ T cells were decreased in the TB

group. Previous studies suggested that CD8+ T cells contribute to a
B

C

A

FIGURE 7

Identification of gene modules and co-expression networks associated with TB. (A) Correlation analysis between module eigengenes and clinical
status in control and TB groups. The genes in the blue module exhibited the most significant relationship with TB. (B) Correlation analysis between
module eigengenes and clinical status in the two clusters. Each row represents a module; each column represents a clinical status. Module-clinical
features relationship analysis demonstrated a high correlation between the blue module and TB clusters. (C) Identification of the intersected genes
of disease WGCNA and cluster-WGCNA. The intersection of genes in the two modules yielded 154 genes.
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protective immune response to Mycobacterium TB infection and

that CD8+ T cell depletion may be a factor in susceptibility to TB

(33, 34). Kumar et al. suggested that decreased abundance of

follicular helper T cells was a characteristic of TB (35). We also

found that the levels of monocytes, M0, M1, and M2 macrophages,

activated dendritic cells, eosinophils, and neutrophils were

increased in the TB group. Macrophages are responsible for

implementing the cellular inherent antibacterial mechanism and
Frontiers in Immunology 11
initiating and maintaining inflammation, which plays a crucial role

in the protection of the organism but also leads to TB

progression (36).

Mtb can infect and incubate within macrophages, leading to the

development of TB as infected macrophages proliferate (37, 38).

Stimulated by antigenic peptides of intracellular pathogens, the

abundance of M1 macrophages is increased to produce

inflammatory cytokines, which can lead to more serious cell
B

C D

A

FIGURE 8

Construction and evaluation of machine learning models for predicting TB. (A, B) Residual distribution of each machine learning model. The
residuals of XGB and SVM machine learning models were lower. (C) The important features in machine learning models. the genes of the top 15
features of each model were sequenced according to root mean square error. (D) ROC analysis of four machine learning models based on 5-fold
cross-validation in the testing cohort. The areas under the AUC were obtained for the four models (RF, AUC=0.975; SVM, AUC=0.979; XGB,
AUC=0.957; GLM, AUC=0.716).
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injury (39). Meanwhile, during extracellular pathogen invasion, Th2

cells/mast cells/basophils (or stimulation by IL-4, IL-10, IL-13, and

immune complexes) can differentiate macrophages into the M2

state, which promotes intracellular TB infection (40, 41). The

abundance of dendritic cells and neutrophils may be increased in

the TB group (42, 43). The eosinophils are part of the granulocyte

response in TB, which may also promote host drug resistance (44).

In addition, we found that CRGs are associated with various

immune cells in the TB group, but the underlying mechanism

remains unclear, warranting further investigation.

Based on the expression profiles of 11 CRGs, a consensus

clustering algorithm was utilized to cluster the 92 TB samples. It

was found that there were significant differences between the two

clusters. The expression levels of NFE2L2, NLRP3, SLC31A1,

LIPT1, DLD, DLAT, MTF1, MTF1and DBT were significant

increased in Cluster 2. In addition, the immune cell analysis

shows that M0 macrophages, eosinophils, and neutrophils were
Frontiers in Immunology 12
significantly increased in Cluster 2, which suggested that Cluster 2 is

characterized by immune cell activation and differentiation. These

results suggested that the changes in these immune cells may be

related to CRGs. The lipopolysaccharide (LPS) mediated regulation

of myeloid cell differentiation and function was more active in TB

patients of Cluster 1. LPS activation by pathogenic microorganisms

can cause myeloid cell differentiation, activation of macrophages or

(and) T cells, induction of systemic inflammatory responses, and

even multiple organ function impairment (45–47). Meanwhile, we

found that the protoporphyrinogen IX metabolic process was

functionally active in TB patients of Cluster 1. However, the

mechanism of the protoporphyrinogen IX metabolic process in

TB remains unclear. KEGG pathway analysis showed that apoptosis

and neurotrophin signaling pathways were significantly enriched in

TB patients from Cluster 1. Stutz MD et al. verified that apoptosis

plays an important role in the pathogenesis of TB (48). It has been

reported that in patients with no brain infection, the lungs become
B C

A

FIGURE 9

Validation of a machine learning model based on 5 genes for predicting TB Validation of the 5-gene-based XGB model. (A) Construction of a
nomogram for predicting the risk of TB clusters based on the 5-gene-based XGB model (C13orf18, PACS1, MGC18216, RNASE2, and PLAUR). (B)
Construction of the calibration curve. Calibration curve analysis exhibited that solid line was near the dotted line,which suggesting the accuracy of
the nomogram was relatively high. (C) Construction of the decision curve. DCA exhibited that the red line moved away from the gray line, which
suggesting the accuracy of the nomogram was relatively high.
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infected with Mtb and cause an inflammatory response, which can

trigger inflammation in the brain and interfere with neurotrophic

factors (49). Interestingly, Cluster 2 was characterized by an active

nervous system, suggesting that the nervous system of these patients

may be affected by Mtb.

