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Introduction

Tissue-resident memory lymphocytes at mucosal surfaces have been shown to be critical

in long-term protection following mucosal infection. Tissue-resident memory T cells (Trm)

have been well characterized in animal models and in humans, while knowledge about tissue-

resident memory B cells (Brm) is currently more limited. Due to specific features of tissue-

resident memory lymphocytes such as cross-reactivity and polyfunctionality, Trm and Brm

have been demonstrated to be an ideal target for vaccine strategies aiming to induce

protection at mucosal surfaces. The route of vaccine administration, the choice of

antigenic epitopes and the impact of microenvironment appeared to be crucial parameters

in the development of vaccine-induced mucosal tissue-resident memory responses in animal

models. However, it remains significant gaps in understanding systemic and local signals

needed to establish and maintain protective mucosal Trm subsets without inducing

pathogenic populations. In addition, the development of Brm is currently not well

understood. Discovery of innovative recombinant antigens and identification of safe

mucosal adjuvants will be crucial in the development of vaccine formulations efficient to

induce Trm and Brm at mucosal surfaces. This Opinion article will describe current

knowledge about mucosal Trm and Brm and vaccine approaches already tested to induce

tissue-resident memory lymphocytes at mucosal surfaces. It will pinpoint gaps in knowledge.

It will suggest research avenues and highlight considerations to design vaccine strategies

inducing mucosal tissue-resident memory lymphocytes and it will provide suggestions to

improve methodology to quantify mucosal tissue-resident memory responses.
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Characterization and features of Trm
at mucosal surfaces

Three memory T cell subsets have been characterized: circulating

effector memory T cells are abundant in non-lymphoid tissues,

circulating central memory T cells are predominant in secondary

lymphoid organs and non-circulating tissue-resident memory T cells

(Trm) are able to persist in non-lymphoid tissues. Trm subset was

discovered in parabiosis and tissue transplantation animal studies

more than 15 years ago (1) and it is the most abundant memory T cell

population. Trm have the ability to reside in mucosal tissues such as

lung (2), nasal (3), gut (4), skin (5–8) and reproductive tract tissues

(9), following infection (10). Trm were characterized in mice, non-

human primates (NHP) (11) and humans (12–14). They were mostly

defined by the high expression of the adhesion molecule CD69 which

can be associated with an upregulation of the aE integrin CD103 (1),

and by the downregulation of molecules preventing tissue exit such as

CCR7 and CD62L (10). Other markers were associated with Trm

such as CXCR3, CD49a (15) (16) or CD44 (1) in specific tissues.

Regarding the functions of Trm, antigen-specific CD8 and CD4 Trm

in the respiratory tract were shown to be associated with a better

control of viral and bacterial infections (e.g. reduction of viral load

(12), limitation of intracellular replication of bacteria (17)). In

addition, several animal and human studies described the

polyfunctionality of influenza- (18, 19) or respiratory syncytial

virus (RSV)-specific CD8 Trm responses (20) as a key feature of

protective Trm. The cross-reactivity of human Trm via recognition of

conserved regions was also reported in the context of influenza (21,

22) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-

CoV-2) (3) infections. Another interesting feature of Trm is their

potential innate-like functions helping in mucosal protection. It was

demonstrated that CD8 Trm located in lung parenchyma of mice

intranasally infected with influenza virus engineered to express

ovalbumin as an antigen, could reduce the severity of a subsequent

pulmonary bacterial infection through neutrophil recruitment (23). A

similar bystander activation of T cells was observed in a Herpes

Simplex Virus (HSV) murine challenge model. Indeed, it was shown

that a subset of vaginal CD8 T cells which were unspecific to the HSV

antigen used for immunization, could play a partial role in genital

protection. In this HSV challenge model, both peripheral CD8 T cells

able to migrate to inflamed vaginal tissue and vaginal CD8 Trm of

irrelevant antigen specificity were involved in this innate-like

function (24).
Discovery of mucosal Brm

The development of tissue-resident memory B cells (Brm)

following infection has been discovered in murine parabiosis (25),

adoptive transfer (26) and depletion studies (27). The presence of

lung Brm early post-infection was reported in mouse models of

influenza (25) and pneumococcal pneumonia (28). It was shown

that the induction of Brm required local encounter with antigen

(25) and that Brm contributed to early plasmablast responses

leading to the secretion of cross-neutralizing antibodies against
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viruses and bacteria (27, 28). Compared to Trm, Brm have been less

characterized and specific markers have not been fully defined.

However, it was shown that Brm expressed CD69, the hallmark of

tissue-resident lymphocytes, in mice (25), NHP and humans (14).

Other markers were also associated with Brm in mice such as

CXCR3 and CD44 (25, 26, 28). In addition, antigen-specific CD73

positive and negative pulmonary Brm subsets were described in a

mouse influenza model (25). In animal studies, the analysis of Brm

is based on the discrimination of resident and circulatory B cells by

intravenous labelling. In animal models and humans, gating

strategies based on characterized memory B cell markers and

similarities with Trm transcriptional profiles are also used to

describe Brm subsets (29). Interestingly, a study found a potential

intestinal Brm subset. Indeed, most CD19+CD27+ B cells in human

intestine were CD45RB+CD69+ B cells. In addition, sets of gene

expressed in lung Trm were enriched in this gut B cell subset

suggesting that it could be an intestinal-resident population (30).

The presence of Brm in other mucosal tissues such as skin or

reproductive tract is currently unclear.
Vaccine approaches to induce
tissue-resident memory responses
at mucosal sites

For more than two centuries, vaccination has been a successful

global strategy to reduce the burden of several infectious diseases (31).

Historically, the immunogenicity induced by vaccines was associated

with systemic humoral response which can be easily measured in blood

using antibody assays (32). However, for several decades, efforts have

been put into the understanding of vaccine-induced cellular and local

immune responses. Could the protective capacities of mucosal Trm

and Brm be harnessed to improve immunity at mucosal barriers?

A range of vaccine approaches have especially been tested in

mouse models to improve mucosal Trm development (33). The

route of vaccine administration has been shown to play a crucial

role. Growing evidences suggest that mucosal vaccines on their own

or combined with systemic vaccines could be a promising strategy

to enhance the development of mucosal Trm. For example, a study

found that intranasal administration of live-attenuated influenza

virus induced the development of CD4 and CD8 Trm in lungs,

whereas systemic immunisation with live-attenuated influenza virus

did not generate similar Trm response in mice (34). Similarly,

intranasal immunization of mice with a chimpanzee adenoviral-

based SARS-CoV-2 vaccine was shown to induce CD103+CD69+

CD8 T cells in lungs, while vaccination by intramuscular route

failed to generate pulmonary Trm cells (35). Another strategy

named ‘prime and pull’ was tested to generate Trm in vaginal

tract. Mice were subcutaneously immunized with an attenuated

strain of HSV-2 (prime). Then, pro-inflammatory chemokines were

applied to the vagina of mice in order to recruit HSV-specific CD8 T

cells to this mucosal site (pull). Compared to the other experimental

groups which were primed and boosted by intravaginal or

subcutaneous routes only, the prime and pull strategy was the

only one leading to the establishment of CD8 Trm in the genital
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1216402
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Longet and Paul 10.3389/fimmu.2023.1216402
mucosa. This study suggested that inflammation on its own could

lead to the recruitment of Trm to genital mucosa and that

a persistent antigen stimulation was not needed for the

establishment of Trm (36). Similar findings were reported in

nasal, upper respiratory tract (2) and skin (6). However, it was

demonstrated that a local antigen encounter was needed to establish

CD8 Trm in lungs (37–39). For instance, mice immunized by

intraperitoneal route with influenza virus (prime) could

exclusively generate pulmonary Trm following an intranasal

immunization (pull) with CpG oligodeoxynucleotides combined

with the antigen. The authors of this study suggested that

circulating antigen-specific CD8 T cells could cause local tissue

damage, which could play a role in Trm conversion (39).

Interestingly, the importance of vaccine epitopes was pinpointed

in a study describing the sequence design and immunogenicity of a

CD8 T cell peptide Coronavirus Disease 19 (COVID-19) vaccine.