In recent years, machine learning models based on

demographic and imaging metrics have been increasingly used to

predict disease prevalence. Some studies confirmed that

multivariate analysis takes into account the relationship between

variables and therefore has a lower error rate and more reliable

results than single-factor analysis (50, 51). Since TB is an infectious

disease, there is an urgent need for accurate models to predict the

prevalence of TB. This study compared the predictive performance

of four machine learning classifiers (RF, SVM, GLM, XGB) based on

the expression profiles of cluster-specific genes. The machine

learning model of XGB yielded good performance in predicting

TB subtypes. Subsequently, 5 important variables (C13orf18,

PACS1, MGC18216, RNASE2, and PLAUR) were selected to

construct the XGB model.

Studies have confirmed C13orf18’s involvement in the

autophagy mechanism through its interaction with Beclin1, which

contributes to the development of TB, suggesting that C13orf18

may participate in the pathogenesis of TB (52, 53). Pacs1 is a

transport protein located in the cytoplasm, which plays a vital part

in transporting calcium ions in the endoplasmic reticulum and

supporting the development and survival of circulating

lymphocytes. These functions suggest that Pacs1 could impact the

advancement of TB by controlling the development and survival of
Frontiers in Immunology 13
lymphocytes, and hence, it could be a potential target for TB

treatment, according to the literature (54–56). RNASE2, also

known as an eosinophilic neurotoxin, belongs to the RNaseA

superfamily and is one of the secreted proteins released after

eosinophilic activation (57). When eosinophils are concentrated

and activated at the site of Mtb infection, RNASE2 is released (57,

58). The uPAR protein encoded by PLAUR genes can regulate the

regeneration of cells after different organs and represents a new

molecular target for TB treatment (59, 60). However, the function of

MGC18216 remains unclear and warrants further exploration.

The identification of active TB and latent TB is very crucial for

clinical diagnosis and treatment (61). An individual with latent TB

may test positive on immunological tests, but they do not exhibit

any symptoms of the disease, and diagnostic tests, such as chest

radiography, do not indicate any evidence of active TB (62).

Nevertheless, weakened immunity can cause latent TB to become

active TB at any point (63). The TST and IGRA are commonly

applied to detect latent TB, but whether these methods can

accurately identify latent TB remains unclear (64). Therefore,

correlation analysis of latent and active TB was performed via the

five predictive genes. We found that C13orf18 and MGC18216

exhibited a negative correlation with active TB, while RNASE2

positively correlated with active TB.C13orf18 can regulate

phagocytes to promote phagolysosome formation or facilitate the

accumulation of metals, thereby stimulating the microbial

poisoning mechanism. Limiting the access of microorganisms to

essential nutrients can help inhibit pathogenic microorganisms and

lead to the onset of the latent phase of TB (52, 53, 65). The
B C

D E F

A

FIGURE 10

Correlation analysis between gene expression and disease status in an independent dataset of patients with TB. (A) the ROC curve of the five genes
of the XGB model. the ROC curve of the five genes of the XGB model exhibited good performance (AUC= 0.825) (B-F) Correlation between the 5
genes and active/latent TB. C13orf18 and MGC18216 were negatively correlated with active TB. RNASE2 was positively correlated with active TB.
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abundance of Mtb was increased during the active stage of TB

infection, which led to the aggregation and activation of eosinophils,

resulting in upregulated RNASE2 expression (57, 66). Taken

together, the 5-gene-based XGB model exhibited satisfactory

performance in evaluating TB subtypes and differentiating latent

and active TB patients.

Some limitations of this research should be acknowledged.

Firstly, the research was based on a comprehensive bioinformatics

analysis, and further clinical or experimental evaluation should be

necessary to verify the expression levels of CRGs. In addition, more

clinical features are required to enhance the performance and

robustness of the predicted model. Furthermore, refining the

accuracy of cuproptosis-related clusters requires more TB

samples. Finally, the potential correlation between CRGs and

immune infiltration was not comprehensively investigated,

emphasizing the need for more studies.
Conclusion

Our study reveals an association between CRGs and infiltrating

immune cells and illustrates significant immune heterogeneity

between TB patients with different cuproptosis-related clusters.

The XGB model based on 5 genes was the optimal machine

learning model to evaluate the TB subtypes and differentiate

latent and active TB patients. We provide hitherto undocumented

evidence on the role of cuproptosis in TB and further elucidate the

molecular mechanisms underlying immune heterogeneity in TB.
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