This COVID-19 vaccine candidate was based on a range of 11

structural and non-structural SARS-CoV-2 proteins including

conserved regions. The sequence was designed using SARS-CoV-

2 immuno-dominant epitopes determined by screening and SARS-

CoV-2 neoepitopes selected using a computational multi-

neoepitopes based peptide vaccine approach, which had been

shown to be safe and efficient in clinical trials evaluating a

vaccine candidate against lung cancer. Following one

subcutaneous vaccination in a mouse model, the COVID-19

vaccine candidate could induce a significant number of peripheral

viral-specific CD8 T cells expressing Trm markers such as CD103

and CD49a, in spleen and draining lymph nodes. Even though the

authors did not analyse Trm in lungs, this study highlights the

importance of epitope selection to induce lymphocytes with a

tissue-residency signature (40). Another study compared the

functionality of T cells and Trm in lung biopsies collected for

cancer suspicion in SARS-CoV-2 infected patients or individuals

vaccinated with COVID-19 mRNA vaccines. The current spike-

based COVID-19 mRNA vaccines were shown to induce similar

SARS-CoV-2 spike-specific IFNg CD4 T cell responses in lungs of

vaccinees and convalescents, while antigen-specific CD8 T cell

responses were not induced, neither in convalescents, nor in

vaccinated individuals. Regarding tissue-resident memory

responses in lungs, polyfunctional CD4 and CD8 Trm induction

was shown to be limited post-vaccination compared to post-

infection. A selection of SARS-CoV-2 epitopes, as previously

described, could help to improve tissue-resident memory

responses generated by the current COVID-19 mRNA vaccines

(41). Determining the role of local antigen stimulation, mucosal

inflammation and antigenic epitopes in specific vaccine strategies to

induce tissue-resident memory lymphocytes is fundamental. These

parameters may impact on the choice of the antigen, the

administration route and the vector used to deliver the vaccine (10).

Regarding Brm, their induction has especially been evaluated in

mouse pulmonary tissues (25). As it was determined that the

establishment of pulmonary Brm post-infection required a local

antigen encounter (25), it could be hypothesized that mucosal

vaccination might also be beneficial to generate Brm in lung

tissues at least. However, this hypothesis remains to be

demonstrated. Interestingly, evidences revealed that the
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establishment of Brm pool did not correlate with the presence of

Trm in the reproductive tract of female mice immunized with HSV

(42). These data suggest that Trm and Brm responses could be

induced in an independent manner at least in the reproductive tract.

Trm and Brm development might have different kinetics and/or

might require different local microenvironments. This correlation

needs to be studied in other tissues given a lack of correlation might

significantly impact on the development of vaccines targeting

mucosal tissue-resident memory responses. Do specific vaccine

approaches need to be developed to induce either Trm or Brm? It

is currently unknown.
Research avenues and considerations
to design vaccines inducing protective
tissue-resident memory lymphocytes
at mucosal surfaces

Understanding mucosal tissue-resident
memory lymphocyte generation

A better understanding of Trm and Brm establishment and

maintenance at mucosal surfaces is needed to tailor efficient vaccine

strategies. Based on animal studies, two general models have been

developed to explain Trm formation. The local divergence model

suggests that Trm differentiate within tissues from pluripotent

circulating effector T cells. The systemic divergence model proposes

that there is a subset of circulating Trm precursors intended for

migrating into tissues where they finish their differentiation into

mature Trm (32). Regarding Brm formation, their origin has not

been fully characterized and has been mainly based on lung Brm

studies in mouse models. Influenza virus infection models suggest that

Brm could originate from germinal centres in mediastinal lymph nodes

or from germinal centre-like structures in the inducible bronchus-

associated lymphoid tissues (25, 43). Identification of circulating Trm

and Brm precursors by flow cytometry and transcriptomics using

known tissue-resident memory markers and genes could be a way to

find novel circulating lymphocyte populations sharing residency-

promoting signature with Trm. This type of study could be

performed before and after infection or vaccination in animal

models. It would help to validate these models or hypotheses even

though they might be non-exclusive (32), tissue- and context-

dependent. Recently, some evidences have suggested the presence of

precursor CD8+ Trm within circulation (44). In addition, some studies

have demonstrated that Trm were able to egress and migrate to lymph

nodes (45) or to distant mucosal sites (46). Understanding potential

movements of tissue-resident memory lymphocytes can be crucial in

order to optimize the routes of administration and to determine

whether mucosal vaccination on its own or whether mucosal

vaccination after a systemic prime is the best strategy. The influence

of the priming route should be studied using parabiosis mouse models.

Some studies suggested that specific cytokines or metabolites

could impact on Trm formation. Indeed the role of TGFb has been

described in the generation of lung (47), nasal/upper respiratory

tract (2), gut (48) and skin (7, 49) CD103+ Trm. Modulation of
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TGFb might be a key parameter to optimize vaccine strategies

aiming to induce Trm including lung CD8 Trm (50, 51). A role of

other cytokines such as IL-10 (52), IL-21 (53), IL-15 (54, 55) and

IL-1/IL-2 (56) was also described in Trm formation in lungs or

other tissues. Recently, it has been demonstrated that a prime of T

cells in the mesenteric lymph node of mice infected with Listeria

monocytogenes by oral route, licensed T cells to differentiate into

CD103+ T cells in intestine and that this licensing was regulated by

retinoic acid (57). Systemic and mucosal signals required to

generate tissue-resident memory lymphocytes need to be further

elucidated in order to design vaccine formulations leading to an

appropriate microenvironment. The use of knockout mice for

specific cytokines or their receptors, mouse Cre-LoxP system, as

well as reporter systems may help to understand the role of systemic

and mucosal signalling pathways and microenvironments involved

in the expansion and responsiveness of tissue-resident memory

lymphocytes post-vaccination at different mucosal sites. Gene-

based systems such as transcription factor profiling of historical

activity in specific tissues (58) or novel DNA-based memory system

(59) could help to define the epigenetic state of potential precursor

populations but also early signals linked to tissue-resident memory

lymphocyte formation.

Complicating the picture of tissue-resident memory responses,

sub-populations of CD4 Trm have been described based on specific

cytokine profiles. Indeed, lung Trm1, Trm2, Trh, Trm17 have been

characterized following different respiratory infections (53) (60).

However, it is unclear whether their differentiation requires

different signalling pathways, specific microenvironments and

whether their persistence is similar in mucosal tissues. It is also

important to consider that some particular Trm subsets have been

associated with persistent immunopathology after viral infection or

with chronic diseases (60). For instance, an expansion and

activation of Trm17 was identified in bronchoalveolar lavage fluid

from severe COVID-19 patients following SARS-CoV-2 clearance.

The characterization of this subset showed a pathogenic cytokine

profile associated with severe disease and lung damage (61). It was

also observed that an enrichment of CD69+CD103- Trm population

in bronchoalveolar lavage fluid collected from patients with post-

COVID-19 acute sequelae negatively correlated with their lung

function (62). A specific CD103+CD161+CCR5+CD4+Trm sub-

population was also reported to be predominant in the intestine

of Crohn’s disease patients (63). These examples of pathogenic Trm

profiles pinpoint the importance to clearly define the parameters

leading to the establishment of protective tissue-resident memory

lymphocytes at mucosal surfaces following vaccination. The

development of protective or exuberant tissue-resident memory

lymphocytes might be related to the type of stimulus, the

persistence of stimulation, the local environment and the type of

activated signalling pathways. Qualitative and quantitative

differences between protective and pathological tissue-resident

memory responses need to be elucidated. During the

development of vaccine candidates aiming to induce mucosal

Trm or Brm, it will be crucial to determine the cytokine profile of

tissue-resident memory lymphocytes generated at mucosal surfaces

after vaccination in order to evaluate the maintenance of mucosal
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homeostasis even though limited inflammation can transiently be

induced by vaccination. Spatial transcriptomics in situ may be a

critical approach to detect inflammation associated with tissue-

resident memory lymphocyte populations (64).
Optimizing vaccine formulations

Given the ability of tissue-resident memory lymphocytes to

generate cross-reactive immune responses specific to conserved

epitopes, designing recombinant antigens which include conserved

epitopes might be of great interest. Systems vaccinology and artificial

intelligence could be approaches which should be explored to predict

epitopes able to induce tissue-resident memory responses. In

addition, the role of adjuvants may be essential to enhance and

tailor tissue-resident memory responses at mucosal sites. Some

promising adjuvants administered by mucosal route have been

already identified in preclinical models. Marinaik et al. showed that

acrylic-acid-based adjuvant associated with a Toll-like receptor

agonist glucopyranosyl lipid adjuvant was the most effective

vaccine formulation to induce influenza-specific CD103+ CD8 Trm

in lungs of mice immunized by intranasal route (65). Using the same

administration route, it was also shown that influenza antigens

associated with IL-1b enhanced the number of antigen-specific

CD103+CD69+ Trm in lungs of mice (66). Interestingly, some

adjuvants administered by systemic route have shown to be able to

enhance the induction of mucosal cellular responses. Indeed, it was

reported that all-trans-retinoic acid administered by intraperitoneal

route could enhance the frequency of antigen-specific memory T cells

in murine intestine (67). Woodworth et al. demonstrated that

CAF®10b, a liposomal adjuvant administered by intramuscular

route, could prime T cells in order to recall them in the lungs or

skin using the antigen only administered by intratracheal and

intradermal routes in NHP (68). If all-trans-retinoic acid or

CAF®10b adjuvants are beneficial to induce mucosal tissue-

resident memory responses, it remains to be confirmed. The main

challenge to design vaccine formulations able to induce mucosal

responses including mucosal Trm/Brm is the current lack of

adjuvants licensed for mucosal administration in humans (69).

Identifying effective and safe mucosal adjuvants is a key factor to

pursue the development of vaccine strategies to generate mucosal

tissue-resident memory responses. Unfortunately, the lack of in vitro

predictive assays for adjuvants does not help and in vivo models

remain the gold standard for these analyses (70).

Finally, evidences have shown that sex (71) and age (60) (72)

could impact on tissue-resident memory response profile and

functionality. These parameters need to be further evaluated in

the context of vaccine development. Vaccine strategies used to

generate Trm/Brm should be tested in both female and male

animals, as well as aged animals at some stages of development. It

will help to tailor vaccine strategies aiming to induce protective Trm

and Brm responses in human populations with different pre-

existing chronic mucosal conditions. In addition, the role of

microbiota or microbiota-derived metabolites in the development,

maintenance, metabolism and modulation of tissue-resident
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1216402
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Longet and Paul 10.3389/fimmu.2023.1216402
memory lymphocytes also have to be considered (73) especially in

the context of mucosal vaccination.
Evaluating tissue-resident
memory responses

The gold standard to analyze mucosal Trm and Brm responses

remains animal models and the type of animal models is a crucial

parameter. Inbred mice are commonly used in the studies.

However, they may not be the best models to analyze tissue-

resident memory responses at mucosal surfaces. Even though it

remains challenging to mimic multiple mucosal exposures to a

range of pathogens impacting on polyfunctional and polyreactive

Trm and Brm in animal models, the use of outbred mice could

better recapitulate observations found in humans as developing

more tissue-resident memory lymphocytes in non-lymphoid

tissues (74).

To evaluate the efficacy of vaccine strategies able to enhance

Trm and Brm responses in humans, robust sampling and

quantification methods are required to analyze mucosal tissue-

resident memory responses. Analysis of post-mortem tissues or
Frontiers in Immunology 05
tissues after resection surgery is currently the best way to study

tissue-resident memory responses at mucosal surfaces by flow

cytometry or histological staining (75). Following SARS-CoV-2

infection, human nasal tissue-resident memory T cells have been

recently analyzed using specific device for nasal sampling (76).

However, isolation of human Trm and Brm from mucosal surfaces

remains challenging. Consequently, defining correlations between

peripheral markers and mucosal tissue-resident memory responses

is crucial to include the analysis of mucosal tissue-resident memory

responses in human vaccine trials. Peripheral markers could be

based on mucosal homing markers expressed on circulating

lymphocyte populations (77) or the circulation of tissue-resident

memory precursors.
Conclusion

Vaccines able to induce long-term mucosal responses are

needed to improve protection against infection at mucosal

surfaces. Expanding polyfunctional and cross-reactive tissue-

resident memory responses using mucosal vaccination on its own

or combined to systemic vaccination looks a promising way to reach
FIGURE 1

Generation of tissue-resident memory lymphocytes in mucosal tissues.1. T and B cells are activated in secondary lymphoid organs (e.g. lymph
nodes, mucosa-associated lymphoid tissues). 2. Following activation, lymphocytes can migrate to mucosal tissues where they will convert into
tissue-resident memory T cells (Trm) and B cells (Brm). 3 & 4. In mucosal tissue, antigen stimulation, cytokine signals and/or cellular interactions can
drive mucosal tissue-resident memory lymphocyte induction and play a role in their maintenance. The role of these parameters may differ according
to the type of mucosal tissue and there are still significant gaps in the current knowledge. For example, the role of local antigen encounter (37–39),
TGFb (50, 51), IL-2 (56), IL-15 (54) or IL-21 (53) in Trm induction, as well as the formation of sub-populations of CD4 Trm have been described in
lungs (53, 60). Evidences showing a role of microbiota or microbiota-derived metabolites in Trm modulation have been reported, especially in
intestine (73). Vaccination may impact on priming, migration, generation and maintenance of Trm and Brm in mucosal tissues. Trm1: tissue-resident
memory CD4 T cells secreting Th1 cytokines. Trm2: tissue-resident memory CD4 T cells secreting Th2 cytokines. Trm17: tissue-resident memory
CD4 T cells secreting Th17 cytokines. Trh: tissue-resident memory CD4 T helper cells. The figure was created with BioRender.com.
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this goal. An ideal vaccine would induce controlled and balanced

Trm and/or Brm responses at mucosal sites (Figure 1). For this

purpose, a better knowledge is needed to understand the formation

of effective tissue-resident memory responses at mucosal surfaces

and to determine the specific environment needed in each mucosal

tissue to generate protective Trm and Brm subsets. Identifying

effective mucosal adjuvants able to induce mucosal tissue-resident

memory responses is a key parameter to optimize vaccine

formulations (Figure 2). However, it will be challenging to move

vaccine candidates into clinical trials if there are not any standard

procedures to quantify Trm and Brm responses in human mucosal

tissues. Identification of peripheral markers correlating with Trm

and/or Brm responses could be an easy way to evaluate mucosal

tissue-resident memory responses post-vaccination in humans.
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